化工学报 ›› 2020, Vol. 71 ›› Issue (10): 4590-4600.DOI: 10.11949/0438-1157.20200678
收稿日期:
2020-06-02
修回日期:
2020-07-25
出版日期:
2020-10-05
发布日期:
2020-10-05
通讯作者:
练成
作者简介:
程锦(1998—),男,硕士研究生,基金资助:
Jin CHENG(),Zhangyang CHEN,Yuming ZHANG,Qi DUAN,Cheng LIAN(
),Honglai LIU
Received:
2020-06-02
Revised:
2020-07-25
Online:
2020-10-05
Published:
2020-10-05
Contact:
Cheng LIAN
摘要:
表面活性剂在实际工业生产中有着广泛应用,一般多为多种表面活性剂的复配体系,利用不同组分的特性,使得复配体系具有比单一表面活性剂更优越的性能,而多元表面活性剂复配机理仍不是很清楚。采用实验与理论模型相结合的方法,研究混合表面活性剂各组分间的协同效应。首先以Flory-Huggins理论为基础,推导了多元表面活性剂体系的分子热力学模型,通过二元系实验数据关联出两两相互作用参数,可对多元体系临界胶束浓度(cmc)与混合表面活性剂胶束相组成进行预测,三元表面活性剂复配体系模型计算结果与实验值吻合较好。
中图分类号:
程锦, 陈章洋, 张峪铭, 段奇, 练成, 刘洪来. 多元表面活性剂复配的分子热力学模型研究[J]. 化工学报, 2020, 71(10): 4590-4600.
Jin CHENG, Zhangyang CHEN, Yuming ZHANG, Qi DUAN, Cheng LIAN, Honglai LIU. Molecular thermodynamic model for compounding of multiple surfactants[J]. CIESC Journal, 2020, 71(10): 4590-4600.
图1 月桂醇聚氧乙烯醚与吐温80的复配比例为6.5∶3.5时的最大泡压曲线
Fig.1 Maximum bubble pressure curve when the ratio of lauryl alcohol polyoxyethylene ether and Tween 80 is 6.5∶3.5
x30 | χ23 | 平均值 | 误差(上) | 误差(下) | x20 | χ24 | 平均值 | 误差(上) | 误差(下) | x30 | χ34 | 平均值 | 误差(上) | 误差(下) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.2 | -0.2382 | -0.2245 | 0.0259 | 0.0141 | 0.2 | -0.3767 | -0.3695 | 0.0547 | 0.1116 | 0.2 | -0.0036 | -0.0466 | 0.043 | 0.1135 |
0.35 | -0.2345 | 0.35 | -0.4811 | 0.35 | -0.0189 | |||||||||
0.5 | -0.2122 | 0.5 | -0.3540 | 0.5 | 0.0092 | |||||||||
0.65 | -0.1986 | 0.65 | -0.3207 | 0.65 | -0.0591 | |||||||||
0.8 | -0.2386 | 0.8 | -0.3148 | 0.8 | -0.1601 |
表1 三种表面活性剂两两复配的Flory-Huggins参数
Table 1 Flory-Huggins parameters of two-component of three surfactants
x30 | χ23 | 平均值 | 误差(上) | 误差(下) | x20 | χ24 | 平均值 | 误差(上) | 误差(下) | x30 | χ34 | 平均值 | 误差(上) | 误差(下) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.2 | -0.2382 | -0.2245 | 0.0259 | 0.0141 | 0.2 | -0.3767 | -0.3695 | 0.0547 | 0.1116 | 0.2 | -0.0036 | -0.0466 | 0.043 | 0.1135 |
0.35 | -0.2345 | 0.35 | -0.4811 | 0.35 | -0.0189 | |||||||||
0.5 | -0.2122 | 0.5 | -0.3540 | 0.5 | 0.0092 | |||||||||
0.65 | -0.1986 | 0.65 | -0.3207 | 0.65 | -0.0591 | |||||||||
0.8 | -0.2386 | 0.8 | -0.3148 | 0.8 | -0.1601 |
1 | Pereyra R B, Schulz E P, Durand G A, et al. Equation-oriented mixed micellization modeling of a subregular ternary surfactant system with potential medical applications[J]. Industrial & Engineering Chemistry Research, 2017, 56(39): 10972-10980. |
2 | Gaudin T, Lu H L, Fayet G, et al. Impact of the chemical structure on amphiphilic properties of sugar-based surfactants: a literature overview[J]. Advances in Colloid and Interface Science, 2019, 270: 87-100. |
3 | 王龙, 刘会娥, 刘宇童, 等. 微乳液法用于落地原油应急处理及资源回收的研究[J]. 化工学报, 2019, 70(7): 2699-2707. |
Wang L, Liu H E, Liu Y T, et al. Emergency treatment of crude oil contaminated soil and resource recovery using microemulsion[J]. CIESC Journal, 2019, 70(7): 2699-2707. | |
4 | Olewnik-Kruszkowska E, Tarach I, Koter I, et al. Stability of polylactide as potential packaging material in solutions of selected surfactants used in cosmetic formulae[J]. Polymer Testing, 2019, 74: 225-234. |
5 | Zhang X A, Liu H T, Liang C, et al. Preparation of uniform and highly dispersed magnetic copper ferrite sub-micron sized particles regulated by short-chain surfactant with catechol structure: dual-functional materials for supercapacitor and dye degradation[J]. Journal of Electroanalytical Chemistry, 2020, 870: 114199. |
6 | Bai Y R, Xiong C M, Shang X S, et al. Experimental study on ethanolamine/surfactant flooding for enhanced oil recovery[J]. Energy Fuels, 2014, 28(3): 1829-1837. |
7 | Wang D D, Lai N J. Development and application of polymetric surfactant emulsification and viscosity reduction system[J]. Petroleum, 2019, 5(4): 402-406. |
8 | 黄莉. 石蜡/水相变乳液的制备与性能[J]. 化工学报, 2018, 69(4): 1749-1757. |
Huang L. Preparation and properties of paraffin/water phase change emulsion[J]. CIESC Journal, 2018, 69(4): 1749-1757. | |
9 | Kaci M, Arab-Tehrany E, Desjardins I, et al. Emulsifier free emulsion: comparative study between a new high frequency ultrasound process and standard emulsification processes[J]. Journal of Food Engineering, 2017, 194(feb.): 109-118. |
10 | Niu F G, Han B J, Fan J M, et al. Characterization of structure and stability of emulsions stabilized with cellulose macro/nano particles[J]. Carbohydrate Polymers, 2018, 199: 314-319. |
11 | Burgos-Díaz C, Wandersleben T, Marqués A M, et al. Multilayer emulsions stabilized by vegetable proteins and polysaccharides[J]. Current Opinion in Colloid & Interface Science, 2016, 25: 51-57. |
12 | Tan T B, Nakajima M, Tan C P. Effect of polysaccharide emulsifiers on the fabrication of monodisperse oil-in-water emulsions using the microchannel emulsification method[J]. Journal of Food Engineering, 2018, 238(dec.): 188-194. |
13 | 王彦玲, 郑晶晶, 赵修太, 等. 低碳醇对氟碳与碳氢表面活性剂复配体系泡沫性能的影响[J]. 化工学报, 2010, 61(5): 1202-1207. |
Wang Y L, Zheng J J, Zhao X T, et al. Effect of low carbon alcohols on foaming properties of fluorocarbon and hydrocarbon surfactant mixed system[J]. CIESC Journal, 2010, 61(5): 1202-1207. | |
14 | Szymczyk K, Jańczuk B. The wettability of poly(tetrafluoroethylene) by aqueous solutions of ternary surfactant mixtures[J]. Applied Surface Science, 2010, 256(24): 7478-7483. |
15 | Flores M V, Voutsas E C, Spiliotis N, et al. Critical micelle concentrations of nonionic surfactants in organic solvents: approximate prediction with UNIFAC[J]. Journal of Colloid and Interface Science, 2001, 240(1): 277-283. |
16 | Wang Z W, Li G Z, Zhang X Y, et al. A quantitative structure-property relationship study for the prediction of critical micelle concentration of nonionic surfactants[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 197(1/2/3): 37-45. |
17 | Kardanpour Z, Hemmateenejad B, Khayamian T. Wavelet neural network-based QSPR for prediction of critical micelle concentration of Gemini surfactants[J]. Analytica Chimica Acta, 2005, 531(2): 285-291. |
18 | Baghban A, Sasanipour J, Sarafbidabad M, et al. On the prediction of critical micelle concentration for sugar-based non-ionic surfactants[J]. Chemistry and Physics of Lipids, 2018, 214: 46-57. |
19 | Flory P J. Thermodynamic of high polymer solutions[J]. Journal of Chemical Physics, 1942, 10(1): 51-61. |
20 | Huggins M L. Some properties of solutions of long-chain compounds[J]. Journal of Physical Chemistry, 1942, 46(1): 151-158. |
21 | Wilson G M. Vapor-liquid equilibrium (Ⅺ): A new expression for the excess free energy of mixing[J]. Journal of the American Chemical Society, 1964, 86(2): 127-130. |
22 | Renon H, Prausnitz J M. Local compositions in thermodynamic excess functions for liquid mixtures[J]. AIChE Journal, 1968, 14(1): 135-144. |
23 | Yang J Y, Yan Q L, Liu H L, et al. A molecular thermodynamic model for binary lattice polymer solutions[J]. Polymer, 2006, 47(14): 5187-5195. |
24 | Yang J Y, Peng C J, Liu H L, et al. A generic molecular thermodynamic model for linear and branched polymer solutions in a lattice[J]. Fluid Phase Equilibria, 2006, 244(2): 188-192. |
25 | Xin Q, Peng C J, Liu H L, et al. Molecular thermodynamic model of multicomponent chainlike fluid mixtures based on a lattice model[J]. Industrial & Engineering Chemistry Research, 2008, 47(23): 9678-9686. |
26 | Sargantanis I G, Karim M N. Prediction of aqueous two-phase equilibrium using the Flory-Huggins model[J]. Industrial & Engineering Chemistry Research, 1997, 36(1): 204-211. |
27 | Zhou Q, Rosen M J. Molecular interactions of surfactants in mixed monolayers at the air/aqueous solution interface and in mixed micelles in aqueous media: the regular solution approach[J]. Langmuir, 2003, 19(11): 4555-4562. |
28 | Goldsipe A, Blankschtein D. Titration of mixed micelles containing a pH-sensitive surfactant and conventional (pH-insensitive) surfactants: a regular solution theory modeling approach[J]. Langmuir, 2006, 22(24): 9894-9904. |
29 | Treiner C, Khodja A A, Fromon M. Micellar solubilization of 1-pentanol in binary surfactant solutions: a regular solution approach[J]. Langmuir, 1987, 3(5): 729-735. |
30 | Gao F, Lian C, Zhou L H, et al. Phase separation of mixed micelles and synthesis of hierarchical porous materials[J]. Langmuir, 2014, 30(38): 11284-11291. |
31 | Gao F, Hu J, Peng C J, et al. Synergic effects of imidazolium ionic liquids on P123 mixed micelles for inducing micro/mesoporous materials[J]. Langmuir, 2012, 28(5): 2950-2959. |
32 | Hu J, Zhou L H, Feng J, et al. Nonideal mixed micelles of Gemini surfactant homologues and their application as templates for mesoporous material MCM-48[J]. Journal of Colloid and Interface Science, 2007, 315(2): 761-767. |
33 | Smått J, Schunk S, Lindén M. Versatile double-templating synthesis route to silica monoliths exhibiting a multimodal hierarchical porosity[J]. Chemistry of Materials, 2003, 15(12): 2354-2361. |
34 | Fredenslund A, Jones R L, Prausnitz J M. Group contribution estimation of activity coefficients in nonideal 1iquid mixture[J]. AIChE Journal, 1975, 27(5): 1086-1099. |
35 | 丁振军. 表面活性剂的复配及应用性能研究[D]. 无锡: 江南大学, 2007. |
Ding Z J. Study on the mixed systems and applied properties of surfactants[D]. Wuxi: Jiangnan University, 2007. | |
36 | 张志庆, 徐桂英, 叶繁, 等. 十二烷基甜菜碱/十二烷基硫酸钠复配体系的表面活性[J]. 物理化学学报, 2001, 17(12): 1122-1125. |
Zhang Z Q, Xu G Y, Ye F, et al. Surface activity of mixed system of dodecyl betaine and sodium dodecyl sulphate[J]. Acta Physico-Chimica Sinica, 2001, 17(12): 1122-1125. |
[1] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[2] | 连梦雅, 谈莹莹, 王林, 陈枫, 曹艺飞. 地下水预热新风一体化热泵空调系统制热性能研究[J]. 化工学报, 2023, 74(S1): 311-319. |
[3] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及![]() |
[4] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[5] | 王浩, 王振雷. 基于自适应谱方法的裂解炉烧焦模型化简策略[J]. 化工学报, 2023, 74(9): 3855-3864. |
[6] | 李锦潼, 邱顺, 孙文寿. 煤浆法烟气脱硫中草酸和紫外线强化煤砷浸出过程[J]. 化工学报, 2023, 74(8): 3522-3532. |
[7] | 于旭东, 李琪, 陈念粗, 杜理, 任思颖, 曾英. 三元体系KCl + CaCl2 + H2O 298.2、323.2及348.2 K相平衡研究及计算[J]. 化工学报, 2023, 74(8): 3256-3265. |
[8] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[9] | 诸程瑛, 王振雷. 基于改进深度强化学习的乙烯裂解炉操作优化[J]. 化工学报, 2023, 74(8): 3429-3437. |
[10] | 闫琳琦, 王振雷. 基于STA-BiLSTM-LightGBM组合模型的多步预测软测量建模[J]. 化工学报, 2023, 74(8): 3407-3418. |
[11] | 郭雨莹, 敬加强, 黄婉妮, 张平, 孙杰, 朱宇, 冯君炫, 陆洪江. 稠油管道水润滑减阻及压降预测模型修正[J]. 化工学报, 2023, 74(7): 2898-2907. |
[12] | 刘春雨, 周桓宇, 马跃, 岳长涛. CaO调质含油污泥干燥特性及数学模型[J]. 化工学报, 2023, 74(7): 3018-3027. |
[13] | 李艳辉, 丁邵明, 白周央, 张一楠, 于智红, 邢利梅, 高鹏飞, 王永贞. 非常规服役超临界锅炉的微纳尺度腐蚀动力学模型建立及应用[J]. 化工学报, 2023, 74(6): 2436-2446. |
[14] | 刘起超, 周云龙, 陈聪. 起伏振动垂直上升管气液两相流截面含气率分析与计算[J]. 化工学报, 2023, 74(6): 2391-2403. |
[15] | 毕恩哲, 李双喜, 沙廉翔, 刘登宇, 陈凯放. 高温动压涨圈密封结构参数多目标优化分析[J]. 化工学报, 2023, 74(6): 2565-2579. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 283
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 735
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||