1 |
Zhang Y, Sunarso J, Liu S M, et al. Current status and development of membranes for CO2/CH4 separation: a review[J]. International Journal of Greenhouse Gas Control, 2013, 12: 84-107.
|
2 |
Maricq M M, Chase R E, Xu N, et al. The effects of the catalytic converter and fuel sulfur level on motor vehicle particulate matter emissions: gasoline vehicles[J]. Environmental Science & Technology, 2002, 36(2): 276-282.
|
3 |
Vrbová V, Ciahotný K. Upgrading biogas to biomethane using membrane separation[J]. Energy & Fuels, 2017, 31(9): 9393-9401.
|
4 |
Belmabkhout Y, Heymans N, De Weireld G, et al. Simultaneous adsorption of H2S and CO2 on triamine-grafted pore-expanded mesoporous MCM-41 silica[J]. Energy & Fuels, 2011, 25(3): 1310-1315.
|
5 |
Webster C E, Drago R S, Zerner M C. Molecular dimensions for adsorptives[J]. Journal of the American Chemical Society, 1998, 120(22): 5509-5516.
|
6 |
Sayari A, Belmabkhout Y, Serna-Guerrero R. Flue gas treatment via CO2 adsorption[J]. Chemical Engineering Journal, 2011, 171(3): 760-774.
|
7 |
Zhao H Y, Feng L Z, Ding X L, et al. The nitrogen-doped porous carbons/PIM mixed-matrix membranes for CO2 separation[J]. Journal of Membrane Science, 2018, 564: 800-805.
|
8 |
Zhao J H, Xie K, Liu L, et al. Enhancing plasticization-resistance of mixed-matrix membranes with exceptionally high CO2/CH4 selectivity through incorporating ZSM-25 zeolite[J]. Journal of Membrane Science, 2019, 583: 23-30.
|
9 |
Koros W J, Zhang C. Materials for next-generation molecularly selective synthetic membranes[J]. Nature Materials, 2017, 16(3): 289-297.
|
10 |
Wang H, Zhao S, Liu Y, et al. Membrane adsorbers with ultrahigh metal-organic framework loading for high flux separations[J]. Nature Communications, 2019, 10: 4204.
|
11 |
Lu Y, Zhang H C, Chan J Y, et al. Homochiral MOF-polymer mixed matrix membranes for efficient separation of chiral molecules[J]. Angewandte Chemie International Edition, 2019, 58(47): 16928-16935.
|
12 |
Rodenas T, Luz I, Prieto G, et al. Metal-organic framework nanosheets in polymer composite materials for gas separation[J]. Nature Materials, 2015, 14(1): 48-55.
|
13 |
Caro J. Quo vadis, MOF? [J]. Chemie Ingenieur Technik, 2018, 90(11): 1759-1768.
|
14 |
Bae T H, Lee J S, Qiu W L, et al. A high-performance gas-separation membrane containing submicrometer-sized metal-organic framework crystals[J]. Angewandte Chemie International Edition, 2010, 49(51): 9863-9866.
|
15 |
Wu X Y, Tian Z Z, Wang S F, et al. Mixed matrix membranes comprising polymers of intrinsic microporosity and covalent organic framework for gas separation[J]. Journal of Membrane Science, 2017, 528: 273-283.
|
16 |
Guo A, Ban Y J, Yang K, et al. Molecular sieving mixed matrix membranes embodying nano-fillers with extremely narrow pore-openings[J]. Journal of Membrane Science, 2020, 601: 117880.
|
17 |
Zou C C, Li Q Q, Hua Y Y, et al. Mechanical synthesis of COF nanosheet cluster and its mixed matrix membrane for efficient CO2 removal[J]. ACS Applied Materials & Interfaces, 2017, 9(34): 29093-29100.
|
18 |
Robeson L M. The upper bound revisited[J]. Journal of Membrane Science, 2008, 320(1/2): 390-400.
|
19 |
Shen J, Liu G P, Huang K, et al. UiO-66-polyether block amide mixed matrix membranes for CO2 separation[J]. Journal of Membrane Science, 2016, 513: 155-165.
|
20 |
Guo X Y, Huang H L, Ban Y J, et al. Mixed matrix membranes incorporated with amine-functionalized titanium-based metal-organic framework for CO2/CH4 separation[J]. Journal of Membrane Science, 2015, 478: 130-139.
|
21 |
Xiang L, Sheng L Q, Wang C Q, et al. Amino-functionalized ZIF-7 nanocrystals: improved intrinsic separation ability and interfacial compatibility in mixed-matrix membranes for CO2/CH4 separation[J]. Advanced Materials, 2017, 29(32): 1606999.
|
22 |
Peng Y, Li Y S, Ban Y J, et al. Metal-organic framework nanosheets as building blocks for molecular sieving membranes[J]. Science, 2014, 346(6215): 1356-1359.
|
23 |
Zhou Y W, Wang Y C, Ban Y J, et al. Carbon molecular sieving membranes for butane isomer separation[J]. AIChE Journal, 2019, 65(11): e16749.
|
24 |
Liu G P, Chernikova V, Liu Y, et al. Mixed matrix formulations with MOF molecular sieving for key energy-intensive separations[J]. Nature Materials, 2018, 17(3): 283-289.
|
25 |
Lin R B, Li L B, Zhou H L, et al. Molecular sieving of ethylene from ethane using a rigid metal–organic framework[J]. Nature Materials, 2018, 17(12): 1128-1133.
|
26 |
Lin R B, Li L B, Alsalme A, et al. An ultramicroporous metal-organic framework for sieving separation of carbon dioxide from methane[J]. Small Structures, 2020, 1(3): 2000022.
|
27 |
Chen Y, Du Y D, Wang Y, et al. Ammonia modification on UTSA-280 for C2H4/C2H6 separation[J]. Acta Chimica Sinica, 2020, 78(6): 534.
|
28 |
Li L Y, Guo L D, Pu S Y, et al. A calcium-based microporous metal-organic framework for efficient adsorption separation of light hydrocarbons[J]. Chemical Engineering Journal, 2019, 358: 446-455.
|
29 |
Shi Y S, Liang B, Alsalme A, et al. Mechanochemical synthesis of an ethylene sieve UTSA-280[J]. Journal of Solid State Chemistry, 2020, 287: 121321.
|
30 |
郭翔宇, 阳庆元. 含开放金属位点MIL-101(Cr)掺杂的混合基质膜制备及其CO2分离性能[J]. 化工学报, 2017, 68(11): 4323-4332.
|
|
Guo X Y, Yang Q Y. Preparation and CO2 separation performance of mixed matrix membranes incorporated with open metal sites-containing MIL-101(Cr)[J]. CIESC Journal, 2017, 68(11): 4323-4332.
|
31 |
Koros W J, Ma Y H, Shimidzu T. Terminology for membranes and membrane processes[J]. Pure and Applied Chemistry, 1996, 68(7): 1479-1489.
|
32 |
Cheng Y D, Ying Y P, Zhai L Z, et al. Mixed matrix membranes containing MOF@COF hybrid fillers for efficient CO2/CH4 separation[J]. Journal of Membrane Science, 2019, 573: 97-106.
|
33 |
Ishaq S, Tamime R, Bilad M R, et al. Mixed matrix membranes comprising of polysulfone and microporous Bio-MOF-1: preparation and gas separation properties[J]. Separation and Purification Technology, 2019, 210: 442-451.
|
34 |
Tanh Jeazet H B, Sorribas S, Román-Marín J M, et al. Increased selectivity in CO2/CH4 separation with mixed-matrix membranes of polysulfone and mixed-MOFs MIL-101(Cr) and ZIF-8[J]. European Journal of Inorganic Chemistry, 2016(27): 4363-4367.
|
35 |
Ban Y J, Li Z J, Li Y S, et al. Confinement of ionic liquids in nanocages: tailoring the molecular sieving properties of ZIF-8 for membrane-based CO2 capture[J]. Angewandte Chemie International Edition, 2015, 54(51): 15483-15487.
|
36 |
Guo A, Ban Y J, Yang K, et al. Metal-organic framework-based mixed matrix membranes: Synergetic effect of adsorption and diffusion for CO2/CH4 separation[J]. Journal of Membrane Science, 2018, 562: 76-84.
|
37 |
Su N C, Sun D T, Beavers C M, et al. Enhanced permeation arising from dual transport pathways in hybrid polymer–MOF membranes[J]. Energy & Environmental Science, 2016, 9(3): 922-931.
|
38 |
Sarfraz M, Ba-Shammakh M. Synergistic effect of adding graphene oxide and ZIF-301 to polysulfone to develop high performance mixed matrix membranes for selective carbon dioxide separation from post combustion flue gas[J]. Journal of Membrane Science, 2016, 514: 35-43.
|
39 |
Jeazet H, Koschine T, Staudt C, et al. Correlation of gas permeability in a metal-organic framework MIL-101(Cr-polysulfone mixed-matrix membrane with free volume measurements by positron annihilation lifetime spectroscopy (PALS)[J]. Membranes, 2013, 3(4): 331-353.
|
40 |
Marti A M, Venna S R, Roth E A, et al. Simple fabrication method for mixed matrix membranes with in situ MOF growth for gas separation[J]. ACS Applied Materials & Interfaces, 2018, 10(29): 24784-24790.
|
41 |
Molavi H, Shojaei A, Mousavi S A. Improving mixed-matrix membrane performance via PMMA grafting from functionalized NH2-UiO-66[J]. Journal of Materials Chemistry A, 2018, 6(6): 2775-2791.
|
42 |
Prasetya N, Donose B C, Ladewig B P. A new and highly robust light-responsive Azo-UiO-66 for highly selective and low energy post-combustion CO2 capture and its application in a mixed matrix membrane for CO2/N2 separation[J]. Journal of Materials Chemistry A, 2018, 6(34): 16390-16402.
|
43 |
Venna S R, Lartey M, Li T, et al. Fabrication of MMMs with improved gas separation properties using externally-functionalized MOF particles[J]. Journal of Materials Chemistry A, 2015, 3(9): 5014-5022.
|