化工学报 ›› 2021, Vol. 72 ›› Issue (9): 4685-4697.doi: 10.11949/0438-1157.20201937

• 催化、动力学与反应器 • 上一篇    下一篇

介孔构建对CuY甲醇氧化羰基化反应活性的影响

梁家豪1(),张国强1,高源2,尹娇1,郑华艳1,李忠1()   

  1. 1.太原理工大学煤科学与技术教育部和山西省重点实验室,山西 太原 030024
    2.潞安化工集团有限公司,山西 长治 046204
  • 收稿日期:2020-12-29 修回日期:2021-03-19 出版日期:2021-09-05 发布日期:2021-09-05
  • 通讯作者: 李忠 E-mail:582937351@qq.com;lizhong@tyut.edu.cn
  • 作者简介:梁家豪(1995—),男,硕士,582937351@qq.com
  • 基金资助:
    国家自然科学基金项目(U1510203);山西省重点研发计划国际合作项目(201803D421011)

Effect of mesoporous construction on catalytic performance of CuY methanol oxidative carbonylation

Jiahao LIANG1(),Guoqiang ZHANG1,Yuan GAO2,Jiao YIN1,Huayan ZHENG1,Zhong LI1()   

  1. 1.Key Laboratory of Coal Science and Technology, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
    2.Luan Chemical Group Co. , Ltd. , Changzhi 046204, Shanxi, China
  • Received:2020-12-29 Revised:2021-03-19 Published:2021-09-05 Online:2021-09-05
  • Contact: Zhong LI E-mail:582937351@qq.com;lizhong@tyut.edu.cn

摘要:

采用H4EDTA、H2Na2EDTA和NaOH溶液对原始NaY分子筛分别进行单独酸碱改性和酸碱连续改性,并采用液相离子交换法制备相应的CuY催化剂。结合N2物理吸附、TEM、XRD、29Si NMR、27Al NMR、NH3-TPD、Py-IR、ICP、XPS和CO-FTIR等对载体和催化剂的结构进行表征,研究了NaY分子筛介孔构建对CuY催化甲醇氧化羰基化反应活性的影响。结果表明,NaY分子筛经H4EDTA单独处理后,部分骨架铝被脱除形成非骨架硅铝物种,得到的E-NaY并未形成明显的介孔;E-NaY经H2Na2EDTA酸洗处理后,非骨架铝和部分骨架铝被脱除,得到的EW-NaY具有明显的介孔结构;而E-NaY和EW-NaY经0.2 mol/L NaOH碱处理后,分子筛发生脱硅,同时伴随着非骨架铝重新插回分子筛骨架,得到的E0.2AT-NaY和EW0.2AT-NaY具有丰富的介孔结构。其中,EW0.2AT-NaY的介孔孔容(0.45 cm3/g)最大,且有丰富的Al缺陷结构,能够与反应物接触的Cu+交换位利用率最高。然而,由于EW0.2AT-NaY脱铝程度明显高于E0.2AT-NaY,导致能够与反应物接触的Cu+交换位数量(66 μmol/g)明显小于E0.2AT-NaY(176 μmol/g),最终导致EW0.2AT-CuY催化剂中Cu+活性位数量及催化活性略低于E0.2AT-CuY,二者的催化活性约为原始CuY催化剂的2.2倍。

关键词: 分子筛, 催化剂, 介孔, Cu+活性位, 氧化羰基化

Abstract:

H4EDTA, H2Na2EDTA and NaOH aqueous solutions were used to modify the original NaY zeolite separately by acid-base modification and continuous acid-base modification, and the corresponding CuY catalyst was prepared by the liquid-phase ion exchange method. The N2-physisorption, TEM, XRD, 29Si NMR, 27Al NMR, NH3-TPD, Py-IR, ICP, XPS and CO-FTIR were used to characterize the structure of the support and catalyst. The effect of mesoporous construction in NaY zeolite on catalytic performance of CuY for oxidative carbonylation of methanol was investigated. The results indicated that partial framework Al of NaY zeolite were extracted after sole treatment by H4EDTA, with the formation of extra-framework Si and Al species, and the obtained E-NaY did not form obvious mesoporous. Extra-framework and partial framework Al of E-NaY zeolite were removed after acid washing by H2Na2EDTA, and the obtained EW-NaY generated obvious mesoporous. The extracted Al species were reinserted back into the framework of zeolite accompanied with desilication during alkali treatment of E-NaY and EW-NaY by 0.2 mol/L NaOH, and abundant mesopores were formed in the obtained E0.2AT-NaY and EW0.2AT-NaY zeolite. Moreover, the utilization of exchanged sites for Cu+ accessible to reactants for EW0.2AT-NaY attained the maximum due to the highest mesopore volume (0.45 cm3/g) and abundant Al-defects structure. Nevertheless, the number of exchanged sites for Cu+ (66 μmol/g) accessible to reactants was significantly less than that of E0.2AT-NaY (176 μmol/g) due to higher dealumination degree of EW0.2AT-NaY than that of E0.2AT-NaY. Consequently, the number of Cu+ active sites and catalytic activity for EW0.2AT-CuY were just slightly lower than that for E0.2AT-CuY, and the catalytic activities for both were about 2.2 times as that of the pristine CuY catalyst.

Key words: zeolite, catalyst, mesopore, Cu+ active sites, oxidative carbonylation

中图分类号: 

  • TQ 028.8

图1

NaY分子筛的N2物理吸附图"

表1

NaY分子筛的织构性质"

Sample

SBET/

(m2/g)

Smicro/

(m2/g)

Smeso/

(m2/g)

Vtotal/

(cm3/g)

Vmicro/

(cm3/g)

Vmeso/

(cm3/g)

Dmeso/

nm

Crystallinity/

%

NaY775758170.380.310.071.91100
E-NaY620595250.360.270.091.9324
EW-NaY6284381900.390.210.183.4532
0.2AT-NaY718697200.420.330.091.9392
E0.2AT-NaY720627930.530.290.243.5967
EW0.2AT-NaY6704652050.660.210.453.5952

图2

NaY分子筛的TEM图"

图3

NaY分子筛的XRD谱图"

图4

NaY分子筛的Si和Al核磁谱图"

表2

从29Si MAS NMR谱图计算得到的各种硅单元的相对含量和骨架硅铝比"

SampleRelative content of various Si units/%n (Si)/ n (Al)
Si(4Al)Si(3Al)Si(2Al)Si(1Al)Si(0Al)Amorphous Si
NaY3.2410.2532.7543.6210.152.30
E-NaY2.558.1818.7447.9215.497.122.96
EW-NaY1.955.3318.2453.1412.065.983.17
0.2AT-NaY5.0514.4435.1437.497.882.33
E0.2AT-NaY4.5716.0538.3530.8310.22.35
EW0.2AT-NaY4.0413.4828.2945.149.052.54

图5

HY分子筛的NH3-TPD谱图"

表3

HY分子筛的酸量"

SampleAcidity/(mmol/g)Acidity/(μmol/g)
TotalBr?nstedLewis
HY2.4299671
E-HY0.7494765
EW-HY0.5105461
0.2AT-HY1.946191103
E0.2AT-HY1.864176124
EW0.2AT-HY1.0726697

图6

HY分子筛的吡啶吸附红外谱图"

图7

CuY催化剂的XRD谱图"

图8

CuY催化剂的TEM和HRTEM图"

图9

CuY催化剂的Cu 2p3/2 XPS谱图"

表4

CuY催化剂的Cu 2p3/2 XPS谱图拟合结果分析"

CatalystPeak area(Cu+/Cusum)/%
Cu+Cu2+
CuY38508.214516.772.6
E-CuY22944.87801.474.6
EW-CuY27367.88287.976.7
0.2AT-CuY36988.213005.573.9
E0.2AT-CuY42272.89049.782.3
EW0.2AT-CuY45612.58050.784.9

表5

CuY催化剂在甲醇氧化羰基化中的催化性能指标"

CatalystwCu/%CO-Cu+ peak area

CO-Cu+

peak area/ Br?nsted

STYDMC/(mg/(g·h))XCH3OH/%Selectivity of products/%
DMCDMEDMMMF
CuY5.42.60.02775.32.849.13.739.47.8
E-CuY5.83.90.082101.73.259.41.327.212.1
EW-CuY5.94.60.085131.14.261.41.123.214.3
0.2AT-CuY6.03.40.01893.03.154.81.731.511.9
E0.2AT-CuY5.86.80.039172.75.765.31.028.16.2
EW0.2AT-CuY5.05.90.089166.25.365.21.127.16.5

图10

DMC的时空收率随时间的变化趋势"

图11

CuY催化剂的CO吸附红外谱图"

图12

CuY催化剂的DMC时空收率与CO吸附峰面积的线性关系"

1 Olsbye U, Svelle S, Bjørgen M, et al. Conversion of methanol to hydrocarbons: how zeolite cavity and pore size controls product selectivity[J]. Angewandte Chemie International Edition, 2012, 51(24): 5810-5831.
2 Dai W L, Yang L, Wang C M, et al. Effect of n-butanol cofeeding on the methanol to aromatics conversion over Ga-modified nano H-ZSM-5 and its mechanistic interpretation[J]. ACS Catalysis, 2018, 8(2): 1352-1362.
3 Saada R, AboElazayem O, Kellici S, et al. Greener synthesis of dimethyl carbonate using a novel tin-zirconia/graphene nanocomposite catalyst[J]. Applied Catalysis B: Environmental, 2018, 226: 451-462.
4 Tian P, Wei Y X, Ye M, et al. Methanol to olefins (MTO): from fundamentals to commercialization[J]. ACS Catalysis, 2015, 5(3): 1922-1938.
5 Aricò F, Tundo P. Dimethyl carbonate as a modern green reagent and solvent[J]. Russian Chemical Reviews, 2010, 79(6): 479-489.
6 Huang S Y, Yan B, Wang S P, et al. Recent advances in dialkyl carbonates synthesis and applications[J]. Chemical Society Reviews, 2015, 44(10): 3079-3116.
7 Nam J K, Choi M J, Cho D H, et al. The influence of support in the synthesis of dimethyl carbonate by Cu-based catalysts[J]. Journal of Molecular Catalysis A: Chemical, 2013, 370: 7-13.
8 Ding X S, Dong X M, Kuang D T, et al. Highly efficient catalyst PdCl2-CuCl2-KOAc/AC@Al2O3 for gas-phase oxidative carbonylation of methanol to dimethyl carbonate: preparation and reaction mechanism[J]. Chemical Engineering Journal, 2014, 240: 221-227.
9 Itoh H, Watanabe Y, Mori K J, et al. Synthesis of dimethyl carbonate by vapor phase oxidative carbonylation of methanol[J]. Green Chem., 2003, 5(5): 558-562.
10 Dang T T H, Bartoszek M, Schneider M, et al. Chloride-free Cu-modified SAPO-37 catalyst for the oxidative carbonylation of methanol in the gas phase[J]. Applied Catalysis B: Environmental, 2012, 121/122: 115-122.
11 Zhang Y H, Bell A T. The mechanism of dimethyl carbonate synthesis on Cu-exchanged zeolite Y[J]. Journal of Catalysis, 2008, 255(2): 153-161.
12 Zhang Y H, Briggs D N, de Smit E, et al. Effects of zeolite structure and composition on the synthesis of dimethyl carbonate by oxidative carbonylation of methanol on Cu-exchanged Y, ZSM-5, and mordenite[J]. Journal of Catalysis, 2007, 251(2): 443-452.
13 Wang H B, Zhang H, Hu J, et al. Metal-halide/ionic-liquid oxidative carbonylation of ethanol to synthesize diethyl carbonate with high activity and low corrosion[J]. ChemistrySelect, 2019, 4(45): 13265-13270.
14 Richter M, Fait M J G, Eckelt R, et al. Gas-phase carbonylation of methanol to dimethyl carbonate on chloride-free Cu-precipitated zeolite Y at normal pressure[J]. Journal of Catalysis, 2007, 245(1): 11-24.
15 李忠, 付廷俊, 郑华艳. CuY制备方法对其催化甲醇氧化羰基化活性中心的影响[J]. 无机化学学报, 2011, 27(8): 1483-1490.
Li Z, Fu T J, Zheng H Y. Effect of preparation method on catalytic active center of CuY for oxidative carbonylation of methanol[J]. Chinese Journal of Inorganic Chemistry, 2011, 27(8): 1483-1490.
16 Engeldinger J, Domke C, Richter M, et al. Elucidating the role of Cu species in the oxidative carbonylation of methanol to dimethyl carbonate on CuY: an in situ spectroscopic and catalytic study[J]. Applied Catalysis A: General, 2010, 382(2): 303-311.
17 Drake I J, Zhang Y H, Briggs D, et al. The local environment of Cu+ in Cu-Y zeolite and its relationship to the synthesis of dimethyl carbonate[J]. The Journal of Physical Chemistry B, 2006, 110(24): 11654-11664.
18 Huang S Y, Chen P Z, Yan B, et al. Modification of Y zeolite with alkaline treatment: textural properties and catalytic activity for diethyl carbonate synthesis[J]. Industrial & Engineering Chemistry Research, 2013, 52(19): 6349-6356.
19 Beyerlein R A, Choi-Feng C, Hall J B, et al. Effect of steaming on the defect structure and acid catalysis of protonated zeolites[J]. Topics in Catalysis, 1997, 4(1/2): 27-42.
20 Zhang G Q, Liang J H, Yin J, et al. An efficient strategy to improve the catalytic activity of CuY for oxidative carbonylation of methanol: modification of NaY by H4EDTA-NaOH sequential treatment[J]. Microporous and Mesoporous Materials, 2020, 307: 110500.
21 Jiao W Q, Fu W H, Liang X M, et al. Preparation of hierarchically structured Y zeolite with low Si/Al ratio and its applications in acetalization reactions[J]. RSC Adv., 2014, 4(102): 58596-58607.
22 Sing K S W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984)[J]. Pure and Applied Chemistry, 1985, 57(4): 603-619.
23 Verboekend D, Vilé G, Pérez-Ramírez J. Hierarchical Y and USY zeolites designed by post-synthetic strategies[J]. Advanced Functional Materials, 2012, 22(5): 916-928.
24 Nakrani D, Belani M, Bajaj H C, et al. Concentrated colloidal solution system for preparation of uniform zeolite-Y nanocrystals and their gas adsorption properties[J]. Microporous and Mesoporous Materials, 2017, 241: 274-284.
25 Bortolatto L B, Boca Santa R A A, Moreira J C, et al. Synthesis and characterization of Y zeolites from alternative silicon and aluminium sources[J]. Microporous and Mesoporous Materials, 2017, 248: 214-221.
26 Li C, Guo L L, Liu P, et al. Defects in AHFS-dealuminated Y zeolite: a crucial factor for mesopores formation in the following base treatment procedure[J]. Microporous and Mesoporous Materials, 2018, 255: 242-252.
27 Liu X S, Klinowski J, Thomas J M. Hydrothermal isomorphous insertion of aluminium into the framework of zeolite Y: a convenient method of modifying the siting of Al and Si in faujastic catalysts[J]. Journal of the Chemical Society, Chemical Communications, 1986 (8): 582.
28 Qin Z X, Shen B J, Yu Z W, et al. A defect-based strategy for the preparation of mesoporous zeolite Y for high-performance catalytic cracking[J]. Journal of Catalysis, 2013, 298: 102-111.
29 Pál-Borbély G, Beyer H K. Isomorphous solid-state substitution of Si for framework Al in Y zeolite using crystalline (NH4)2[SiF6] as reactant[J]. Phys. Chem. Chem. Phys., 2003, 5(10): 2145-2153.
30 Li W L, Zheng J Y, Luo Y B, et al. Hierarchical zeolite Y with full crystallinity: formation mechanism and catalytic cracking performance[J]. Energy & Fuels, 2017, 31(4): 3804-3811.
31 Gola A, Rebours B, Milazzo E, et al. Effect of leaching agent in the dealumination of stabilized Y zeolites[J]. Microporous and Mesoporous Materials, 2000, 40(1/2/3): 73-83.
32 Jin D F, Hou Z Y, Zhang L W, et al. Selective synthesis of para-para’-dimethyldiphenylmethane over H-beta zeolite[J]. Catalysis Today, 2008, 131(1/2/3/4): 378-384.
33 Zhou H X, Wang S P, Wang B W, et al. Oxycarbonylation of methanol over modified CuY: enhanced activity by improving accessibility of active sites[J]. Chinese Chemical Letters, 2019, 30(3): 775-778.
34 Huang S Y, Wang Y, Wang Z Z, et al. Cu-doped zeolites for catalytic oxidative carbonylation: the role of Brønsted acids[J]. Applied Catalysis A: General, 2012, 417/418: 236-242.
35 Engeldinger J, Richter M, Bentrup U. Mechanistic investigations on dimethyl carbonate formation by oxidative carbonylation of methanol over a CuY zeolite: an operandoSSITKA/DRIFTS/MS study[J]. Physical Chemistry Chemical Physics, 2012, 14(7): 2183-2191.
36 Wang Y C, Zheng H Y, Li Z. Effect of NH4+ exchange on CuY catalyst for oxidative carbonylation of methanol[J]. Chinese Journal of Catalysis, 2016, 37(8): 1403-1412.
37 王玉春, 郑华艳, 刘斌, 等. 固相反应制备无氯CuY催化剂及其催化氧化羰基化: 固相反应温度和铜负载量的影响[J]. 高等学校化学学报, 2015, 36(12): 2540-2549.
Wang Y C, Zheng H Y, Liu B, et al. Chloride-free CuY catalyst prepared by solid state reaction for oxidative carbonylation of methanol—effect of solid state reactive temperature and copper loading[J]. Chemical Journal of Chinese Universities, 2015, 36(12): 2540-2549.
38 Wang Y C, Zheng H Y, Li Z, et al. Investigation of the interaction between Cu(acac)2 and NH4Y in the preparation of chlorine-free CuY catalysts for the oxidative carbonylation of methanol to a fuel additive[J]. RSC Advances, 2015, 5(124): 102323-102331.
39 尹娇, 张国强, 阎立飞, 等. 反应过程中Cu物种演变对其催化甲醇氧化羰基化反应活性的影响[J]. 高等学校化学学报, 2019, 40(7): 1510-1519.
Yin J, Zhang G Q, Yan L F, et al. Influence of structure evolution of CuY catalyst during the reaction process on its catalytic performance for oxidative carbonylation of methanol[J]. Chemical Journal of Chinese Universities, 2019, 40(7): 1510-1519.
40 Qin Z X, Shen W, Zhou S G, et al. Defect-assisted mesopore formation during Y zeolite dealumination: the types of defect matter[J]. Microporous and Mesoporous Materials, 2020, 303: 110248.
[1] 陆勇, 刘对平, 李晨阳, 周吉彬, 叶茂. 光纤内窥图像法测量MTO催化剂表观形貌及其积炭量的实验研究[J]. 化工学报, 2022, 73(6): 2662-2668.
[2] 孟博, 刘艳萍, 蒋新科, 韩一帆. Fe5C2-MnO x 尺度调控及催化合成气制烯烃性能研究[J]. 化工学报, 2022, 73(6): 2677-2689.
[3] 郑涛, 刘海燕, 张睿, 孟祥海, 岳源源, 刘植昌. 基于分子筛绿色合成的天然硅铝矿物介尺度活化研究进展[J]. 化工学报, 2022, 73(6): 2334-2351.
[4] 王婵, 肖国锡, 郭小雪, 徐人威, 岳源源, 鲍晓军. 基于介尺度结构解聚-重组装的Beta分子筛的绿色合成及应用[J]. 化工学报, 2022, 73(6): 2690-2697.
[5] 张文静, 李静, 魏子栋. 介尺度视角下的电催化:从界面、隔膜到多孔电极[J]. 化工学报, 2022, 73(6): 2289-2305.
[6] 王旭, 张乐瑶, 张昊轩, 演嘉辉, 吴玉帅, 吴冬, 陈汇勇, 马晓迅. 中空孔结构对W掺杂MFI分子筛丙酮吸附行为的研究[J]. 化工学报, 2022, 73(3): 1194-1206.
[7] 王中华, 郑淞生, 姚育栋, 陈日懿, 王兆林. 电催化分解氨制氢研究进展[J]. 化工学报, 2022, 73(3): 1008-1021.
[8] 李勇, 闫伦靖, 李晓荣, 靳鑫, 李挺, 刘倩, 王美君, 孔娇, 常丽萍, 鲍卫仁. 酸/碱催化剂对低阶煤热解挥发分转化行为的作用机制研究[J]. 化工学报, 2022, 73(3): 1173-1183.
[9] 金科, 王晨光, 马隆龙, 张琦. 核壳纳米材料制备及其在CO/CO2热催化加氢中的应用[J]. 化工学报, 2022, 73(3): 990-1007.
[10] 徐飞翔, 蒋丽群, 郑安庆, 赵增立. 碳基固体酸催化纤维素热解制备左旋葡聚糖和左旋葡萄糖酮[J]. 化工学报, 2022, 73(3): 1166-1172.
[11] 周微, 王福烨, 贺宁, 于海斌, 马新宾, 刘家旭. Cu/SSZ-13催化剂脱硝活性中心与催化性能构效关系的研究[J]. 化工学报, 2022, 73(2): 672-680.
[12] 王吴玉, 史玉竹, 严龙, 张兴华, 马隆龙, 张琦. 负载型Co基双功能催化剂上戊酸酯生物燃料的制备[J]. 化工学报, 2022, 73(2): 689-698.
[13] 黄明, 朱亮, 丁紫霞, 毛一婷, 马中青. 生物质三组分与低密度聚乙烯共催化热解制取轻质芳烃的协同作用机理[J]. 化工学报, 2022, 73(2): 699-711.
[14] 苏畅, 冯晓博, 张立云, 陈峰, 赵小燕, 曹景沛. 四乙基氢氧化铵改性对HMOR分子筛结构及二甲醚羰基化性能的影响[J]. 化工学报, 2022, 73(2): 712-721.
[15] 高文莉, 辛忠. Fe对Ni/SBA-16催化CO低温甲烷化促进作用的研究[J]. 化工学报, 2022, 73(1): 241-254.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!