化工学报 ›› 2021, Vol. 72 ›› Issue (9): 4685-4697.DOI: 10.11949/0438-1157.20201937
梁家豪1(),张国强1,高源2,尹娇1,郑华艳1,李忠1()
收稿日期:
2020-12-29
修回日期:
2021-03-19
出版日期:
2021-09-05
发布日期:
2021-09-05
通讯作者:
李忠
作者简介:
梁家豪(1995—),男,硕士,基金资助:
Jiahao LIANG1(),Guoqiang ZHANG1,Yuan GAO2,Jiao YIN1,Huayan ZHENG1,Zhong LI1()
Received:
2020-12-29
Revised:
2021-03-19
Online:
2021-09-05
Published:
2021-09-05
Contact:
Zhong LI
摘要:
采用H4EDTA、H2Na2EDTA和NaOH溶液对原始NaY分子筛分别进行单独酸碱改性和酸碱连续改性,并采用液相离子交换法制备相应的CuY催化剂。结合N2物理吸附、TEM、XRD、29Si NMR、27Al NMR、NH3-TPD、Py-IR、ICP、XPS和CO-FTIR等对载体和催化剂的结构进行表征,研究了NaY分子筛介孔构建对CuY催化甲醇氧化羰基化反应活性的影响。结果表明,NaY分子筛经H4EDTA单独处理后,部分骨架铝被脱除形成非骨架硅铝物种,得到的E-NaY并未形成明显的介孔;E-NaY经H2Na2EDTA酸洗处理后,非骨架铝和部分骨架铝被脱除,得到的EW-NaY具有明显的介孔结构;而E-NaY和EW-NaY经0.2 mol/L NaOH碱处理后,分子筛发生脱硅,同时伴随着非骨架铝重新插回分子筛骨架,得到的E0.2AT-NaY和EW0.2AT-NaY具有丰富的介孔结构。其中,EW0.2AT-NaY的介孔孔容(0.45 cm3/g)最大,且有丰富的Al缺陷结构,能够与反应物接触的Cu+交换位利用率最高。然而,由于EW0.2AT-NaY脱铝程度明显高于E0.2AT-NaY,导致能够与反应物接触的Cu+交换位数量(66 μmol/g)明显小于E0.2AT-NaY(176 μmol/g),最终导致EW0.2AT-CuY催化剂中Cu+活性位数量及催化活性略低于E0.2AT-CuY,二者的催化活性约为原始CuY催化剂的2.2倍。
中图分类号:
梁家豪, 张国强, 高源, 尹娇, 郑华艳, 李忠. 介孔构建对CuY甲醇氧化羰基化反应活性的影响[J]. 化工学报, 2021, 72(9): 4685-4697.
Jiahao LIANG, Guoqiang ZHANG, Yuan GAO, Jiao YIN, Huayan ZHENG, Zhong LI. Effect of mesoporous construction on catalytic performance of CuY methanol oxidative carbonylation[J]. CIESC Journal, 2021, 72(9): 4685-4697.
Sample | SBET①/ (m2/g) | Smicro②/ (m2/g) | Smeso②/ (m2/g) | Vtotal③/ (cm3/g) | Vmicro②/ (cm3/g) | Vmeso④/ (cm3/g) | Dmeso/ nm | Crystallinity⑤/ % |
---|---|---|---|---|---|---|---|---|
NaY | 775 | 758 | 17 | 0.38 | 0.31 | 0.07 | 1.91 | 100 |
E-NaY | 620 | 595 | 25 | 0.36 | 0.27 | 0.09 | 1.93 | 24 |
EW-NaY | 628 | 438 | 190 | 0.39 | 0.21 | 0.18 | 3.45 | 32 |
0.2AT-NaY | 718 | 697 | 20 | 0.42 | 0.33 | 0.09 | 1.93 | 92 |
E0.2AT-NaY | 720 | 627 | 93 | 0.53 | 0.29 | 0.24 | 3.59 | 67 |
EW0.2AT-NaY | 670 | 465 | 205 | 0.66 | 0.21 | 0.45 | 3.59 | 52 |
表1 NaY分子筛的织构性质
Table 1 Textural properties and relative crystallinity of NaY zeolites
Sample | SBET①/ (m2/g) | Smicro②/ (m2/g) | Smeso②/ (m2/g) | Vtotal③/ (cm3/g) | Vmicro②/ (cm3/g) | Vmeso④/ (cm3/g) | Dmeso/ nm | Crystallinity⑤/ % |
---|---|---|---|---|---|---|---|---|
NaY | 775 | 758 | 17 | 0.38 | 0.31 | 0.07 | 1.91 | 100 |
E-NaY | 620 | 595 | 25 | 0.36 | 0.27 | 0.09 | 1.93 | 24 |
EW-NaY | 628 | 438 | 190 | 0.39 | 0.21 | 0.18 | 3.45 | 32 |
0.2AT-NaY | 718 | 697 | 20 | 0.42 | 0.33 | 0.09 | 1.93 | 92 |
E0.2AT-NaY | 720 | 627 | 93 | 0.53 | 0.29 | 0.24 | 3.59 | 67 |
EW0.2AT-NaY | 670 | 465 | 205 | 0.66 | 0.21 | 0.45 | 3.59 | 52 |
Sample | Relative content of various Si units/% | n (Si)/ n (Al) | |||||
---|---|---|---|---|---|---|---|
Si(4Al) | Si(3Al) | Si(2Al) | Si(1Al) | Si(0Al) | Amorphous Si | ||
NaY | 3.24 | 10.25 | 32.75 | 43.62 | 10.15 | — | 2.30 |
E-NaY | 2.55 | 8.18 | 18.74 | 47.92 | 15.49 | 7.12 | 2.96 |
EW-NaY | 1.95 | 5.33 | 18.24 | 53.14 | 12.06 | 5.98 | 3.17 |
0.2AT-NaY | 5.05 | 14.44 | 35.14 | 37.49 | 7.88 | — | 2.33 |
E0.2AT-NaY | 4.57 | 16.05 | 38.35 | 30.83 | 10.2 | — | 2.35 |
EW0.2AT-NaY | 4.04 | 13.48 | 28.29 | 45.14 | 9.05 | — | 2.54 |
表2 从29Si MAS NMR谱图计算得到的各种硅单元的相对含量和骨架硅铝比
Table 2 Relative content of various Si units and framwork ratio of Si/Al calculated from 29Si MAS NMR spectra
Sample | Relative content of various Si units/% | n (Si)/ n (Al) | |||||
---|---|---|---|---|---|---|---|
Si(4Al) | Si(3Al) | Si(2Al) | Si(1Al) | Si(0Al) | Amorphous Si | ||
NaY | 3.24 | 10.25 | 32.75 | 43.62 | 10.15 | — | 2.30 |
E-NaY | 2.55 | 8.18 | 18.74 | 47.92 | 15.49 | 7.12 | 2.96 |
EW-NaY | 1.95 | 5.33 | 18.24 | 53.14 | 12.06 | 5.98 | 3.17 |
0.2AT-NaY | 5.05 | 14.44 | 35.14 | 37.49 | 7.88 | — | 2.33 |
E0.2AT-NaY | 4.57 | 16.05 | 38.35 | 30.83 | 10.2 | — | 2.35 |
EW0.2AT-NaY | 4.04 | 13.48 | 28.29 | 45.14 | 9.05 | — | 2.54 |
Sample | Acidity/(mmol/g) ① | Acidity/(μmol/g) ② | ||
---|---|---|---|---|
Total | Br?nsted | Lewis | ||
HY | 2.429 | 96 | 71 | |
E-HY | 0.749 | 47 | 65 | |
EW-HY | 0.510 | 54 | 61 | |
0.2AT-HY | 1.946 | 191 | 103 | |
E0.2AT-HY | 1.864 | 176 | 124 | |
EW0.2AT-HY | 1.072 | 66 | 97 |
表3 HY分子筛的酸量
Table 3 Acidity of HY zeolites
Sample | Acidity/(mmol/g) ① | Acidity/(μmol/g) ② | ||
---|---|---|---|---|
Total | Br?nsted | Lewis | ||
HY | 2.429 | 96 | 71 | |
E-HY | 0.749 | 47 | 65 | |
EW-HY | 0.510 | 54 | 61 | |
0.2AT-HY | 1.946 | 191 | 103 | |
E0.2AT-HY | 1.864 | 176 | 124 | |
EW0.2AT-HY | 1.072 | 66 | 97 |
Catalyst | Peak area | (Cu+/Cusum)/% | |
---|---|---|---|
Cu+ | Cu2+ | ||
CuY | 38508.2 | 14516.7 | 72.6 |
E-CuY | 22944.8 | 7801.4 | 74.6 |
EW-CuY | 27367.8 | 8287.9 | 76.7 |
0.2AT-CuY | 36988.2 | 13005.5 | 73.9 |
E0.2AT-CuY | 42272.8 | 9049.7 | 82.3 |
EW0.2AT-CuY | 45612.5 | 8050.7 | 84.9 |
表4 CuY催化剂的Cu 2p3/2 XPS谱图拟合结果分析
Table 4 Quantitative analysis of the Cu 2p3/2 XPS curve fitting of CuY catalysts
Catalyst | Peak area | (Cu+/Cusum)/% | |
---|---|---|---|
Cu+ | Cu2+ | ||
CuY | 38508.2 | 14516.7 | 72.6 |
E-CuY | 22944.8 | 7801.4 | 74.6 |
EW-CuY | 27367.8 | 8287.9 | 76.7 |
0.2AT-CuY | 36988.2 | 13005.5 | 73.9 |
E0.2AT-CuY | 42272.8 | 9049.7 | 82.3 |
EW0.2AT-CuY | 45612.5 | 8050.7 | 84.9 |
Catalyst | wCu①/% | CO-Cu+ peak area② | CO-Cu+ peak area/ Br?nsted③ | STYDMC/(mg/(g·h)) | XCH | Selectivity of products/% | |||
---|---|---|---|---|---|---|---|---|---|
DMC | DME | DMM | MF | ||||||
CuY | 5.4 | 2.6 | 0.027 | 75.3 | 2.8 | 49.1 | 3.7 | 39.4 | 7.8 |
E-CuY | 5.8 | 3.9 | 0.082 | 101.7 | 3.2 | 59.4 | 1.3 | 27.2 | 12.1 |
EW-CuY | 5.9 | 4.6 | 0.085 | 131.1 | 4.2 | 61.4 | 1.1 | 23.2 | 14.3 |
0.2AT-CuY | 6.0 | 3.4 | 0.018 | 93.0 | 3.1 | 54.8 | 1.7 | 31.5 | 11.9 |
E0.2AT-CuY | 5.8 | 6.8 | 0.039 | 172.7 | 5.7 | 65.3 | 1.0 | 28.1 | 6.2 |
EW0.2AT-CuY | 5.0 | 5.9 | 0.089 | 166.2 | 5.3 | 65.2 | 1.1 | 27.1 | 6.5 |
表5 CuY催化剂在甲醇氧化羰基化中的催化性能指标
Table 5 Catalytic performance of CuY catalysts for oxidative carbonylation of methanol
Catalyst | wCu①/% | CO-Cu+ peak area② | CO-Cu+ peak area/ Br?nsted③ | STYDMC/(mg/(g·h)) | XCH | Selectivity of products/% | |||
---|---|---|---|---|---|---|---|---|---|
DMC | DME | DMM | MF | ||||||
CuY | 5.4 | 2.6 | 0.027 | 75.3 | 2.8 | 49.1 | 3.7 | 39.4 | 7.8 |
E-CuY | 5.8 | 3.9 | 0.082 | 101.7 | 3.2 | 59.4 | 1.3 | 27.2 | 12.1 |
EW-CuY | 5.9 | 4.6 | 0.085 | 131.1 | 4.2 | 61.4 | 1.1 | 23.2 | 14.3 |
0.2AT-CuY | 6.0 | 3.4 | 0.018 | 93.0 | 3.1 | 54.8 | 1.7 | 31.5 | 11.9 |
E0.2AT-CuY | 5.8 | 6.8 | 0.039 | 172.7 | 5.7 | 65.3 | 1.0 | 28.1 | 6.2 |
EW0.2AT-CuY | 5.0 | 5.9 | 0.089 | 166.2 | 5.3 | 65.2 | 1.1 | 27.1 | 6.5 |
1 | Olsbye U, Svelle S, Bjørgen M, et al. Conversion of methanol to hydrocarbons: how zeolite cavity and pore size controls product selectivity[J]. Angewandte Chemie International Edition, 2012, 51(24): 5810-5831. |
2 | Dai W L, Yang L, Wang C M, et al. Effect of n-butanol cofeeding on the methanol to aromatics conversion over Ga-modified nano H-ZSM-5 and its mechanistic interpretation[J]. ACS Catalysis, 2018, 8(2): 1352-1362. |
3 | Saada R, AboElazayem O, Kellici S, et al. Greener synthesis of dimethyl carbonate using a novel tin-zirconia/graphene nanocomposite catalyst[J]. Applied Catalysis B: Environmental, 2018, 226: 451-462. |
4 | Tian P, Wei Y X, Ye M, et al. Methanol to olefins (MTO): from fundamentals to commercialization[J]. ACS Catalysis, 2015, 5(3): 1922-1938. |
5 | Aricò F, Tundo P. Dimethyl carbonate as a modern green reagent and solvent[J]. Russian Chemical Reviews, 2010, 79(6): 479-489. |
6 | Huang S Y, Yan B, Wang S P, et al. Recent advances in dialkyl carbonates synthesis and applications[J]. Chemical Society Reviews, 2015, 44(10): 3079-3116. |
7 | Nam J K, Choi M J, Cho D H, et al. The influence of support in the synthesis of dimethyl carbonate by Cu-based catalysts[J]. Journal of Molecular Catalysis A: Chemical, 2013, 370: 7-13. |
8 | Ding X S, Dong X M, Kuang D T, et al. Highly efficient catalyst PdCl2-CuCl2-KOAc/AC@Al2O3 for gas-phase oxidative carbonylation of methanol to dimethyl carbonate: preparation and reaction mechanism[J]. Chemical Engineering Journal, 2014, 240: 221-227. |
9 | Itoh H, Watanabe Y, Mori K J, et al. Synthesis of dimethyl carbonate by vapor phase oxidative carbonylation of methanol[J]. Green Chem., 2003, 5(5): 558-562. |
10 | Dang T T H, Bartoszek M, Schneider M, et al. Chloride-free Cu-modified SAPO-37 catalyst for the oxidative carbonylation of methanol in the gas phase[J]. Applied Catalysis B: Environmental, 2012, 121/122: 115-122. |
11 | Zhang Y H, Bell A T. The mechanism of dimethyl carbonate synthesis on Cu-exchanged zeolite Y[J]. Journal of Catalysis, 2008, 255(2): 153-161. |
12 | Zhang Y H, Briggs D N, de Smit E, et al. Effects of zeolite structure and composition on the synthesis of dimethyl carbonate by oxidative carbonylation of methanol on Cu-exchanged Y, ZSM-5, and mordenite[J]. Journal of Catalysis, 2007, 251(2): 443-452. |
13 | Wang H B, Zhang H, Hu J, et al. Metal-halide/ionic-liquid oxidative carbonylation of ethanol to synthesize diethyl carbonate with high activity and low corrosion[J]. ChemistrySelect, 2019, 4(45): 13265-13270. |
14 | Richter M, Fait M J G, Eckelt R, et al. Gas-phase carbonylation of methanol to dimethyl carbonate on chloride-free Cu-precipitated zeolite Y at normal pressure[J]. Journal of Catalysis, 2007, 245(1): 11-24. |
15 | 李忠, 付廷俊, 郑华艳. CuY制备方法对其催化甲醇氧化羰基化活性中心的影响[J]. 无机化学学报, 2011, 27(8): 1483-1490. |
Li Z, Fu T J, Zheng H Y. Effect of preparation method on catalytic active center of CuY for oxidative carbonylation of methanol[J]. Chinese Journal of Inorganic Chemistry, 2011, 27(8): 1483-1490. | |
16 | Engeldinger J, Domke C, Richter M, et al. Elucidating the role of Cu species in the oxidative carbonylation of methanol to dimethyl carbonate on CuY: an in situ spectroscopic and catalytic study[J]. Applied Catalysis A: General, 2010, 382(2): 303-311. |
17 | Drake I J, Zhang Y H, Briggs D, et al. The local environment of Cu+ in Cu-Y zeolite and its relationship to the synthesis of dimethyl carbonate[J]. The Journal of Physical Chemistry B, 2006, 110(24): 11654-11664. |
18 | Huang S Y, Chen P Z, Yan B, et al. Modification of Y zeolite with alkaline treatment: textural properties and catalytic activity for diethyl carbonate synthesis[J]. Industrial & Engineering Chemistry Research, 2013, 52(19): 6349-6356. |
19 | Beyerlein R A, Choi-Feng C, Hall J B, et al. Effect of steaming on the defect structure and acid catalysis of protonated zeolites[J]. Topics in Catalysis, 1997, 4(1/2): 27-42. |
20 | Zhang G Q, Liang J H, Yin J, et al. An efficient strategy to improve the catalytic activity of CuY for oxidative carbonylation of methanol: modification of NaY by H4EDTA-NaOH sequential treatment[J]. Microporous and Mesoporous Materials, 2020, 307: 110500. |
21 | Jiao W Q, Fu W H, Liang X M, et al. Preparation of hierarchically structured Y zeolite with low Si/Al ratio and its applications in acetalization reactions[J]. RSC Adv., 2014, 4(102): 58596-58607. |
22 | Sing K S W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984)[J]. Pure and Applied Chemistry, 1985, 57(4): 603-619. |
23 | Verboekend D, Vilé G, Pérez-Ramírez J. Hierarchical Y and USY zeolites designed by post-synthetic strategies[J]. Advanced Functional Materials, 2012, 22(5): 916-928. |
24 | Nakrani D, Belani M, Bajaj H C, et al. Concentrated colloidal solution system for preparation of uniform zeolite-Y nanocrystals and their gas adsorption properties[J]. Microporous and Mesoporous Materials, 2017, 241: 274-284. |
25 | Bortolatto L B, Boca Santa R A A, Moreira J C, et al. Synthesis and characterization of Y zeolites from alternative silicon and aluminium sources[J]. Microporous and Mesoporous Materials, 2017, 248: 214-221. |
26 | Li C, Guo L L, Liu P, et al. Defects in AHFS-dealuminated Y zeolite: a crucial factor for mesopores formation in the following base treatment procedure[J]. Microporous and Mesoporous Materials, 2018, 255: 242-252. |
27 | Liu X S, Klinowski J, Thomas J M. Hydrothermal isomorphous insertion of aluminium into the framework of zeolite Y: a convenient method of modifying the siting of Al and Si in faujastic catalysts[J]. Journal of the Chemical Society, Chemical Communications, 1986 (8): 582. |
28 | Qin Z X, Shen B J, Yu Z W, et al. A defect-based strategy for the preparation of mesoporous zeolite Y for high-performance catalytic cracking[J]. Journal of Catalysis, 2013, 298: 102-111. |
29 | Pál-Borbély G, Beyer H K. Isomorphous solid-state substitution of Si for framework Al in Y zeolite using crystalline (NH4)2[SiF6] as reactant[J]. Phys. Chem. Chem. Phys., 2003, 5(10): 2145-2153. |
30 | Li W L, Zheng J Y, Luo Y B, et al. Hierarchical zeolite Y with full crystallinity: formation mechanism and catalytic cracking performance[J]. Energy & Fuels, 2017, 31(4): 3804-3811. |
31 | Gola A, Rebours B, Milazzo E, et al. Effect of leaching agent in the dealumination of stabilized Y zeolites[J]. Microporous and Mesoporous Materials, 2000, 40(1/2/3): 73-83. |
32 | Jin D F, Hou Z Y, Zhang L W, et al. Selective synthesis of para-para’-dimethyldiphenylmethane over H-beta zeolite[J]. Catalysis Today, 2008, 131(1/2/3/4): 378-384. |
33 | Zhou H X, Wang S P, Wang B W, et al. Oxycarbonylation of methanol over modified CuY: enhanced activity by improving accessibility of active sites[J]. Chinese Chemical Letters, 2019, 30(3): 775-778. |
34 | Huang S Y, Wang Y, Wang Z Z, et al. Cu-doped zeolites for catalytic oxidative carbonylation: the role of Brønsted acids[J]. Applied Catalysis A: General, 2012, 417/418: 236-242. |
35 | Engeldinger J, Richter M, Bentrup U. Mechanistic investigations on dimethyl carbonate formation by oxidative carbonylation of methanol over a CuY zeolite: an operandoSSITKA/DRIFTS/MS study[J]. Physical Chemistry Chemical Physics, 2012, 14(7): 2183-2191. |
36 | Wang Y C, Zheng H Y, Li Z. Effect of NH4+ exchange on CuY catalyst for oxidative carbonylation of methanol[J]. Chinese Journal of Catalysis, 2016, 37(8): 1403-1412. |
37 | 王玉春, 郑华艳, 刘斌, 等. 固相反应制备无氯CuY催化剂及其催化氧化羰基化: 固相反应温度和铜负载量的影响[J]. 高等学校化学学报, 2015, 36(12): 2540-2549. |
Wang Y C, Zheng H Y, Liu B, et al. Chloride-free CuY catalyst prepared by solid state reaction for oxidative carbonylation of methanol—effect of solid state reactive temperature and copper loading[J]. Chemical Journal of Chinese Universities, 2015, 36(12): 2540-2549. | |
38 | Wang Y C, Zheng H Y, Li Z, et al. Investigation of the interaction between Cu(acac)2 and NH4Y in the preparation of chlorine-free CuY catalysts for the oxidative carbonylation of methanol to a fuel additive[J]. RSC Advances, 2015, 5(124): 102323-102331. |
39 | 尹娇, 张国强, 阎立飞, 等. 反应过程中Cu物种演变对其催化甲醇氧化羰基化反应活性的影响[J]. 高等学校化学学报, 2019, 40(7): 1510-1519. |
Yin J, Zhang G Q, Yan L F, et al. Influence of structure evolution of CuY catalyst during the reaction process on its catalytic performance for oxidative carbonylation of methanol[J]. Chemical Journal of Chinese Universities, 2019, 40(7): 1510-1519. | |
40 | Qin Z X, Shen W, Zhou S G, et al. Defect-assisted mesopore formation during Y zeolite dealumination: the types of defect matter[J]. Microporous and Mesoporous Materials, 2020, 303: 110248. |
[1] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[2] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[3] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[4] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[5] | 李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352. |
[6] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[7] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[8] | 涂玉明, 邵高燕, 陈健杰, 刘凤, 田世超, 周智勇, 任钟旗. 钙基催化剂的设计合成及应用研究进展[J]. 化工学报, 2023, 74(7): 2717-2734. |
[9] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[10] | 李盼, 马俊洋, 陈志豪, 王丽, 郭耘. Ru/α-MnO2催化剂形貌对NH3-SCO反应性能的影响[J]. 化工学报, 2023, 74(7): 2908-2918. |
[11] | 张谭, 刘光, 李晋平, 孙予罕. Ru基氮还原电催化剂性能调控策略[J]. 化工学报, 2023, 74(6): 2264-2280. |
[12] | 韩奎奎, 谭湘龙, 李金芝, 杨婷, 张春, 张永汾, 刘洪全, 于中伟, 顾学红. 四通道中空纤维MFI分子筛膜用于二甲苯异构体分离[J]. 化工学报, 2023, 74(6): 2468-2476. |
[13] | 王辰, 史秀锋, 武鲜凤, 魏方佳, 张昊虹, 车寅, 吴旭. 氧化还原法制备Mn3O4催化剂及其甲苯催化氧化性能与机理研究[J]. 化工学报, 2023, 74(6): 2447-2457. |
[14] | 李勇, 高佳琦, 杜超, 赵亚丽, 李伯琼, 申倩倩, 贾虎生, 薛晋波. Ni@C@TiO2核壳双重异质结的构筑及光热催化分解水产氢[J]. 化工学报, 2023, 74(6): 2458-2467. |
[15] | 周继鹏, 何文军, 李涛. 异形催化剂上乙烯催化氧化失活动力学反应工程计算[J]. 化工学报, 2023, 74(6): 2416-2426. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||