27 |
李彦翔, 张亮, 朱恂, 等. 传质对热可再生氨电池性能的影响[J]. 工程热物理学报, 2019, 40(3): 192-195.
|
|
Li Y X, Zhang L, Zhu X, et al. Effect of mass transfer on the performance of thermally regenerative ammonia-based battery [J]. Journal of Engineering Thermophysics, 2019, 40(3): 668-671.
|
28 |
Wang W G, Tian H, Shu G Q, et al. A bimetallic thermally regenerative ammonia-based battery for high power density and efficiently harvesting low-grade thermal energy [J]. Journal of Materials Chemistry A, 2019, 7(11): 5991-6000.
|
29 |
Zhang L, Li Y X, Zhu X, et al. Copper foam electrodes for increased power generation in thermally regenerative ammonia-based batteries for low-grade waste heat recovery [J]. Industrial & Engineering Chemistry Research, 2019, 58(17): 7408-7415.
|
30 |
Shi Y, Zhang L, Li J, et al. 3-D printed gradient porous composite electrodes improve anodic current distribution and performance in thermally regenerative flow battery for low-grade waste heat recovery [J]. Journal of Power Sources, 2020, 473: 228525.
|
31 |
唐志强, 张亮, 朱恂, 等. 不同Cu2+浓度下热再生氨电池产电及Cu2+去除特性 [J]. 化工学报, 2019, 70(12): 4804-4810.
|
|
Tang Z Q, Zhang L, Zhu X, et al. Effect of Cu2+ concentration in cathode on power generation and copper removal of thermally regenerative ammonia-based battery [J]. CIESC Journal, 2019, 70(12): 4804-4810.
|
32 |
Vicari F, D'Angelo A, Kouko Y, et al. On the regeneration of thermally regenerative ammonia batteries [J]. Journal of Applied Electrochemistry, 2018, 48(12): 1381-1388.
|
1 |
Lu H Y, Price L, Zhang Q. Capturing the invisible resource: analysis of waste heat potential in Chinese industry [J]. Applied Energy Barking Then Oxford, 2016, 161: 497-511.
|
2 |
Jouhara H, Khordehgah N, Almahmoud S, et al. Waste heat recovery technologies and applications [J]. Thermal Science & Engineering Progress, 2018, 6: 268-289
|
3 |
Woolley E, Luo Y, Simeone A. Industrial waste heat recovery: a systematic approach [J]. Sustainable Energy Technologies and Assessments, 2018, 29: 50-59.
|
4 |
童力, 胡松涛, 罗思义. 高炉渣余热回收协同转化生物质制氢 [J]. 化工学报, 2014, 65(9): 3634-3639.
|
|
Tong L, Hu S T, Luo S Y. Waste heat recovery of blast furnace slag and utilization for production of hydrogen from biomass transformation [J]. CIESC Journal, 2014, 65(9): 3634-3639.
|
33 |
Zhang Y S, Zhang L, Li J, et al. Performance of a thermally regenerative ammonia-based flow battery with 3D porous electrodes: effect of reactor and electrode design [J]. Electrochimica Acta, 2020, 331: 135442.
|
5 |
刘超, 徐进良. 一种新型天然气锅炉烟气余热回收系统 [J]. 化工学报, 2013, 64(11): 4223-4230.
|
|
Liu C, Xu J L. A novel heat recovery system for flue gas from natural gas boiler [J]. 2013, 64(11): 4223-4230.
|
6 |
Forman C, Muritala I K, Pardemann R, et al. Estimating the global waste heat potential [J]. Renewable & Sustainable Energy Reviews, 2016, 57: 1568-1579.
|
7 |
van de Bor D M, Ferreira C A I, Kiss A A. Low grade waste heat recovery using heat pumps and power cycles [J]. Energy, 2015, 89: 864-873.
|
8 |
Garone S, Toppi T, Guerra M, et al. A water-ammonia heat transformer to upgrade low-temperature waste heat [J]. Applied Thermal Engineering, 2017, 127: 748-757.
|
9 |
Salez T J, Huang B T, Rietjens M, et al. Can charged colloidal particles increase the thermoelectric energy conversion efficiency? [J]. Physical Chemistry Chemical Physics, 2017, 19(14): 9409-9416.
|
10 |
Bell L E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems [J]. Science, 2008, 321(5895): 1457-1461.
|
11 |
晏维, 邱国跃, 袁旭峰. 半导体温差发电技术应用及研究综述 [J]. 电源技术, 2016, 40(8): 1737-1740
|
|
Yan W, Qiu G Y, Yuan X F. Application and research of semiconductor thermoelectric power generation technology [J]. Chinese Journal of Power Sources, 2016, 40(8): 1737-1740.
|
12 |
Gayner C, Kar K K. Recent advances in thermoelectric materials [J]. Progress in Materials Science, 2016, 83: 330-382.
|
13 |
Straub A P, Deshmukh A, Elimelech M. Pressure-retarded osmosis for power generation from salinity gradients: is it viable? [J]. Energy & Environmental Science, 2016, 9(1): 31-48.
|
14 |
Abraham T J, Macfarlane D R, Baughman R H, et al. Towards ionic liquid-based thermoelectrochemical cells for the harvesting of thermal energy [J]. Electrochimica Acta, 2013, 113: 87-93.
|
15 |
Rahimi, M, Straub A P, Zhang F, et al. Emerging electrochemical and membrane-based systems to convert low-grade heat to electricity [J]. Energy & Environmental Science, 2018, 11(2): 276-285
|
16 |
Straub A P, Yip N Y, Lin S H, et al. Harvesting low-grade heat energy using thermo-osmotic vapour transport through nanoporous membranes [J]. Nature Energy, 2016, 1: 16090.
|
17 |
Hao F, Qiu P F, Tang Y S, et al. High efficiency Bi2Te3-based materials and devices for thermoelectric power generation between 100 and 300℃ [J]. Energy & Environmental Science, 2016, 9(10): 3120-3127.
|
18 |
Zhu X P, Rahimi M, Gorski C A, et al. A thermally-regenerative ammonia-based flow battery for electrical energy recovery from waste heat [J]. ChemSusChem, 2016, 9(8): 873-879.
|
19 |
Rahimi M, Zhu L, Kowalski K L, et al. Improved electrical power production of thermally regenerative batteries using a poly(phenylene oxide) based anion exchange membrane [J]. Journal of Power Sources, 2017, 342: 956-963.
|
20 |
Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future [J]. Nature, 2012, 488(7411): 294-303.
|
21 |
Zhang F, Liu J, Yang W L, et al. A thermally regenerative ammonia-based battery for efficient harvesting of low-grade thermal energy as electrical power [J]. Energy & Environmental Science, 2015, 8(1): 343-349.
|
22 |
Wang W G, Shu G Q, Tian H, et al. A numerical model for a thermally-regenerative ammonia-based flow battery using for low grade waste heat recovery [J]. Journal of Power Sources, 2018, 388: 32-44.
|
23 |
Zhang F, Labarge N, Yang W L, et al. Enhancing low-grade thermal energy recovery in a thermally regenerative ammonia battery using elevated temperatures [J]. ChemSusChem, 2015, 8(6): 1043-1048.
|
24 |
Rahimi M, Kim T, Gorski C A, et al. A thermally regenerative ammonia battery with carbon-silver electrodes for converting low-grade waste heat to electricity [J]. Journal of Power Sources, 2018, 373: 95-102.
|
25 |
Rahimi M, D′Angelo A, Gorski C A, et al. Electrical power production from low-grade waste heat using a thermally regenerative ethylenediamine battery [J]. Journal of Power Sources, 2017, 351: 45-50.
|
26 |
Palakkal V M, Nguyen T, Nguyen P, et al. High power thermally regenerative ammonia-copper redox flow battery enabled by a zero gap cell design, low-resistant membranes, and electrode coatings [J]. ACS Applied Energy Materials, 2020, 3(5): 4787-4798.
|