化工学报 ›› 2020, Vol. 71 ›› Issue (9): 4071-4101.DOI: 10.11949/0438-1157.20200495
收稿日期:
2020-05-06
修回日期:
2020-08-08
出版日期:
2020-09-05
发布日期:
2020-09-05
通讯作者:
梁建华
作者简介:
范炳芝(1995—),女,硕士研究生,基金资助:
Bingzhi FAN(),Yixin WANG(),Xiaotian LIAN,Weisong XIE,Yang YU,Jianhua LIANG()
Received:
2020-05-06
Revised:
2020-08-08
Online:
2020-09-05
Published:
2020-09-05
Contact:
Jianhua LIANG
摘要:
三萜类化合物广泛存在于自然界中,因其具有抗肿瘤、抗病毒、抗菌、抗炎和免疫调节等多种药理活性而受到广泛关注。而天然三萜中的齐墩果酸、熊果酸、甘草酸和白桦酸等化合物都表现出较好的抗病毒活性。本文综述了以四环三萜和五环三萜为主的三萜类化合物及其衍生物在抗病毒活性方面的研究进展,重点介绍了其抗艾滋病毒、抗流感病毒、抗冠状病毒和抗乙肝/丙肝病毒的构效关系及其作用机制,以期为设计和开发新型的抗病毒分子结构提供参考。
中图分类号:
范炳芝, 王一鑫, 廉霄甜, 谢维松, 于洋, 梁建华. 三萜类化合物抗病毒的构效关系及其作用机制研究进展[J]. 化工学报, 2020, 71(9): 4071-4101.
Bingzhi FAN, Yixin WANG, Xiaotian LIAN, Weisong XIE, Yang YU, Jianhua LIANG. Structure-activity relationships and mechanisms of triterpenoids against virus[J]. CIESC Journal, 2020, 71(9): 4071-4101.
1 | Zhao Y J, Li C. Biosynthesis of plant triterpenoid saponins in microbial cell factories[J]. Journal of Agricultural and Food Chemistry, 2018, 66(46): 12155-12165. |
2 | 肖苏龙, 王晗, 王琪, 等. 基于五环三萜先导结构的抗病毒抑制剂研究进展[J]. 中国科学, 2015, 45(9): 865-883. |
Xiao S L, Wang H, Wang Q, et al. Research progress of antiviral inhibitors based on pentacyclic triterpene lead structures [J]. Science China, 2015, 45 (9): 865-883. | |
3 | Laszczyk M N. Pentacyclic triterpenes of the lupane, oeanane and ursane group as tools in cancer therapy[J]. Planta Medica, 2009, 75(15): 1549-1560. |
4 | Lallemand B, Gelbcke M, Dubois J, et al. Structure-activity relationship analyses of glycyrrhetinic acid derivatives as anticancer agents[J]. Mini Reviews in Medicinal Chemistry, 2011, 11(10): 881-887. |
5 | Pu J Y, He L, Wu S Y, et al. Anti-virus research of triterpenoids in licorice[J]. Chinese Journal of Virology, 2013, 29(6): 673-679. |
6 | Xiao S L, Tian Z Y, Wang Y F, et al. Recent progress in the antiviral activity and mechanism study of pentacyclic triterpenoids and their derivatives[J]. Medicinal Research Reviews, 2018, 38(3): 1-26. |
7 | Nick A, Wright A D, Sticher O, et al. Antibacterial triterpenoid acids from dillenia papuana[J]. Journal of Natural Products, 1994, 57(9): 1245-1250. |
8 | Huang L R, Hao X J, Li Q J, et al. 18β-Glycyrrhetinic acid derivatives possessing a trihydroxylated A ring are potent gram-positive antibacterial agents[J]. Journal of Natural Products, 2016, 79(4): 721-731. |
9 | Saleem M. Lupeol, a novel anti-inflammatory and anti-cancer dietary triterpene[J]. Cancer Letters, 2009, 285(2): 109-115. |
10 | Kashyap D, Sharma A, Punia S, et al. Ursolic acid and oleanolic acid: pentacyclic terpenoids with promising anti-inflammatory activities[J]. Recent Patents on Inflammation & Allergy Drug Discovery, 2016, 10(1): 21-33. |
11 | Marciani D J, Press J B, Reynolds R C, et al. Development of semisynthetic triterpenoid saponin derivatives with immune stimulating activity[J]. Vaccine, 2000, 18(27): 3141-3151. |
12 | Clercq E D, Li G D. Approved antiviral drugs over the past 50 years[J]. Clinical Microbiology Reviews, 2016, 29(3): 695-747. |
13 | Nováková L, Pavlík J, Chrenková L, et al. Current antiviral drugs and their analysis in biological materials(Part Ⅰ): Antivirals against respiratory and herpes viruses[J]. Journal of Pharmaceutical & Biomedical Analysis, 2017, 147: 400-416. |
14 | 蒲洁莹, 何莉, 吴思宇, 等. 甘草属植物中三萜类化合物的抗病毒作用研究进展[J]. 病毒学报, 2013, 29(6): 673-679. |
Pu J Y, He L, Wu S Y, et al. Research progress on antiviral effects of triterpenoids in licorice plants [J]. Chinese Journal of Virology, 2013, 29 (6): 673-679. | |
15 | Sarafianos S G, Marchand B, Das K, et al. Structure and function of HIV-1 reverse transcriptase: molecular mechanisms of polymerization and inhibition[J]. Journal of Molecular Biology, 2009, 385(3): 693-713. |
16 | Yesufu O T C, Gandhi R T. Update on human immunodeficiency virus (HIV)-2 infection[J]. Clinical Infectious Diseases An Official Publication of the Infectious Diseases Society of America, 2016, 52(6): 780-787. |
17 | Viviana S, David D H, Quarraisha A K. HIV/AIDS epidemiology, pathogenesis, prevention and treatment[J]. Lancet, 2006, 368(9534): 489-504. |
18 | Rezanka T, Siristova L, Sigler K. Sterols and triterpenoids with antiviral activity[J]. Anti-Infective Agents in Medicinal Chemistry, 2009, 8(3): 193-210. |
19 | Jacqueline R, Andrew P. Emerging drug targets for antiretroviral therapy[J]. Drugs, 2005, 65(13): 1747-1766. |
20 | Huang L, Chen C H. Molecular targets of anti-HIV-1 triterpenes[J]. Current Drug Targets - Infectious Disorders, 2002, 2(1): 33-36. |
21 | Baltina L A. Chemical modification of glycyrrhizic acid as a route to new bioactive compounds for medicine[J]. Current Medicinal Chemistry, 2003, 10(2): 155-171. |
22 | Song W, Si L L, Ji S, et al. Uralsaponins M-Y, antiviral triterpenoid aaponins from the roots of glycyrrhiza uralensis[J]. Journal of Natural Products, 2014, 77(7): 1632-1643. |
23 | Kondratenko R M, Baltina L A, Mustafina S R, et al. The synthesis and antiviral activity of glycyrrhizic acid conjugates with α - D -glucosamine and some glycosylamines[J]. Russian Journal of Bioorganic Chemistry, 2004, 30(3): 275-282. |
24 | Kong L B, Li S S, Liao Q J, et al. Oleanolic acid and ursolic acid: novel hepatitis C virus antivirals that inhibit NS5B activity[J]. Antiviral Research, 2013, 98(1): 44-53. |
25 | Kim S, Lee H, Lee S, et al. Antimicrobial action of oleanolic acid on listeria monocytogenes, enterococcus faecium, and enterococcus faecalis[J]. PLoS One, 2015, 10(3): e0118800. |
26 | Li X C, Song Y R, Zhang P, et al. Oleanolic acid inhibits cell survival and proliferation of prostate cancer cells in vitro and in vivo through the PI3K/Akt pathway[J]. Tumor Biology, 2016, 37(6): 7599-7613. |
27 | Rali S, Oyedeji O O, Aremu O O, et al. Semisynthesis of derivatives of oleanolic acid from Syzygium aromaticum and their antinociceptive and anti-inflammatory properties[J]. Mediators of Inflammation, 2016, 2016: 8401843. |
28 | Zhang H J, Lu Z Z, Tan G T, et al. Polyacetyleneginsenoside-Ro, a novel triterpene saponin from Panax ginseng[J]. Tetrahedron Letters, 2002, 43: 973-977. |
29 | Zhu Y M, Shen J K, Wang H K, et al. Synthesis and anti-HIV activity of oleanolic acid derivatives[J]. Bioorganic & Medicinal Chemistry Letters, 2001, 11(24): 3115-3118. |
30 | Yu D L, Sakurai Y, Chen C H, et al. Anti-AIDS agents 69. Moronic acid and other triterpene derivatives as novel potent anti-HIV agents[J]. Journal of Medicinal Chemistry, 2006, 49(18): 5462-5469. |
31 | Kashiwada Y, Wang H K, Nagao T, et al. Anti-AIDS agents 30. Anti-HIV activity of oleanolic acid, pomolic acid, and structurally related triterpenoids[J]. Journal of Natural Products, 1998, 61(9): 1090-1095. |
32 | Xu H X, Zeng F Q, Wan M, et al. Anti-HIV triterpene acids from Geum japonicum[J]. Journal of Natural Products, 1996, 59(7): 643-645. |
33 | Kashiwada Y, Nagao T, Hashimoto A, et al. Anti-AIDS agents 38. Anti-HIV activity of 3-O-acyl ursolic acid derivatives[J]. Journal of Natural Products, 2001, 63(12): 1619-1622. |
34 | Fujiok T, Kashiwada Y, Kilkuskie R E, et al. Anti-AIDS agents 11. Betulinic acid and platanic acid as anti-HIV principles from Syzigium claviflorum, and the anti-HIV activity of structurally related triterpenoids[J]. Journal of Natural Products, 1994, 57(2): 243-247. |
35 | Martin D E, Salzwedel K, Allaway G P. Bevirimat: a novel maturation inhibitor for the treatment of HIV-1 infection[J]. Antiviral Chemistry and Chemotherapy, 2008, 19(3): 107-113. |
36 | Evers M, Poujade C, Soler F, et al. Betulinic acid derivatives: a new class of human immunodeficiency virus type 1 specific inhibitors with a new mode of action[J]. Journal of Medicinal Chemistry, 1996, 39(5): 1056-1068. |
37 | Sun I C, Wang H K, Kashiwada Y, et al. Anti-AIDS agents 34. Synthesis and structure-activity relationships of betulin derivatives as anti-HIV agents[J]. Journal Medicinal Chemistry, 1998, 41(23): 4648-4657. |
38 | Kanamoto T, Kashiwada Y, Kanbara K, et al. Anti-human immunodeficiency virus activity of YK-FH312 (a betulinic acid derivative), a novel compound blocking viral maturation[J]. Antimicrob Agents Chemother, 2001, 45(4): 1225-1230. |
39 | Hashimoto F, Kashiwada Y, Cosentino L M, et al. Anti-AIDS agents ⅩⅩⅦ. Synthesis and anti-HIV activity of betulinic acid and dihydrobetulinic acid derivatives[J]. Bioorganic & Medicinal Chemistry, 1997, 5(12): 2133-2143. |
40 | Kashiwada Y, Chiyo J, Ikeshiro Y, et al. 3,28-Di-O-(dimethylsuccnyl)-betulin isomers as anti-HIV agents[J]. Bioorganic & Medicinal Chemistry Letters, 2001, 11(2): 183-185. |
41 | Kashiwada Y, Hashimoto F, Cosentino L M, et al. Betulinic acid and dihydrobetulinic acid derivatives as potent anti-HIV agents[J]. Journal Medicinal Chemistry, 1996, 39(5): 1016-1017. |
42 | Mayaux J F, Bousseau A, Pauwels R, et al. Triterpene derivatives that block entry of human immunodeficiency virus type 1 into cells[J]. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91(9): 3564-3568. |
43 | Holz-Smith S L, Sun I C, Jin L, et al. Role of human immunodeficiency virus (HIV) type 1 envelope in the anti-HIV activity of the betulinic acid derivative IC9564[J]. Antimicrobial Agents & Chemotherapy, 2001, 45(1): 60-66. |
44 | Soler F, Poujade C, Evers M, et al. Betulinic acid derivatives: a new class of specific inhibitors of human immunodeficiency virus type 1 entry[J]. Journal of Medicinal Chemistry, 1996, 39(5): 1069-1083. |
45 | Huang L, Zhang L D, Chen C. Potential drug targets on the HIV-1 envelope glycoproteins, gp120 and gp41[J]. Current Pharmaceutical Design, 2003, 9(18): 1453-1462. |
46 | Becker Y. HIV-1 gp41 heptad repeat 2 (HR2) possesses an amino acid domain that resembles the allergen domain in Aspergillusfumigatus Asp f1 protein: review, hypothesis and implications[J]. Virus Genes, 2007, 34(3): 233-240. |
47 | Bianchi E, Finotto M, Ingallinella P, et al. Covalent stabilization of coiled coils of the HIV gp41 N region yields extremely potent and broad inhibitors of viral infection[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(36): 12903–12908. |
48 | Si L L, Meng K, Tian Z Y, et al. Triterpenoids manipulate a broad range of virus-host fusion via wrapping the HR2 domain prevalent in viral envelopes[J]. Science Advances, 2018, 4(11): eaau8408. |
49 | Huang L, Yuan X, Aiken C, et al. Bi-functional anti-HIV-1 small molecules with two novel mechanisms of action[J]. Antimicrobial Agents Chemotherapy, 2004, 48(2): 663-665. |
50 | Qian K D, Yu D L, Chen C H, et al. Anti-AIDS agents 78. Design, synthesis, metabolic stability assessment, and antiviral evaluation of novel betulinic acid derivatives as potent anti-human immunodeficiency virus (HIV) agents[J]. Journal of Medicinal Chemistry, 2009, 52(10): 3248-3258. |
51 | Sun I C, Chen C H, Kashiwada Y, et al. Anti-AIDS agents 49. Synthesis, anti-HIV, and anti-fusion activities of IC9564 analogues based on betulinic acid[J]. Journal Medicinal Chemistry, 2002, 45(19): 4271-4275. |
52 | Ren A R, Liu Z, Chen Y, et al. Discovery of BMS-955176, a second generation HIV-1 maturation inhibitor with broad spectrum antiviral activity[J]. ACS Medicinal Chemistry Letters, 2016, 7(6): 568-572. |
53 | Liu Z, Swidorski J J, Sans B N, et al. C-3 benzoic acid derivatives of C-3 deoxybetulinic acid and deoxybetulin as HIV-1 maturation inhibitors[J]. Bioorganic & Medicinal Chemistry, 2016, 24(8): 1757-1770. |
54 | Swidorski J J, Liu Z, Sit S Y, et al. Inhibitors of HIV-1 maturation: development of structure-activity relationship for C-28 amides based on C-3 benzoic acid-modified triterpenoids[J]. Bioorganic & Medicinal Chemistry Letters, 2016, 26(8): 1925-1930. |
55 | Chen Y, Sit S Y, Chen J, et al. The design, synthesis and structure-activity relationships associated with C28 amine-based betulinic acid derivatives as inhibitors of HIV-1 maturation[J]. Bioorganic & Medicinal Mhemistry Letters, 2018, 28(9): 1550-1557. |
56 | Ren A R, Swidorski J J, Liu Z, et al. Design, synthesis, and SAR of C-3 benzoic acid, C-17 triterpenoid derivatives. Identification of the HIV-1 maturation inhibitor 4-((1 R,3a S,5a R,5b R,7a R,11a S,11b R,13a R,13b R)-3a-((2-(1,1-dioxidothiomorpholino)ethyl)amino)-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-2,3,3a,4,5,5a,5b,6,7,7a,8,11,11a,11b,12,13,13a,13b-octadecahydro-1H-cyclopenta[a]chrysen-9-yl)benzoic acid (GSK3532795, BMS-955176)[J]. Journal of Medicinal Chemistry, 2018, 61(16): 7289-7313. |
57 | Li J Z, Goto M, Yang X M, et al. Fluorinated betulinic acid derivatives and evaluation of their anti-HIV activity[J]. Bioorganic & Medicinal Chemistry Letters, 2016, 26(1): 68-71. |
58 | Gillis E P, Eastman K J, Hill M D, et al. Applications of fluorine in medicinal chemistry[J]. Journal of Medicinal Chemistry, 2015, 58(21): 8315-8359. |
59 | Ma C M, Nakamura N, Hattori M, et al. Inhibitory effects of triterpene-azidothymidine conjugates on proliferation of human immunodeficiency virus type 1 and its protease[J]. Chemical & Pharmaceutical Bulletin, 2002, 50(6): 877-880. |
60 | Pereslavtseva A V, Tolmacheva I A, Slepukhin P A, et al. Synthesis of A-pentacyclic triterpene α,β-alkenenitriles[J]. Chemistry of Natural Compounds, 2014, 49(6): 1059-1066. |
61 | Yu M R, Si L L, Wang Y F, et al. Discovery of pentacyclic triterpenoids as potential entry inhibitors of influenza viruses[J]. Journal of Medicinal Chemistry, 2014, 57(23): 10058-10071. |
62 | Bright R A, Medina M J, Xu X Y, et al. Incidence of adamantane resistance among influenza A (H3N2) viruses isolated worldwide from 1994 to 2005: a cause for concern[J]. Lancet (London, England), 2005, 366(9492): 1175-1181. |
63 | Bouvier N M, Palese P. The biology of influenza viruses[J]. Vaccine, 2008, 26: D49-D53. |
64 | Kim C U, Lew W, Williams M A, et al. Influenza neuraminidase inhibitors possessing a novel hydrophobic interaction in the enzyme active site: design, synthesis, and structural analysis of carbocyclic sialic acid analogues with potent anti-influenza activity[J]. Journal of the American Chemical Society, 1997, 119(4): 681-690. |
65 | Wolkerstorfer A, Kurz H, Bachhofner N, et al. Glycyrrhizin inhibits influenza A virus uptake into the cell[J]. Antiviral Research, 2009, 83(2): 171-178. |
66 | Baltina L A, Zarubaev V V, Baltina L A, et al. Glycyrrhizic acid derivatives as influenza A/H1N1 virus inhibitors[J]. Bioorganic & Medicinal Chemistry Letters, 2015, 25(8): 1742-1746. |
67 | Tsuji M, Sriwilaijaroen N, Inoue H, et al. Synthesis and anti-influenza virus evaluation of triterpene-sialic acid conjugates[J]. Bioorganic & Medicinal Chemistry, 2018, 26(1): 17-24. |
68 | Liang S B, Li M, Yu X J, et al. Synthesis and structure-activity relationship studies of water-soluble β-cyclodextrin-glycyrrhetinic acid conjugates as potential anti-influenza virus agents[J]. European Journal of Medicinal Chemistry, 2019, 166: 328-338. |
69 | Yu M R, Si L L, Wang Y F, et al. Discovery of pentacyclic triterpenoids as potential entry inhibitors of influenza viruses[J]. Journal of Medicinal Chemistry, 2014, 57(23): 10058-10071. |
70 | Li W J, Yang F, Meng L K, et al. Synthesis, structure activity relationship and anti-influenza A virus evaluation of oleanolic acid-linear amino derivatives[J]. Chemical & Pharmaceutical Bulletin, 2019, 67(11): 1201-1207. |
71 | Su Y Q, Meng L K, Sun J Q, et al. Design, synthesis of oleanolic acid-saccharide conjugates using click chemistry methodology and study of their anti-influenza activity[J]. European Journal of Medicinal Chemistry, 2019, 182: 111622. |
72 | Meng L K, Su Y Q, Yang F, et al. Design, synthesis and biological evaluation of amino acids-oleanolic acid conjugates as influenza virus inhibitors[J]. Bioorganic & Medicinal Chemistry, 2019, 27(23): 115147. |
73 | Li H W, Li M, Xu R Y, et al. Synthesis, structure activity relationship and in vitro anti-influenza virus activity of novel polyphenol-pentacyclic triterpene conjugates[J]. European Journal of Medicinal Chemistry, 2019, 163: 560-568. |
74 | Song G P, Shen X T, Li Y B, et al. 3-O-β-chacotriosyl benzyl ursolate inhibits entry of H5N1 influenza virus into target cells[J]. Journal of Southern Medical University, 2015, 35(6): 789-794. |
75 | Song G P, Shen X T, Li S M, et al. Structure-activity relationships of 3-O-β-chacotriosyl oleanane-type triterpenoids as potential H5N1 entry inhibitors[J]. European Journal of Medicinal Chemistry, 2016, 119: 109-121. |
76 | Li S M, Jia X H, Shen X T, et al. Structure-activity relationships of 3-O-β-chacotriosyl oleanic acid derivatives as entry inhibitors for highly pathogenic H5N1 influenza virus[J]. Bioorganic & Medicinal Chemistry, 2017, 25(16): 4384-4396. |
77 | Song G P, Yang S, Zhang W, et al. Discovery of the first series of small molecule H5N1 entry inhibitors[J]. Journal of Medicinal Chemistry, 2009, 52(23): 7368-7371. |
78 | Song G P, Shen X T, Li S M, et al. Structure–activity relationships of 3-O-β-chacotriosyl ursolic acid derivatives as novel H5N1 entry inhibitors[J]. European Journal of Medicinal Chemistry, 2015, 93: 431-442. |
79 | Ding N, Chen Q, Zhang W, et al. Structure-activity relationships of saponin derivatives: a series of entry inhibitors for highly pathogenic H5N1 influenza virus[J]. European Journal of Medicinal Chemistry, 2012, 53: 316-326. |
80 | Tian Z Y, Si L L, Meng K, et al. Inhibition of influenza virus infection by multivalent pentacyclic triterpene-functionalized per-O-methylated cyclodextrin conjugates[J]. European Journal of Medicinal Chemistry, 2017, 134: 133-139. |
81 | Xiao S L, Si L L, Tian Z Y, et al. Pentacyclic triterpenes grafted on CD cores to interfere with influenza virus entry: a dramatic multivalent effect[J]. Biomaterials, 2016, 78: 74-85. |
82 | Hong E H, Song J H, Kang K B, et al. Anti-influenza activity of betulinic acid from Zizyphus jujuba on influenza A/PR/8 virus[J]. Biomolecules & Therapeutics, 2015, 23(4): 345-349. |
83 | Tung N H, Kwon H J, Kim J H, et al. An anti-influenza component of the bark of Alnus japonica[J]. Archives of Pharmacal Research, 2010, 33(3): 363-367. |
84 | Wang H, Xu R Y, Shi Y Y, et al. Design, synthesis and biological evaluation of novel L-ascorbic acid-conjugated pentacyclic triterpene derivatives as potential influenza virus entry inhibitors[J]. European Journal of Medicinal Chemistry, 2016, 110: 376-388. |
85 | Ghosh A K, Kai X, Johnson M E, et al. Progress in anti-SARS coronavirus chemistry, biology and chemotherapy[J]. Annual Reports in Medicinal Chemistry, 2007, 41: 183-196. |
86 | Cinatl J, Morgenstern B, Bauer G, et al. Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus[J]. Lancet, 2003, 361(9374): 2045-2046. |
87 | 曹敏杰, 吴国平, 凌翁, 等. 甘草酸对猪呼吸道冠状病毒的抗病毒作用[J]. 天然产物研究与开发, 2007, 19(2): 221-224. |
Cao M J, Wu G P, Ling W, et al. Antiviral effect of glycyrrhizic acid on swine respiratory coronavirus [J]. Natural Product Research and Development, 2007, 19(2): 221-224. | |
88 | Wu C Y, Jan J T, Ma S H, et al. Small molecules targeting severe acute respiratory syndrome human coronavirus[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(27): 10012. |
89 | Hoever G, Baltina L, Michaelis M, et al. Antiviral activity of glycyrrhizic acid derivatives against SARS-coronavirus[J]. Journal of Medicinal Chemistry, 2005, 48(4): 1256-1259. |
90 | Chang F R, Yen C T, Mohamed E S, et al. Anti-human coronavirus (anti-HCoV) triterpenoids from the leaves of Euphorbia neriifolia[J]. Natural Product Communications, 2012, 7(11): 1415-1417. |
91 | Ryu Y B, Park S J, Kim Y M, et al. SARS-CoV 3CLpro inhibitory effects of quinone-methide triterpenes from Tripterygium regelii[J]. Bioorganic & Medicinal Chemistry Letters, 2010, 20(6): 1873-1876. |
92 | Lin C M, Wang G M, Jow J M, et al. Functional analysis of hepatitis B virus pre-S deletion variants associated with hepatocellular carcinoma[J]. Journal of Biomedical Science, 2012, 19: 17. |
93 | Li W H. The hepatitis B virus receptor[J]. Annual Review of Cell and Developmental Biology, 2015, 31: 125-147. |
94 | Komatsu H, Inui A, Fujisawa T. Pediatric hepatitis B treatment[J]. Journal of Thoracic Disease, 2017, 5(3): 37. |
95 | Sato H, Goto W, Yamamura J I, et al. Therapeutic basis of glycyrrhizin on chronic hepatitis B[J]. Antiviral Research, 1996, 30(2): 171-177. |
96 | Takahara T, Watanabe A, Shiraki K. Effects of glycyrrhizin on hepatitis B surface antigen: a biochemical and morphological study[J]. Journal of Hepatology, 1994, 21(4): 601-609. |
97 | Huang W, Wang W, Wang P, et al. Glycyrrhetinic acid-functionalized degradable micelles as liver-targeted drug carrier[J]. Journal of Materials Science. Materials in Medicine, 2011, 22(4): 853-863. |
98 | Tian Q, Wang X H, Wang W, et al. Insight into glycyrrhetinic acid: the role of the hydroxyl group on liver targeting[J]. International Journal of Pharmaceutics, 2010, 400(1): 153-157. |
99 | Wang L J, Geng C G, Ma Y B, et al. Synthesis, biological evaluation and structure–activity relationships of glycyrrhetinic acid derivatives as novel anti-hepatitis B virus agents[J]. Bioorganic & Medicinal Chemistry Letters, 2012, 22(10): 3473-3479. |
100 | Yao D C, Li H W, Gou Y L, et al. Betulinic acid-mediated inhibitory effect on hepatitis B virus by suppression of manganese superoxide dismutase expression[J]. The FEBS Journal, 2009, 276(9): 2599-2614. |
101 | Zhao Y L, Cai G M, Hong X, et al. Anti-hepatitis B virus activities of triterpenoid saponin compound from Potentilla anserine L[J]. Phytomedicine : International Journal of Phytotherapy and Phytopharmacology, 2008, 15(4): 253-258. |
102 | Li Z J, Min Q X, Huang H J, et al. Design, synthesis and biological evaluation of seco-A-pentacyclic triterpenoids-3,4-lactone as potent non-nucleoside HBV inhibitors[J]. Bioorganic & Medicinal Chemistry Letters, 2018, 28(9): 1501-1506. |
103 | Friebe P, Lohmann V, Krieger N, et al. Sequences in the 5' nontranslated region of hepatitis C virus required for RNA replication[J]. Journal of Virology, 2001, 75(24): 12047-12057. |
104 | Lindenbach B D, Rice C M. Unravelling hepatitis C virus replication from genome to function[J]. Nature, 2005, 436(7053): 933-938. |
105 | Marcellin P, Asselah T, Boyer N. Fibrosis and disease progression in hepatitis C[J]. Hepatology, 2002, 36(5B): s47-s56. |
106 | Manns M P, Mchutchison J G, Mordon S C, et al. Peginterferon alfa-2b plus ribavirin compared with interferon alfa-2b plus ribavirin for initial treatment of chronic hepatitis C: a randomised trial[J]. The Lancet, 2001, 358(9286): 958-965. |
107 | Ashfaq U A, Masoud M S, Nawaz Z, et al. Glycyrrhizin as antiviral agent against hepatitis C virus[J]. Journal of Translational Medicine, 2011, 9: 112. |
108 | Korenaga M, Hidaka I, Nishina S, et al. A glycyrrhizin-containing preparation reduces hepatic steatosis induced by hepatitis C virus protein and iron in mice[J]. Liver International: Official Journal of the International Association for the Study of the Liver, 2011, 31(4): 552-560. |
109 | Matsumoto Y, Matsuura T, Aoyagi H, et al. Antiviral activity of glycyrrhizin against hepatitis C virus in vitro[J]. PLoS One, 2013, 8(7): e68992. |
110 | Hiasa Y, Kuzuhara H, Tokumoto Y, et al. Hepatitis C virus replication is inhibited by 22β-methoxyolean-12-ene-3β, 24(4β)-diol (ME3738) through enhancing interferon-β[J]. Hepatology, 2008, 48(1): 59-69. |
111 | Hbe H, Imamura M, Hiraga N, et al. ME3738 enhances the effect of interferon and inhibits hepatitis C virus replication both in vitro and in vivo[J]. Journal of Hepatology, 2011, 55(1): 11-18. |
112 | Kong L B, Li S S, Han X, et al. Inhibition of HCV RNA-dependent RNA polymerase activity by aqueous extract from fructus ligustri lucidi[J]. Virus Research, 2007, 128(1): 9-17. |
113 | Ma C M, Wu X H, Masao H, et al. HCV protease inhibitory, cytotoxic and apoptosis-inducing effects of oleanolic acid derivatives[J]. Journal of Pharmacy & Pharmaceutical Sciences: a Publication of the Canadian Society for Pharmaceutical Sciences, Société Canadienne des Sciences Pharmaceutiques, 2009, 12(2): 243-248. |
114 | Yu F, Wang Q, Zhang Z, et al. Development of oleanane-type triterpenes as a new class of HCV entry inhibitors[J]. Journal of Medicinal Chemistry, 2013, 56(11): 4300-4319. |
115 | Wang H, Wang Q, Xiao S L, et al. Elucidation of the pharmacophore of echinocystic acid, a new lead for blocking HCV entry[J]. European Journal of Medicinal Chemistry, 2013, 64: 160-168. |
116 | Wang H, Yu F, Peng Y Y, et al. Synthesis and biological evaluation of ring A and/or C expansion and opening echinocystic acid derivatives for anti-HCV entry inhibitors[J]. European Journal of Medicinal Chemistry, 2015, 102: 594-599. |
117 | Yu F, Peng Y Y, Wang Q, et al. Development of bivalent oleanane-type triterpenes as potent HCV entry inhibitors[J]. European Journal of Medicinal Chemistry, 2014, 77: 258-268. |
118 | Meng L K, Wang Q, Tang T, et al. Design, synthesis and biological evaluation of pentacyclic triterpene dimers as HCV entry inhibitors[J]. Chinese Journal of Chemistry, 2017, 35(8): 1322-1328. |
119 | Xiao S L, Wang Q, Si L L, et al. Synthesis and anti-HCV entry activity studies of β-cyclodextrin-pentacyclic triterpene conjugates[J]. Chemmedchem, 2014, 9(5): 1060-1070. |
120 | Xiao S L, Wang Q, Si L L, et al. Synthesis and biological evaluation of novel pentacyclic triterpene α-cyclodextrin conjugates as HCV entry inhibitors[J]. European Journal of Medicinal Chemistry, 2016, 124: 1-9. |
121 | Zígolo M A, Salinas M, Alché L, et al. Chemoenzymatic synthesis of new derivatives of glycyrrhetinic acid with antiviral activity. Molecular docking study[J]. Bioorganic Chemistry, 2018, 78: 210-219. |
122 | Yoneda T, Nakamura S, Ogawa K, et al. Oleanane-type triterpenes with highly-substituted oxygen functional groups from the flower buds of camellia sinensis and their inhibitory effects against NO production and HSV-1[J]. Natural Product Communications, 2018, 13(2): 131-136. |
123 | Alvarez A L, Habtemariam S, Parra F. Inhibitory effects of lupene-derived pentacyclic triterpenoids from Bursera simaruba on HSV-1 and HSV-2 in vitro replication[J]. Natural Product Research, 2015, 29(24): 2322-2327. |
124 | Silva G N S D, Atik D M, Fernandes J L A, et al. Synthesis of three triterpene series and their activity against respiratory syncytial virus[J]. Archiv Der Pharmazie, 2018, 351(8): 1800108. |
125 | Li Y L, Jiang R W, Ooi L S M, et al. Antiviral triterpenoids from the medicinal plant Schefflera heptaphylla[J]. Phytotherapy Research, 2007, 21(5): 466-470. |
126 | Abreu L S, Nascimento Y M D, Costa R D S, et al. Tri- and diterpenoids from Stillingia loranthacea as inhibitors of zika virus replication[J]. Journal of Natural Products, 2019, 82(10): 2721-2730. |
127 | Kazakova O B, Giniyatullina G V, Yamansarov E Y, et al. Betulin and ursolic acid synthetic derivatives as inhibitors of Papilloma virus[J]. Bioorganic & Medicinal Chemistry Letters, 2010, 20(14): 4088-4090. |
128 | Yim E K, Lee M J, Lee K H, et al. Antiproliferative and antiviral mechanisms of ursolic acid and dexamethasone in cervical carcinoma cell lines[J]. International Journal of Gynecological Cancer: Official Journal of the International Gynecological Cancer Society, 2006, 16(6): 2023-2031. |
[1] | 宋明昊, 赵霏, 刘淑晴, 李国选, 杨声, 雷志刚. 离子液体脱除模拟油中挥发酚的多尺度模拟与研究[J]. 化工学报, 2023, 74(9): 3654-3664. |
[2] | 刘宇喆, 李成才, 李琳, 王少辉, 刘培慧, 王同华. 活性炭的微结构与超级电容器性能的构效关系[J]. 化工学报, 2022, 73(4): 1807-1816. |
[3] | 田璐瑶, 王梓豪, 粟杨, 文华强, 申威峰. 基于深度学习的溶剂定量构效关系建模研究进展[J]. 化工学报, 2020, 71(10): 4462-4472. |
[4] | 马香成, 秦蔚, 陈清林, 张冰剑. 芳烃分子描述符的修正和沸点预测建模[J]. 化工学报, 2019, 70(11): 4306-4314. |
[5] | 李诺楠, 李春. 糖基转移酶在三萜皂苷合成中的应用[J]. 化工学报, 2019, 70(10): 3869-3879. |
[6] | 牛立博, 刘辰, 马苑媛, 张慧玲, 白国义. 核壳结构镍基纳米催化剂的制备及其在肉桂醛加氢反应中的性能[J]. 化工学报, 2017, 68(11): 4161-4168. |
[7] | 朱明, 王彩霞, 李春. 工程化酿酒酵母合成植物三萜类化合物[J]. 化工学报, 2015, 66(9): 3350-3356. |
[8] | 朱丽华, 孙菡蕾, 曹志凯, 郑进保, 张诺伟, 陈秉辉. 多活性中心协同加氢纳米催化剂的设计和制备[J]. 化工学报, 2015, 66(8): 3091-3097. |
[9] | 唐思扬, 刘振, 占兴稳, 程瑞华, 何雪莲, 刘柏平. 乙烯选择性齐聚取代PNP-Cr催化体系的二维定量构效关系[J]. 化工学报, 2014, 65(1): 131-142. |
[10] | 韩雪莲 . 白藜芦醇及其衍生物和类似物抗肿瘤研究进展[J]. 化工进展, 2014, 33(06): 1526-1532. |
[11] | 左华江1,2,温婉华2,吴丁财2,符若文2 . 季铵盐类抗菌聚合物的研究现状[J]. 化工进展, 2013, 32(10): 2416-2422. |
[12] | 王 哲,王 普,黄 金. 分子模拟技术在脂肪酶性质及催化机理研究中的应用进展[J]. 化工进展, 2013, 32(10): 2475-2479. |
[13] | 左华江1,2,温婉华2,吴丁财2,符若文2 . 高分子抗菌剂的研究现状[J]. 化工进展, 2013, 32(03): 604-609. |
[14] | 刘万强, 曹晨忠. 脂肪族含氧有机物沸点的定量构效关系[J]. 化工学报, 2012, 63(12): 3739-3746. |
[15] | 陈学勇,韦朝海. 点源有机毒物污(废)水排放的生态风险管理技术分析 [J]. CIESC Journal, 2010, 29(2): 342-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||