化工学报 ›› 2021, Vol. 72 ›› Issue (1): 86-115.DOI: 10.11949/0438-1157.20200992
石晓飞(),姜沁源(),李润,崔一鸣,刘青雄,魏飞,张如范()
收稿日期:
2020-07-23
修回日期:
2020-09-21
出版日期:
2021-01-05
发布日期:
2021-01-05
通讯作者:
张如范
作者简介:
石晓飞(1988—),女,博士后,基金资助:
SHI Xiaofei(),JIANG Qinyuan(),LI Run,CUI Yiming,LIU Qingxiong,WEI Fei,ZHANG Rufan()
Received:
2020-07-23
Revised:
2020-09-21
Online:
2021-01-05
Published:
2021-01-05
Contact:
ZHANG Rufan
摘要:
碳纳米管水平阵列是指生长于平整基底上且与沿基底平行排列的一种碳纳米管类型。与其他类型的碳纳米管相比,水平阵列类型的碳纳米管具有很低的结构缺陷和优异的力学、电学、热学性能,在微电子、超强纤维、航空航天等尖端领域有广阔和重要的应用前景。这些应用对碳纳米管的缺陷浓度、手性分布、半导体型纯度及阵列密度等指标的要求十分严苛,因而碳纳米管水平阵列的结构控制与批量制备是其实现性能应用的关键。在过去的近三十年中,研究者们已在碳纳米管水平阵列的结构控制生长上取得了大量进展,但同时也面临不少挑战。本文对碳纳米管水平阵列的结构控制、批量制备及前沿应用的研究进展进行了回顾,并对其面临的挑战和未来发展方向进行了讨论。
中图分类号:
石晓飞, 姜沁源, 李润, 崔一鸣, 刘青雄, 魏飞, 张如范. 碳纳米管水平阵列的结构控制生长:进展与展望[J]. 化工学报, 2021, 72(1): 86-115.
SHI Xiaofei, JIANG Qinyuan, LI Run, CUI Yiming, LIU Qingxiong, WEI Fei, ZHANG Rufan. Synthesis and structure control of horizontally aligned carbon nanotubes: progress and perspectives[J]. CIESC Journal, 2021, 72(1): 86-115.
1 | Anantram M, Leonard F. Physics of carbon nanotube electronic devices[J]. Rep. Prog. Phys., 2006, 69(3): 507-561. |
2 | Dürkop T, Getty S A, Cobas E, et al. Extraordinary mobility in semiconducting carbon nanotubes[J]. Nano Lett., 2004, 4(1): 35-39. |
3 | Javey A, Guo J, Wang Q, et al. Ballistic carbon nanotube field-effect transistors[J]. Nature, 2003, 424(6949): 654-657. |
4 | Zhang Z, Wang S, Ding L, et al. Self-aligned ballistic n-type single-walled carbon nanotube field-effect transistors with adjustable threshold voltage[J]. Nano Lett., 2008, 8(11): 3696-3701. |
5 | Pei T, Zhang P, Zhang Z, et al. Modularized construction of general integrated circuits on individual carbon nanotubes[J]. Nano Lett., 2014, 14(6): 3102-3109. |
6 | Kim S, Sun J, Choi Y, et al. Carbon nanotube ferroelectric random access memory cell based on omega-shaped ferroelectric gate[J]. Carbon, 2020, 162:195-200. |
7 | Liu Y, Wei N, Zeng Q, et al. Room temperature broadband infrared carbon nanotube photodetector with high detectivity and stability[J]. Adv. Opt. Mater., 2016, 4(2): 238-245. |
8 | Hone J, Whitney M, Piskoti C, et al. Thermal conductivity of single-walled carbon nanotubes[J]. Phys. Rev. B, 1999, 59(4): R2514. |
9 | Berber S, Kwon Y K,Tománek D. Unusually high thermal conductivity of carbon nanotubes[J]. Phys. Rev. Lett., 2000, 84(20): 4613-4616. |
10 | Wang H D, Liu J H, Guo Z Y, et al. Thermal transport across the interface between a suspended single-walled carbon nanotube and air[J]. Nanoscale Microscale Thermophys. Eng., 2013, 17(4): 349-365. |
11 | Zhang R F, Wen Q, Qian W Z, et al. Superstrong ultralong carbon nanotubes for mechanical energy storage[J]. Adv. Mater., 2011, 23(30): 3387-3391. |
12 | Bai Y, Zhang R, Ye X, et al. Carbon nanotube bundles with tensile strength over 80 GPa[J]. Nat. Nanotechnol., 2018, 13(7): 589-595. |
13 | Li M, Kim I H, Jeong Y G. Cellulose acetate/multiwalled carbon nanotube nanocomposites with improved mechanical, thermal, and electrical properties[J]. J. Appl. Polym. Sci., 2010, 118(4): 2475-2481. |
14 | Chun K Y, Oh Y, Rho J, et al. Highly conductive, printable and stretchable composite films of carbon nanotubes and silver[J]. Nat. Nanotechnol., 2010, 5(12): 853-857. |
15 | Suh D, Moon C M, Kim D, et al. Ultrahigh thermal conductivity of interface materials by silver-functionalized carbon nanotube phonon conduits[J]. Adv. Mater., 2016, 28(33): 7220-7227. |
16 | Dresselhaus M S, Dresselhaus G, Saito R, et al. Raman spectroscopy of carbon nanotubes[J]. Phys. Rep., 2005, 409(2): 47-99. |
17 | Dresselhaus M S, Dresselhaus G, Jorio A. Unusal properties and structure of carbon nanotubes[J]. Annu. Rev. Mater. Res., 2004, 34(1): 247-278. |
18 | Saito R, Fujita M, Dresselhaus G, et al. Electronic structure of graphene tubules based on C60[J]. Phys. Rev. B, 1992, 46(3): 1804-1811. |
19 | Tulevski G S, Franklin A D, Frank D, et al. Toward high-performance digital logic technology with carbon nanotubes[J]. ACS Nano, 2014, 8(9): 8730-8745. |
20 | Chen Z, Appenzeller J, Knoch J, et al. The role of metal-nanotube contact in the performance of carbon nanotube field-effect transistors[J]. Nano Lett., 2005, 5(7): 1497-1502. |
21 | Charlier J C. Defects in carbon nanotubes[J]. Acc. Chem. Res., 2002, 35(12): 1063-1069. |
22 | Lu A J, Pan B C. Nature of single vacancy in achiral carbon nanotubes[J]. Phys. Rev. Lett., 2004, 92(10): 105504. |
23 | Chico L, Crespi V H, Benedict L X, et al. Pure carbon nanoscale devices: nanotube heterojunctions[J]. Phys. Rev. Lett., 1996, 76(6): 971-974. |
24 | Franklin A D. The road to carbon nanotube transistors[J]. Nature, 2013, 498(7455): 443-444. |
25 | Hu Y, Kang L, Zhao Q, et al. Growth of high-density horizontally aligned SWNT arrays using Trojan catalysts[J]. Nat. Commun., 2015, 6(1): 6099. |
26 | Kang L, Hu Y, Zhong H, et al. Large-area growth of ultra-high-density single-walled carbon nanotube arrays on sapphire surface[J]. Nano Res., 2015, 8(11): 3694-3703. |
27 | Liu L, Han J, Xu L, et al. Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics[J]. Science, 2020, 368(6493): 850-856. |
28 | Cao Q, Han S J, Tulevski G S, et al. Arrays of single-walled carbon nanotubes with full surface coverage for high-performance electronics[J]. Nat. Nanotechnol., 2013, 8(3): 180-186. |
29 | He X, Gao W, Xie L, et al. Wafer-scale monodomain films of spontaneously aligned single-walled carbon nanotubes[J]. Nat. Nanotechnol., 2016, 11(7): 633-638. |
30 | Léonard F. Crosstalk between nanotube devices: contact and channel effects[J]. Nanotechnology, 2006, 17(9): 2381-2385. |
31 | Zhang J, Lin A, Patil N, et al. Carbon nanotube robust digital VLSI[J]. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 2012, 31(4): 453-471. |
32 | Page A J, Ohta Y, Okamoto Y, et al. Defect healing during dingle-walled carbon nanotube growth: a density-functional tight-binding molecular dynamics investigation[J]. J. Phys. Chem. C, 2009, 113(47): 20198-20207. |
33 | Yuan Q, Xu Z, Yakobson B I, et al. Efficient defect healing in catalytic carbon nanotube growth[J]. Phys. Rev. Lett., 2012, 108(24): 245505. |
34 | Xu Z, Yan T, Ding F. Atomistic simulation of the growth of defect-free carbon nanotubes[J]. Chem. Sci., 2015, 6(8): 4704-4711. |
35 | Ding F. Theoretical study of the stability of defects in single-walled carbon nanotubes as a function of their distance from the nanotube end[J]. Phys. Rev. B, 2005, 72(24): 245409. |
36 | Ding F, Rosén A, Bolton K. The role of the catalytic particle temperature gradient for SWNT growth from small particles[J]. Chem. Phys. Lett., 2004, 393(4): 309-313. |
37 | Ago H, Nakamura Y, Ogawa Y, et al. Combinatorial catalyst approach for high-density growth of horizontally aligned single-walled carbon nanotubes on sapphire[J]. Carbon, 2011, 49(1): 176-186. |
38 | Huang S, Woodson M, Smalley R, et al. Growth mechanism of oriented long single walled carbon nanotubes using “fast-heating” chemical vapor deposition process[J]. Nano Lett., 2004, 4(6): 1025-1028. |
39 | Han S, Liu X, Zhou C. Template-free directional growth of single-walled carbon nanotubes on a- and r-plane sapphire[J]. J. Am. Chem. Soc., 2005, 127(15): 5294-5295. |
40 | Hata K, Futaba D N, Mizuno K, et al. Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes[J]. Science, 2004, 306(5700): 1362-1364. |
41 | Zhang S, Tong L, Hu Y, et al. Diameter-specific growth of semiconducting SWNT arrays using uniform Mo2C solid catalyst[J]. J. Am. Chem. Soc., 2015, 137(28): 8904-8907. |
42 | Zhao Y, Jiao Q, Li C, et al. Catalytic synthesis of carbon nanostructures using layered double hydroxides as catalyst precursors[J]. Carbon, 2007, 45(11): 2159-2163. |
43 | Homma Y, Liu H, Takagi D, et al. Single-walled carbon nanotube growth with non-iron-group “catalysts” by chemical vapor deposition[J]. Nano Res., 2009, 2(10): 793-799. |
44 | He M, Liu B, Chernov A I, et al. Growth mechanism of single-walled carbon nanotubes on iron-copper catalyst and chirality studies by electron diffraction[J]. Chem. Mater., 2012, 24(10): 1796-1801. |
45 | Qin X, Peng F, Yang F, et al. Growth of semiconducting single-walled carbon nanotubes by using ceria as catalyst supports[J]. Nano Lett., 2014, 14(2): 512-517. |
46 | Huang L, Cui X, White B, et al. Long and oriented single-walled carbon nanotubes grown by ethanol chemical vapor deposition[J]. J. Phys. Chem. B, 2004, 108(42): 16451-16456. |
47 | Yao Y, Dai X, Liu R, et al. Tuning the diameter of single-walled carbon nanotubes by temperature-mediated chemical vapor deposition[J]. J. Phys. Chem. C, 2009, 113(30): 13051-13059. |
48 | Wen Q, Zhang R, Qian W, et al. Growing 20 cm long DWNTs/TWNTs at a rapid growth rate of 80-90 μm/s[J]. Chem. Mater., 2010, 22(4): 1294-1296. |
49 | Zhang R, Zhang Y, Zhang Q, et al. Growth of half-meter long carbon nanotubes based on Schulz-Flory distribution[J]. ACS Nano, 2013, 7(7): 6156-6161. |
50 | Zhang R F, Ning Z, Zhang Y, et al. Superlubricity in centimetres-long double-walled carbon nanotubes under ambient conditions[J]. Nat. Nanotechnol., 2013, 8(12): 912-916. |
51 | Zhu Z, Wei N, Cheng W, et al. Rate-selected growth of ultrapure semiconducting carbon nanotube arrays[J]. Nat. Commun., 2019, 10(1): 4467. |
52 | Guo W, Zhong W, Dai Y, et al. Coupled defect-size effects on interlayer friction in multiwalled carbon nanotubes[J]. Phys. Rev. B, 2005, 72(7): 075409. |
53 | He M, Zhang S, Wu Q, et al. Designing catalysts for chirality-selective synthesis of single-walled carbon nanotubes: past success and future opportunity[J]. Adv. Mater., 2019, 31(9): 1800805. |
54 | Yang F, Wang X, Li M, et al. Templated synthesis of single-walled carbon nanotubes with specific structure[J]. Acc. Chem. Res., 2016, 49(4): 606-615. |
55 | Yang F, Wang M, Zhang D, et al. Chirality pure carbon nanotubes: growth, sorting, and characterization[J]. Chem. Rev., 2020, 120(5): 2693-2758. |
56 | Yang F, Wang X, Zhang D, et al. Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts[J]. Nature, 2014, 510(7506): 522-524. |
57 | Chiang W H, Sankaran R M. Linking catalyst composition to chirality distributions of as-grown single-walled carbon nanotubes by tuning NixFe1-x nanoparticles[J]. Nat. Mater., 2009, 8(11): 882-886. |
58 | Loebick C Z, Derrouiche S, Marinkovic N, et al. Effect of manganese addition to the Co-MCM-41 catalyst in the selective synthesis of single wall carbon nanotubes[J]. J. Phys. Chem. C, 2009, 113(52): 21611-21620. |
59 | Loebick C Z, Derrouiche S, Fang F, et al. Effect of chromium addition to the Co-MCM-41 catalyst in the synthesis of single wall carbon nanotubes[J]. Appl. Catal. A: Gen., 2009, 368(1): 40-49. |
60 | Li X, Tu X, Zaric S, et al. Selective synthesis combined with chemical separation of single-walled carbon nanotubes for chirality selection[J]. J. Am. Chem. Soc., 2007, 129(51): 15770-15771. |
61 | Yang F, Zhao H, Wang X, et al. Atomic scale stability of tungsten-cobalt intermetallic nanocrystals in reactive environment at high temperature[J]. J. Am. Chem. Soc., 2019, 141(14): 5871-5879. |
62 | Yang F, Wang X, Zhang D, et al. Growing zigzag (16,0) carbon nanotubes with structure-defined catalysts[J]. J. Am. Chem. Soc., 2015, 137(27): 8688-8691. |
63 | Fouquet M, Bayer B C, Esconjauregui S, et al. Effect of catalyst pretreatment on chirality-selective growth of single-walled carbon nanotubes[J]. J. Phys. Chem. C, 2014, 118(11): 5773-5781. |
64 | Ding F, Harutyunyan A R,Yakobson B I. Dislocation theory of chirality-controlled nanotube growth[J]. Proc. Natl. Acad. Sci., 2009, 106(8): 2506. |
65 | Artyukhov V I, Penev E S,Yakobson B I. Why nanotubes grow chiral[J]. Nat. Commun., 2014, 5(1): 1-6. |
66 | Zhang S, Kang L, Wang X, et al. Arrays of horizontal carbon nanotubes of controlled chirality grown using designed catalysts[J]. Nature, 2017, 543(7644): 234-238. |
67 | He M, Wang X, Zhang S, et al. Growth kinetics of single-walled carbon nanotubes with a (2n, n) chirality selection[J]. Sci. Adv., 2019, 5(12): eaav9668. |
68 | Zhang S, Wang X, Yao F, et al. Controllable growth of (n, n-1) family of semiconducting carbon nanotubes[J]. Chem, 2019, 5(5): 1182-1193. |
69 | Yao Y, Feng C, Zhang J, et al. “Cloning” of single-walled carbon nanotubes via open-end growth mechanism[J]. Nano Lett., 2009, 9(4): 1673-1677. |
70 | Yu X, Zhang J, Choi W, et al. Cap formation engineering: from opened C60 to single-walled carbon nanotubes[J]. Nano Lett., 2010, 10(9): 3343-3349. |
71 | Liu J, Wang C, Tu X, et al. Chirality-controlled synthesis of single-wall carbon nanotubes using vapour-phase epitaxy[J]. Nat. Commun., 2012, 3(1): 1199. |
72 | Tomada J, Dienel T, Hampel F, et al. Combinatorial design of molecular seeds for chirality-controlled synthesis of single-walled carbon nanotubes[J]. Nat. Commun., 2019, 10(1): 3278. |
73 | Hu Y, Chen Y, Li P, et al. Sorting out semiconducting single-walled carbon nanotube arrays by washing off metallic tubes using SDS aqueous solution[J]. Small, 2013, 9(8): 1306-1311. |
74 | Ghosh S, Bachilo S M,Weisman R B. Advanced sorting of single-walled carbon nanotubes by nonlinear density-gradient ultracentrifugation[J]. Nat. Nanotechnol., 2010, 5(6): 443-450. |
75 | Tu X, Manohar S, Jagota A, et al. DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes[J]. Nature, 2009, 460(7252): 250-253. |
76 | Tu X, Hight Walker A R, Khripin C Y, et al. Evolution of DNA sequences toward recognition of metallic armchair carbon nanotubes[J]. J. Am. Chem. Soc., 2011, 133(33): 12998-13001. |
77 | Ao G, Khripin C Y, Zheng M. DNA-controlled partition of carbon nanotubes in polymer aqueous two-phase systems[J]. J. Am. Chem. Soc., 2014, 136(29): 10383-10392. |
78 | Nish A, Hwang J Y, Doig J, et al. Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers[J]. Nat. Nanotechnol., 2007, 2(10): 640-646. |
79 | Stürzl N, Hennrich F, Lebedkin S, et al. Near monochiral single-walled carbon nanotube dispersions in organic solvents[J]. J. Phys. Chem. C, 2009, 113(33): 14628-14632. |
80 | Zhou W, Zhan S, Ding L, et al. General rules for selective growth of enriched semiconducting single walled carbon nanotubes with water vapor as in situ etchant[J]. J. Am. Chem. Soc., 2012, 134(34): 14019-14026. |
81 | Liao A, Alizadegan R, Ong Z Y, et al. Thermal dissipation and variability in electrical breakdown of carbon nanotube devices[J]. Phys. Rev. B, 2010, 82(20): 205406. |
82 | Jin S H, Dunham S N, Song J, et al. Using nanoscale thermocapillary flows to create arrays of purely semiconducting single-walled carbon nanotubes[J]. Nat. Nanotechnol., 2013, 8(5): 347-355. |
83 | Li S, Liu C, Hou P X, et al. Enrichment of semiconducting single-walled carbon nanotubes by carbothermic reaction for use in all-nanotube field effect transistors[J]. ACS Nano, 2012, 6(11): 9657-9661. |
84 | Zhang G, Qi P, Wang X, et al. Selective etching of metallic carbon nanotubes by gas-phase reaction[J]. Science, 2006, 314(5801): 974-977. |
85 | Zhang H, Liu Y, Cao L, et al. A facile, low-cost, and scalable method of selective etching of semiconducting single-walled carbon nanotubes by a gas reaction[J]. Adv. Mater., 2009, 21(7): 813-816. |
86 | Hassanien A, Tokumoto M, Umek P, et al. Selective etching of metallic single-wall carbon nanotubes with hydrogen plasma[J]. Nanotechnology, 2005, 16(2): 278-281. |
87 | Li P, Zhang J. Sorting out semiconducting single-walled carbon nanotube arrays by preferential destruction of metallic tubes using water[J]. J. Mater. Chem., 2011, 21(32): 11815-11821. |
88 | Wang Z, Zhao Q, Tong L, et al. Investigation of etching behavior of single-walled carbon nanotubes using different etchants[J]. J. Phys. Chem. C, 2017, 121(49): 27655-27663. |
89 | Zhang R F, Xie H, Zhang Y, et al. The reason for the low density of horizontally aligned ultralong carbon nanotube arrays[J]. Carbon, 2013, 52: 232-238. |
90 | Zhou W, Ding L, Yang S, et al. Synthesis of high-density, large-diameter, and aligned single-walled carbon nanotubes by multiple-cycle growth methods[J]. ACS Nano, 2011, 5(5): 3849-3857. |
91 | Hong S W, Banks T, Rogers J A. Improved density in aligned arrays of single-walled carbon nanotubes by sequential chemical vapor deposition on quartz[J]. Adv. Mater., 2010, 22(16): 1826-1830. |
92 | He M, Duan X, Wang X, et al. Iron catalysts reactivation for efficient CVD growth of SWNT with base-growth mode on surface[J]. J. Phys. Chem. B, 2004, 108(34): 12665-12668. |
93 | Li J, Liu K, Laing S, et al. Growth of high-density-aligned and semiconducting-enriched single-walled carbon nanotubes: decoupling the conflict between density and selectivity[J]. ACS Nano, 2014, 8(1): 554-562. |
94 | Wu B, Geng D, Guo Y, et al. Ultrahigh density modulation of aligned single-walled carbon nanotube arrays[J]. Nano Res., 2011, 4(10): 931-937. |
95 | McNicholas T P, Ding L, Yuan D, et al. Density enhancement of aligned single-walled carbon nanotube thin films on quartz substrates by sulfur-assisted synthesis[J]. Nano Lett., 2009, 9(10): 3646-3650. |
96 | Xie H, Zhang R, Zhang Y, et al. Growth of high-density parallel arrays of ultralong carbon nanotubes with catalysts pinned by silica nanospheres[J]. Carbon, 2013, 52: 535-540. |
97 | Xie H, Zhang R, Zhang Y, et al. Graphene/graphite sheet assisted growth of high-areal-density horizontally aligned carbon nanotubes[J]. Chem. Commum., 2014, 50(76): 11158-11161. |
98 | Xie H, Zhang R, Zhang Y, et al. Preloading catalysts in the reactor for repeated growth of horizontally aligned carbon nanotube arrays[J]. Carbon, 2016, 98: 157-161. |
99 | Patil N, Lin A, Myers E R, et al. Wafer-scale growth and transfer of aligned single-walled carbon nanotubes[J]. IEEE Trans. Nanotechnol., 2009, 8(4): 498-504. |
100 | Aasmundtveit K E, Roy A, Ta B Q. Carbon nanotubes directly integrated in CMOS by local synthesis-towards a wafer-level process[C]//2018 IEEE 13th Nanotechnology Materials and Devices Conference. Portland, 2018: 1-5. |
101 | Derenskyi V, Gomulya W, Talsma W, et al. On-chip chemical self-assembly of semiconducting single-walled carbon nanotubes (SWNTs): toward robust and scale invariant SWNTs transistors[J]. Adv. Mater., 2017, 29(23): 1606757. |
102 | Wang C, Ryu K, De Arco L G, et al. Synthesis and device applications of high-density aligned carbon nanotubes using low-pressure chemical vapor deposition and stacked multiple transfer[J]. Nano Res., 2010, 3(12): 831-842. |
103 | Si J, Zhong D, Xu H, et al. Scalable preparation of high-density semiconducting carbon nanotube arrays for high-performance field-effect transistors[J]. ACS Nano, 2018, 12(1): 627-634. |
104 | Han S J, Tang J, Kumar B, et al. High-speed logic integrated circuits with solution-processed self-assembled carbon nanotubes[J]. Nat. Nanotechnol., 2017, 12(9): 861-865. |
105 | Dong G, Zhao J, Shen L, et al. Large-area and highly uniform carbon nanotube film for high-performance thin film transistors[J]. Nano Res., 2018, 11(8): 4356-4367. |
106 | Bishop M D, Hills G, Srimani T, et al. Fabrication of carbon nanotube field-effect transistors in commercial silicon manufacturing facilities[J]. Nat. Electron., 2020, 3: 492-501. |
107 | Kang L, Zhang S, Li Q, et al. Growth of horizontal semiconducting SWNT arrays with density higher than 100 tubes/μm using ethanol/methane chemical vapor deposition[J]. J. Am. Chem. Soc., 2016, 138(21): 6727-6730. |
108 | Zhang R, Zhang Y, Xie H, et al. Controlled synthesis and property of horizontally aligned carbon nanotubes[J]. Sci. Sin. Chim., 2015, 45(10): 979. |
109 | Dittmer S, Svensson J, Campbell E E B. Electric field aligned growth of single-walled carbon nanotubes[J]. Current Applied Physics, 2004, 6(4): 595-598. |
110 | Joselevich E, Lieber C M. Vectorial growth of metallic and semiconducting single-wall carbon nanotube[J]. Nano Lett., 2002, 2(10): 1137-1141. |
111 | Wei S, Jie S, Zhao Z, et al. Precise pitch-scaling of carbon nanotube arrays within three-dimensional DNA nanotrenches[J]. Science, 2020, 368: 874-877. |
112 | Zhao M, Chen Y, Wanf K, et al. DNA-directed nanofabrication of high-performance carbon nanotube field-effect transistors[J]. Science, 2020, 368: 878-881. |
113 | Selmani S, Schipper D J. Orientation control of molecularly functionalized surfaces applied to the simultaneous alignment and sorting of carbon nanotubes[J]. Angew. Chem. Int. Ed. Engl., 2018, 57(9): 2399-2403. |
114 | Zhang J, Liu S, Nshimiyimana J P, et al. Wafer-scale fabrication of suspended single-walled carbon nanotube arrays by silver liquid dynamics[J]. Small, 2017, 13(40): 1701218. |
115 | Hossain M M, Islam M A, Shima H, et al. Alignment of carbon nanotubes in carbon nanotube fibers through nanoparticles: a route for controlling mechanical and electrical properties[J]. ACS Appl. Mater. Interfaces, 2017, 9(6): 5530-5542. |
116 | Ali J, Jing G, Qian W, et al. Ballistic carbon nanotube field-effect transistors[J]. Nature, 2003, 424: 654-657. |
117 | Zhang Z, Liang X, Wang S, et al. Doping-free fabrication of carbon nanotube based ballistic CMOS devices and circuits[J]. Nano Lett., 2007, 7(12): 3603-3607. |
118 | Cao Q, Tersoff J, Farmer D B, et al. Carbon nanotube transistors scaled to a 40-nanometer footprint[J]. Science, 2017, 356: 1369-1372. |
119 | Qiu C, Zhang Z, Xiao M, et al. Scaling carbonnanotube complementary transistors to 5-nm gate lengths[J]. Science, 2017, 355: 271-276. |
120 | Tang J, Cao Q, Tulevski G, et al. Flexible CMOS integrated circuits based on carbon nanotubes with sub-10 ns stage delays[J]. Nat. Electron., 2018, 1(3): 191-196. |
121 | Shulaker M M, Hills G, Patil N, et al. Carbon nanotube computer[J]. Nature, 2013, 501(7468): 526-530. |
122 | Hills G, Lau C, Wright A, et al. Modern microprocessor built from complementary carbon nanotube transistors[J]. Nature, 2019, 572(7771): 595-602. |
123 | Wang Y, Fang L, Xiang L, et al. On-chip thermionic electron emitter arrays based on horizontally aligned single-walled carbon nanotubes[J]. IEEE Trans. Electron Devices, 2019, 66(2): 1069-1074. |
124 | Wei N, Liu Y, Xie H, et al. Carbon nanotube light sensors with linear dynamic range of over 120 dB[J]. Appl. Phys. Lett., 2014, 105(7): 073107. |
125 | Liu Y, Wei N, Zeng Q, et al. Room temperature broadband infrared carbon nanotube photodetector with high detectivity and stability[J]. Adv. Opt. Mater., 2016, 4(2): 238-245. |
126 | Liu Y, Wei N, Zhao Q, et al. Room temperature infrared imaging sensors based on highly purified semiconducting carbon nanotubes[J]. Nanoscale, 2015, 7(15): 6805-6812. |
127 | Ertugrul C, Fatih D, Coskun K. Aligned carbon nanotubes as polarization-sensitive, molecular near-field detectors[J]. Proc. Natl. Acad. Sci., 2009, 106(8): 2495-2499. |
128 | Xiang R, Inoue T, Zheng Y, et al. One-dimensional van der Waals heterostructures[J]. Science, 2020, 367: 537-542. |
129 | Liao Y, Jiang H, Wei N, et al. Direct synthesis of colorful single-walled carbon nanotube thin films[J]. J. Am. Chem. Soc., 2018, 140(31): 9797-9800. |
[1] | 吴雷, 刘姣, 李长聪, 周军, 叶干, 刘田田, 朱瑞玉, 张秋利, 宋永辉. 低阶粉煤催化微波热解制备含碳纳米管的高附加值改性兰炭末[J]. 化工学报, 2023, 74(9): 3956-3967. |
[2] | 姚晓宇, 沈俊, 李健, 李振兴, 康慧芳, 唐博, 董学强, 公茂琼. 流体气液临界参数测量方法研究进展[J]. 化工学报, 2023, 74(5): 1847-1861. |
[3] | 陈科, 杜理, 曾英, 任思颖, 于旭东. 四元体系LiCl+MgCl2+CaCl2+H2O 323.2 K相平衡研究及计算[J]. 化工学报, 2023, 74(5): 1896-1903. |
[4] | 张兰河, 赖青燚, 王铁铮, 关潇卓, 张明爽, 程欣, 徐小惠, 贾艳萍. H2O2对SBR脱氮效率和污泥性能的影响[J]. 化工学报, 2023, 74(5): 2186-2196. |
[5] | 毛元敬, 杨智, 莫松平, 郭浩, 陈颖, 罗向龙, 陈健勇, 梁颖宗. C6~C10烷醇的SAFT-VR Mie状态方程参数回归及其热物性研究[J]. 化工学报, 2023, 74(3): 1033-1041. |
[6] | 陈家辉, 杨鑫泽, 陈顾中, 宋震, 漆志文. 以离子液体密度为例的分子性质预测模型建模方法探讨[J]. 化工学报, 2023, 74(2): 630-641. |
[7] | 程文婷, 李杰, 徐丽, 程芳琴, 刘国际. AlCl3·6H2O在FeCl3、CaCl2、KCl及KCl–FeCl3溶液中溶解度的实验及预测[J]. 化工学报, 2023, 74(2): 642-652. |
[8] | 宇国佳, 靳冬玉, 周智勇, 张帆, 任钟旗. 多孔液体的设计合成与应用研究进展[J]. 化工学报, 2023, 74(1): 257-275. |
[9] | 裴仁花, 王永洪, 张新儒, 李晋平. 碳纳米管/环糊精金属有机骨架协同强化混合基质膜的CO2分离[J]. 化工学报, 2022, 73(9): 3904-3914. |
[10] | 杨松涛, 李东洋, 牛玉清, 李鑫钢, 康绍辉, 李洪, 叶开凯, 周志全, 高鑫. 氟化物势能函数和热力学性质的分子模拟研究进展[J]. 化工学报, 2022, 73(9): 3828-3840. |
[11] | 肖皓宇, 杨海平, 张雄, 陈应泉, 王贤华, 陈汉平. 塑料催化热解制备高附加值产品的研究进展[J]. 化工学报, 2022, 73(8): 3461-3471. |
[12] | 孙哲, 金华强, 李康, 顾江萍, 黄跃进, 沈希. 基于知识数据化表达的制冷空调系统故障诊断方法[J]. 化工学报, 2022, 73(7): 3131-3144. |
[13] | 蔡楚玥, 方晓明, 张正国, 凌子夜. CNTs阵列增强石蜡/硅橡胶复合相变垫片的散热性能研究[J]. 化工学报, 2022, 73(7): 2874-2884. |
[14] | 刘学安, 汤丽怡, 覃健, 唐大江, 童张法, 曲慧颖. 热解Ni/Co-ZIF-8制备碳纳米管桥连多孔碳及其在超级电容器中的应用[J]. 化工学报, 2022, 73(7): 3287-3297. |
[15] | 徐珂, 史国强, 薛冬峰. 无机杂化钙钛矿团簇材料:介尺度钙钛矿材料发光性质研究[J]. 化工学报, 2022, 73(6): 2748-2756. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||