化工学报 ›› 2020, Vol. 71 ›› Issue (9): 3849-3865.DOI: 10.11949/0438-1157.20200366
收稿日期:
2020-04-08
修回日期:
2020-06-22
出版日期:
2020-09-05
发布日期:
2020-09-05
通讯作者:
魏飞
作者简介:
蔡达理(1991—),男,博士,工程师,基金资助:
Dali CAI1,2(),Hao XIONG1,Chenxi ZHANG1,Fei WEI1()
Received:
2020-04-08
Revised:
2020-06-22
Online:
2020-09-05
Published:
2020-09-05
Contact:
Fei WEI
摘要:
化学工业基于对化学反应和化学键的操纵,在横跨超12个数量级的空间和时间尺度上解决传递问题,为人类社会创造和生产新物质。石油的发现和利用将化学工业带入了一个全新的时代,支撑了现代社会的运行,但对中国而言,“富煤贫油少气”的资源特点决定了发展煤化工在中国有独特的战略意义。与石化行业常见的烃类裂化过程不同,现代新型煤化工依赖于小分子原料的自组装,依靠择形分子筛的控制作用高选择性制备燃料和化学品。因此,在亚纳米尺度下,即小分子在择形分子筛上的反应和传递行为不能再被视为连续,而是离散的,这导致了宏观上的拟相变失活等一系列现象。因此,需建立新的方法论理解分子筛上的离散反应和传递行为,用以认识离散尺度在十几个数量级空间和时间尺度延展后对宏观化学过程的影响。本文以纳尺度下分子筛内的离散传递现象为基础,综述了运用图论、小世界网络和先进表征手段分析分子筛内失活与传递现象的研究及发现的一系列新现象,并介绍了基于此进行的分子筛原子级精准结构调变及其对宏观煤化工过程带来的革新。面向未来,本文建立的分析分子筛内离散行为的范式将对精确调变分子筛结构、开发下一代煤化工工艺流程提供全新的思路。
中图分类号:
蔡达理, 熊昊, 张晨曦, 魏飞. 从分子筛上纳尺度离散行为控制到宏观煤化工过程[J]. 化工学报, 2020, 71(9): 3849-3865.
Dali CAI, Hao XIONG, Chenxi ZHANG, Fei WEI. From nanoscale discrete diffusion behavior control to macroscale coal chemical process[J]. CIESC Journal, 2020, 71(9): 3849-3865.
1 | The Global Chemical Industry. Catalyzing growth and addressing our worlds sustainability challenges[R]. International Council of Chemical Associations, 2019. |
2 | Chester A W, Derouane E G. Zeolite Characterization and Catalysis[M]. Netherlands: Springer, 2009. |
3 | Muhammad O H J, Kam E K T. Analysis of coke laydown in FCC catalyst through structured catalyst modelling and experimentation[J]. Catalysis Today, 1997, 38(1): 85-95. |
4 | Harding R H, Peters A W, Nee J R D. New developments in FCC catalyst technology[J]. Applied Catalysis A: General, 2001, 221(1/2): 389-396. |
5 | Stöcker M. Gas phase catalysis by zeolites[J]. Microporous and Mesoporous Materials, 2005, 82(3): 257-292. |
6 | Centi G, Ciambelli P, Perathoner S, et al. Environmental catalysis: trends and outlook[J]. Catalysis Today, 2002, 75(1): 3-15. |
7 | Armor J N. Environmental catalysis[J]. Applied Catalysis B: Environmental, 1992, 1(4): 221-256. |
8 | Farrauto R J, Heck R M. Environmental catalysis into the 21st century[J]. Catalysis Today, 2000, 55(1): 179-187. |
9 | Bereciartua P J, Á Cantín, Corma A, et al. Control of zeolite framework flexibility and pore topology for separation of ethane and ethylene[J]. Science, 2017, 358(6366): 1068-1071. |
10 | Lai Z P, Bonilla G, Diaz I, et al. Microstructural optimization of a zeolite membrane for organic vapor separation[J]. Science, 2003, 300(5618): 456-460. |
11 | Yang R T. Gas Separation by Adsorption Processes[M]. Amsterdam: Elsevier Ltd., 1987: 632. |
12 | Louis B, Ocampo F, Yun H S, et al. Hierarchical pore ZSM-5 zeolite structures: from micro- to macro-engineering of structured catalysts[J]. Chemical Engineering Journal, 2010, 161(3): 397-402. |
13 | Guo G, Sun Q, Wang N, et al. Cost-effective synthesis of hierarchical SAPO-34 zeolites with abundant intracrystalline mesopores and excellent MTO performance[J]. Chemical Communications, 2018, 54(30): 3697-3700. |
14 | Liu Z, Ren S, Yu X, et al. Melting-assisted solvent-free synthesis of hierarchical SAPO-34 with enhanced methanol to olefins (MTO) performance[J]. Catalysis Science & Technology, 2018, 8(2): 423-427. |
15 | Yang S, Yu C, Yu L, et al. Bridging dealumination and desilication for the synthesis of hierarchical MFI zeolites[J]. Angewandte Chemie International Edition, 2017, 56(41): 12553-12556. |
16 | Milina M, Mitchell S, Crivelli P, et al. Mesopore quality determines the lifetime of hierarchically structured zeolite catalysts[J]. Nature Communications, 2014, 5(1): 3922. |
17 | Meng L, Mezari B, Goesten M G, et al. Direct synthesis of hierarchical ZSM-5 zeolite using cetyltrimethylammonium as structure directing agent for methanol-to-hydrocarbons conversion[J]. Catalysis Science & Technology, 2017, 7(19): 4520-4533. |
18 | Liu Z, Hua Y, Wang J, et al. Recent progress in the direct synthesis of hierarchical zeolites: synthetic strategies and characterization methods[J]. Materials Chemistry Frontiers, 2017, 1(11): 2195-2212. |
19 | Keoh S H, Chaikittisilp W, Muraoka K, et al. Factors governing the formation of hierarchically and sequentially intergrown MFI zeolites by using simple diquaternary ammonium structure-directing agents[J]. Chemistry of Materials, 2016, 28(24): 8997-9007. |
20 | Cui Y, Zhang Q, He J, et al. Pore-structure-mediated hierarchical SAPO-34: facile synthesis, tunable nanostructure, and catalysis applications for the conversion of dimethyl ether into olefins[J]. Particuology, 2013, 11(4): 468-474. |
21 | Grand J, Talapaneni S N, Vicente A, et al. One-pot synthesis of silanol-free nanosized MFI zeolite[J]. Nature Materials, 2017, 16(10): 1010-1015. |
22 | Ma Y, Cai D, Li Y, et al. The influence of straight pore blockage on the selectivity of methanol to aromatics in nanosized Zn/ZSM-5: an atomic Cs-corrected STEM analysis study[J]. RSC Advances, 2016, 6(78): 74797-74801. |
23 | Ismail A A, Mohamed R M, Fouad O A, et al. Synthesis of nanosized ZSM-5 using different alumina sources[J]. Crystal Research and Technology, 2006, 41(2): 145-149. |
24 | Li Z, Martínez-Triguero J, Concepción P, et al. Methanol to olefins: activity and stability of nanosized SAPO-34 molecular sieves and control of selectivity by silicon distribution[J]. Physical Chemistry Chemical Physics, 2013, 15(35): 14670. |
25 | Whiting G T, Chung S, Stosic D, et al. Multiscale mechanistic insights of shaped catalyst body formulations and their impact on catalytic properties[J]. ACS Catalysis, 2019, 9(6): 4792-4803. |
26 | Coppens M, Froment G F. Diffusion and reaction in a fractal catalyst pore—I. Geometrical aspects[J]. Chemical Engineering Science, 1995, 50(6): 1013-1026. |
27 | Buurmans I L C, Ruiz-Martínez J, Knowles W V, et al. Catalytic activity in individual cracking catalyst particles imaged throughout different life stages by selective staining[J]. Nature Chemistry, 2011, 3(11): 862-867. |
28 | Ristanović Z, Kerssens M M, Kubarev A V, et al. High-resolution single-molecule fluorescence imaging of zeolite aggregates within real-life fluid catalytic cracking particles[J]. Angewandte Chemie International Edition, 2015, 54(6): 1836-1840. |
29 | Kox M H F, Stavitski E, Groen J C, et al. Visualizing the crystal structure and locating the catalytic activity of micro- and mesoporous ZSM-5 zeolite crystals by using in situ optical and fluorescence microscopy[J]. Chemistry - A European Journal, 2008, 14(6): 1718-1725. |
30 | Kärger J, Freude D. Mass transfer in micro- and mesoporous materials[J]. Chemical Engineering & Technology, 2002, 25(8): 769-778. |
31 | Chang C D, Silvestri A J. The conversion of methanol and other O-compounds to hydrocarbons over zeolite catalysts[J]. Journal of Catalysis, 1977, 47(2): 249-259. |
32 | Ono Y, Mori T. Mechanism of methanol conversion into hydrocarbons over ZSM-5 zeolite[J]. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1981, 77(9): 2209. |
33 | Chu C T, Chang C D. Methanol conversion to olefins over ZSM-5 (Ⅱ): Olefin distribution[J]. Journal of Catalysis, 1984, 86(2): 297-300. |
34 | Tajima N, Tsuneda T, Toyama F, et al. A new mechanism for the first carbon-carbon bond formation in the MTG process: a theoretical study[J]. Journal of the American Chemical Society, 1998, 120(32): 8222-8229. |
35 | Jackson J E, Bertsch F M. Conversion of methanol to gasoline: new mechanism for formation of the first carbon-carbon bond[J]. Journal of the American Chemical Society, 1990, 112(25): 9085-9092. |
36 | Martínez-Espín J S, de Wispelaere K, Janssens T V W, et al. Hydrogen transfer versus methylation: on the genesis of aromatics formation in the methanol-to-hydrocarbons reaction over H-ZSM-5[J]. ACS Catalysis, 2017, 7(9): 5773-5780. |
37 | Liu Y, Kirchberger F M, Müller S, et al. Critical role of formaldehyde during methanol conversion to hydrocarbons[J]. Nature Communications, 2019, 10(1): 1462. |
38 | Wilson S T, Lok B M, Messina C A, et al. Aluminophosphate molecular sieves: a new class of microporous crystalline inorganic solids[J]. Journal of the American Chemical Society, 1982, 104(4): 1146-1147. |
39 | Kaiser S W. Production of light olefins: US4499327A[P]. 1985. |
40 | Cai D, Cui Y, Jia Z, et al. High-precision diffusion measurement of ethane and propane over SAPO-34 zeolites for methanol-to-olefin process[J]. Frontiers of Chemical Science and Engineering, 2018, 12(1): 77-82. |
41 | 李宏愿, 梁娟, 汪荣慧, 等. 硅磷酸铝分子筛SAPO-34的合成[J]. 石油化工, 1987, (5): 340-346. |
Li H Y, Liang J, Wang R H, et al. Synthesis of silicoaluminophosphate molecular sieve SAPO-34[J]. Petrochemical Technology, 1987, (5): 340-346. | |
42 | 李宏愿, 梁娟, 王租伟, 等. 硅磷酸铝分子筛合成与热稳定性考察[J]. 天然气化工(C1化学与化工), 1987, (6): 1-7. |
Li H Y, Liang J, Wang Z W, et al. Synthesis and thermal stability investigation of silicoaluminophosphate molecular sieve[J]. Natural Gas Chemical Industry, 1987, (6): 1-7. | |
43 | 李宏愿, 梁娟, 汪荣慧, 等. SAPO-34分子筛对甲醇转化制低碳烯烃催化性能考察[J]. 天然气化工(C1化学与化工), 1989, (2): 17-22. |
Li H Y, Liang J, Wang R H, et al. Investigation on the catalytic performance of SAPO-34 molecular sieve for the conversion of methanol to light olefins[J]. Natural Gas Chemical Industry, 1989, (2): 17-22. | |
44 | Dahl I M, Kolboe S. On the reaction mechanism for hydrocarbon formation from methanol over SAPO-34(Ⅱ): Isotopic labeling studies of the co-reaction of propene and methanol[J]. Journal of Catalysis, 1996, 161(1): 304-309. |
45 | Dahl I M, Kolboe S. On the reaction mechanism for hydrocarbon formation from methanol over SAPO-34(Ⅰ): Isotopic labeling studies of the co-reaction of ethene and methanol[J]. Journal of Catalysis, 1994, 149(2): 458-464. |
46 | Svelle S, Joensen F, Nerlov J, et al. Conversion of methanol into hydrocarbons over zeolite H-ZSM-5: ethene formation is mechanistically separated from the formation of higher alkenes[J]. Journal of the American Chemical Society, 2006, 128(46): 14770-14771. |
47 | Yarulina I, Chowdhury A D, Meirer F, et al. Recent trends and fundamental insights in the methanol-to-hydrocarbons process[J]. Nature Catalysis, 2018, 1(6): 398-411. |
48 | Zhang J, Su D, Zhang A, et al. Nanocarbon as robust catalyst: mechanistic insight into carbon-mediated catalysis[J]. Angewandte Chemie International Edition, 2007, 46(38): 7319-7323. |
49 | Zhang J, Liu X, Blume R, et al. Surface-modified carbon nanotubes catalyze oxidative dehydrogenation of n-butane[J]. Science, 2008, 322(5898): 73-77. |
50 | Liu X, Frank B, Zhang W, et al. Carbon-catalyzed oxidative dehydrogenation of n-butane: selective site formation during sp3-to-sp2 lattice rearrangement[J]. Angewandte Chemie International Edition, 2011, 50(14): 3318-3322. |
51 | Gao Y, Hu G, Zhong J, et al. Nitrogen-doped sp2-hybridized carbon as a superior catalyst for selective oxidation[J]. Angewandte Chemie International Edition, 2013, 52(7): 2109-2113. |
52 | Wen G, Gu Q, Liu Y, et al. Biomass-derived graphene-like carbon: efficient metal-free carbocatalysts for epoxidation[J]. Angewandte Chemie International Edition, 2018, 57(51): 16898-16902. |
53 | Cai D, Wang Q, Jia Z, et al. Equilibrium analysis of methylbenzene intermediates for a methanol-to-olefins process[J]. Catalysis Science & Technology, 2016, 6(5): 1297-1301. |
54 | Wang Z L. Transmission electron microscopy of shape-controlled nanocrystals and their assemblies[J]. The Journal of Physical Chemistry B, 2000, 104(6): 1153-1175. |
55 | Bosch E G T, Lazic I, Lazar S. Integrated differential phase contrast (iDPC) STEM: a new atomic resolution STEM technique to image all elements across the periodic table[J]. Microscopy and Microanalysis, 2016, 22(S3): 306-307. |
56 | Liu L, Wang N, Zhu C, et al. Direct imaging of atomically dispersed molybdenum that enables location of aluminum in the framework of zeolite ZSM-5[J]. Angewandte Chemie International Edition, 2020, 59(2): 819-825. |
57 | Shen B, Chen X, Shen K, et al. Imaging the node-linker coordination in the bulk and local structures of metal-organic frameworks[J]. Nature Communications, 2020, 11(1): 2692. |
58 | Shen B, Chen X, Cai D, et al. Atomic spatial and temporal imaging of local structures and light elements inside zeolite frameworks[J]. Advanced Materials, 2019, 32(4): 1906103. |
59 | Arslan M T, Ali B, Gilani S Z A, et al. Selective conversion of syngas into tetramethylbenzene via an aldol-aromatic mechanism[J]. ACS Catalysis, 2020, 10(4): 2477-2488. |
60 | Cai D, Wang N, Chen X, et al. Highly selective conversion of methanol to propylene: design of an MFI zeolite with selective blockage of (010) surfaces[J]. Nanoscale, 2019, 11(17): 8096-8101. |
61 | Cai D, Ma Y, Hou Y, et al. Establishing a discrete Ising model for zeolite deactivation: inspiration from the game of Go[J]. Catalysis Science & Technology, 2017, 7(12): 2440-2444. |
62 | West G B. The fourth dimension of life: fractal geometry and allometric scaling of organisms[J]. Science, 1999, 284(5420): 1677-1679. |
63 | Mandelbrot B B. The Fractal Geometry of Nature[M]. San Francisco: W. H. Freeman and Company, 1997. |
64 | Murray C D. The physiological principle of minimum work(Ⅰ): The vascular system and the cost of blood volume[J]. Proceedings of the National Academy of Sciences, 1926, 12(3): 207-214. |
65 | Taber L A, Ng S, Quesnel A M, et al. Investigating Murrays law in the chick embryo[J]. Journal of Biomechanics, 2001, 34(1): 121-124. |
66 | White C R, Seymour R S. Mammalian basal metabolic rate is proportional to body mass 2/3[J]. Proceedings of the National Academy of Sciences, 2003, 100(7): 4046-4049. |
67 | He J, Zhang J. Fifth dimension of life and the 4/5 allometric scaling law for human brain[J]. Cell Biology International, 2004, 28(11): 809-815. |
68 | Dodds P S. An experimental study of search in global social networks[J]. Science, 2003, 301(5634): 827-829. |
69 | Moreno Y, Nekovee M, Pacheco A F. Dynamics of rumor spreading in complex networks[J]. Physical Review E, 2004, 69(6): 66130. |
70 | van der Hofstad R. Random Graphs and Complex Networks[M]. Cambridge: Cambridge University Press, 2017. |
71 | Erdos P, Renyi A. On random graphs I[J]. Publicationes Mathematicae Debrecen, 1959, 6: 290-297. |
72 | Erdos P, Renyi A. On the evolution of random graphs[J]. Publications of the Mathematical Institute of the Hungarian Academy of Sciences, 1960, 5(1): 17-60. |
73 | 北京市统计局, 国家统计局北京调查总队. 北京统计年鉴2018[M]. 北京: 中国统计出版社, 2018. |
Beijing Municipal Bureau of Statistics, Beijing Survey Corps of the National Bureau of Statistics. Beijing Statistical Yearbook 2018[M].Beijing: China Statistics Press, 2018. | |
74 | Watts D J, Strogatz S H. Collective dynamics of ‘small-world’ networks[J]. Nature, 1998, 393(6684): 440-442. |
75 | Cai D, Hou Y, Zhang C, et al. Analyzing transfer properties of zeolites using small-world networks[J]. Nanoscale, 2018, 10(35): 16431-16433. |
76 | Meng X, Xiao F. Green routes for synthesis of zeolites[J]. Chemical Reviews, 2013, 114(2): 1521-1543. |
77 | Ma Y, Wang N, Qian W, et al. Molded MFI nanocrystals as a highly active catalyst in a methanol-to-aromatics process[J]. RSC Advances, 2016, 6(84): 81198-81202. |
78 | Zhu J, Cui Y, Nawaz Z, et al. In situ synthesis of SAPO-34 zeolites in kaolin microspheres for a fluidized methanol or dimethyl ether to olefins process[J]. Chinese Journal of Chemical Engineering, 2010, 18(6): 979-987. |
79 | Kong C, Zhu J, Liu S, et al. SAPO-34 with a low acidity outer layer by epitaxial growth and its improved MTO performance[J]. RSC Advances, 2017, 7(63): 39889-39898. |
80 | Zhang C, Qian W, Wang Y, et al. Heterogeneous catalysis in multi-stage fluidized bed reactors: from fundamental study to industrial application[J]. The Canadian Journal of Chemical Engineering, 2019, 97(3): 636-644. |
81 | Arslan M T, Qureshi B A, Gilani S Z A, et al. Single-step conversion of H2-deficient syngas into high yield of tetramethylbenzene[J]. ACS Catalysis, 2019, 9(3): 2203-2212. |
[1] | 韩奎奎, 谭湘龙, 李金芝, 杨婷, 张春, 张永汾, 刘洪全, 于中伟, 顾学红. 四通道中空纤维MFI分子筛膜用于二甲苯异构体分离[J]. 化工学报, 2023, 74(6): 2468-2476. |
[2] | 王荣, 王永洪, 张新儒, 李晋平. 6FDA型聚酰亚胺炭分子筛气体分离膜的构筑及其应用[J]. 化工学报, 2023, 74(4): 1433-1445. |
[3] | 王子健, 柯明, 李佳涵, 李舒婷, 孙巾茹, 童燕兵, 赵治平, 刘加英, 任璐. 短b轴ZSM-5分子筛制备方法及应用研究进展[J]. 化工学报, 2023, 74(4): 1457-1473. |
[4] | 白宇恩, 张彬瑞, 刘东阳, 赵亮, 高金森, 徐春明. ZSM-5分子筛酸性能和孔结构的协同作用对C5烯烃催化裂解性能的影响[J]. 化工学报, 2023, 74(1): 438-448. |
[5] | 郑涛, 刘海燕, 张睿, 孟祥海, 岳源源, 刘植昌. 基于分子筛绿色合成的天然硅铝矿物介尺度活化研究进展[J]. 化工学报, 2022, 73(6): 2334-2351. |
[6] | 王婵, 肖国锡, 郭小雪, 徐人威, 岳源源, 鲍晓军. 基于介尺度结构解聚-重组装的Beta分子筛的绿色合成及应用[J]. 化工学报, 2022, 73(6): 2690-2697. |
[7] | 王旭, 张乐瑶, 张昊轩, 演嘉辉, 吴玉帅, 吴冬, 陈汇勇, 马晓迅. 中空孔结构对W掺杂MFI分子筛丙酮吸附行为的研究[J]. 化工学报, 2022, 73(3): 1194-1206. |
[8] | 苏畅, 冯晓博, 张立云, 陈峰, 赵小燕, 曹景沛. 四乙基氢氧化铵改性对HMOR分子筛结构及二甲醚羰基化性能的影响[J]. 化工学报, 2022, 73(2): 712-721. |
[9] | 王吴玉, 史玉竹, 严龙, 张兴华, 马隆龙, 张琦. 负载型Co基双功能催化剂上戊酸酯生物燃料的制备[J]. 化工学报, 2022, 73(2): 689-698. |
[10] | 张超, 陈健, 殷文华, 沈圆辉, 钮朝阳, 余秀鑫, 张东辉, 唐忠利. 变压吸附氢气纯化过程瞬态分析[J]. 化工学报, 2022, 73(1): 308-321. |
[11] | 高文莉, 辛忠. Fe对Ni/SBA-16催化CO低温甲烷化促进作用的研究[J]. 化工学报, 2022, 73(1): 241-254. |
[12] | 李腾飞, 缪赟, 杨柳, 王龙耀, 朱铧丞. 微波强化Y型分子筛离子交换技术[J]. 化工学报, 2021, 72(S1): 406-412. |
[13] | 王伟, 钱伟鑫, 马宏方, 应卫勇, 张海涛. 吡啶修饰H-MOR上二甲醚羰基化吸附-扩散理论研究[J]. 化工学报, 2021, 72(9): 4786-4795. |
[14] | 梁家豪, 张国强, 高源, 尹娇, 郑华艳, 李忠. 介孔构建对CuY甲醇氧化羰基化反应活性的影响[J]. 化工学报, 2021, 72(9): 4685-4697. |
[15] | 耿晨旭, 孙玉绣, 黄宏亮, 郭翔宇, 乔志华, 仲崇立. 机械化学法合成小尺寸MOF填料助力高性能CO2分离[J]. 化工学报, 2021, 72(9): 4750-4758. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||