1 |
Gilassi S, Taghavi S M, Rodrigue D, et al. Techno-economic evaluation of membrane and enzymatic-absorption processes for CO2 capture from flue-gas [J]. Separation and Purification Technology, 2020, 248: 11694.
|
2 |
Robeson L M. The upper bound revisited [J]. Journal of Membrane Science, 2008, 320(1/2): 390-400.
|
3 |
Lin H Q. Solubility selective membrane materials for carbon dioxide removal from mixtures with light gases [D]. Austin: The University of Texas at Austin, 2005.
|
4 |
田志章, 李奕帆, 姜忠义, 等. 用于生物气提纯的促进传递膜[J]. 化工学报, 2014, 65(5): 1594-1601.
|
|
Tian Z Z, Li Y F, Jiang Z Y, et al. Facilitated transport membranes for biogas upgrading [J]. CIESC Journal, 2014, 65(5): 1594-1601.
|
5 |
Wang M D, Quan K D, Zheng X H, et al. Facilitated transport membranes by incorporating self-exfoliated covalent organic nanosheets for CO2/CH4 separation [J]. Separation and Purification Technology, 2020, 237: 116457.
|
6 |
Wang B, Sheng M L, Xu J Y, et al. Recent advances of gas transport channels constructed with different dimensional nanomaterials in mixed-matrix membranes for CO2 separation [J]. Small Methods, 2020, 4(3): 1900749.
|
7 |
Wong K K, Jawad Z A. A review and future prospect of polymer blend mixed matrix membrane for CO2 separation [J]. Journal of Polymer Research, 2019, 26: 289.
|
8 |
Xin Q P, Ma F X, Zhang L, et al. Interface engineering of mixed matrix membrane via CO2-philic polymer brush functionalized graphene oxide nanosheets for efficient gas separation [J]. Journal of Membrane Science, 2019, 586: 23-33.
|
9 |
Kamble A R, Patel C M, Murthy Z V P. Polyethersulfone based MMMs with 2D materials and ionic liquid for CO2, N2 and CH4 separation [J]. Journal of Environmental Management, 2020, 262: 110256.
|
10 |
Amirkhani F, Harami H R, Asghari M. CO2/CH4 mixed gas separation using poly(ether-b-amide)-ZnO nanocomposite membranes: experimental and molecular dynamics study [J]. Polymer Testing, 2020, 86: 106464.
|
11 |
Yang L X, Tian Z Z, Zhang X Y, et al. Enhanced CO2 selectivities by incorporating CO2-philic PEG-POSS into polymers of intrinsic microporosity membrane [J]. Journal of Membrane Science, 2017, 543: 69-78.
|
12 |
何玉鹏, 王志, 乔志华, 等. 含有MCM-41分子筛的混合基质复合膜用于CO2分离[J]. 化工学报, 2015, 66(10): 3979-3990.
|
|
He Y P, Wang Z, Qiao Z H, et al. Novel mixed matrix composite membranes containing MCM-41 for CO2 separation [J]. CIESC Journal, 2015, 66(10): 3979-3990.
|
13 |
Mohamed M J B G, Mannan H A, Nasir R, et al. Composite mixed matrix membranes incorporating microporous carbon molecular sieve as filler in polyethersulfone for CO2/CH4 separation [J]. Journal of Applied Polymer Science, 2020, 137(12): 48476.
|
14 |
杨凯, 阮雪华, 代岩, 等. 氨基MIL-101(Cr)强化CO2分离性能的混合基质膜优化制备[J]. 化工学报, 2020, 71(1): 329-336.
|
|
Yang K, Ruan X H, Dai Y, et al. Optimized fabrication of mixed matrix membranes based on amino-MIL-101(Cr) for highly efficient CO2 separation [J]. CIESC Journal, 2020, 71(1): 329-336.
|
15 |
Younas M, Rezakazemi M, Daud M. Recent progress and remaining challenges in post-combustion CO2 capture using metal-organic frameworks (MOFs) [J]. Progress in Energy and Combustion Science, 2020, 80: 100849.
|
16 |
Hou L, Wang Z, Xu J M, et al. Synthesis and property of novel gas mixed-matrix membrane with carbon nanotubes [J]. Journal of Polymer Research, 2020, 27: 102.
|
17 |
Song C F, Mujahid M, Li R, et al. Pebax/MWCNTs-NH2 mixed matrix membranes for enhanced CO2/N2 separation [J]. Greenhouse Gases, 2020, 10(2): 408-420.
|
18 |
Hashemifard S A, Ismail A F, Matsuura T. Mixed matrix membrane incorporated with large pore size halloysite nanotubes (HNT) as filler for gas separation: experimental [J]. Journal of Colloid and Interface Science, 2011, 359(2): 359-370.
|
19 |
侯蒙杰, 张新儒, 王永洪, 等. 聚乙烯胺/埃洛石纳米管混合基质膜的制备及其CO2/N2分离[J]. 化工学报, 2018, 69(9): 4106-4113.
|
|
Hou M J, Zhang X R, Wang Y H, et al. Preparation of PVAm mixed matrix membranes by incorporating halloysite nanotubes for CO2/N2 separation [J]. CIESC Journal, 2018, 69(9): 4106-4113.
|
20 |
Wu X Y, Ren Y X, Sui G M, et al. Accelerating CO2 capture of highly permeable polymer through incorporating highly selective hollow zeolite imidazolate framework [J]. AIChE Journal, 2020, 66(2): e16800.
|
21 |
Hwang S, Chi W S, Lee S J, et al. Hollow ZIF-8 nanoparticles improve the permeability of mixed matrix membranes for CO2/CH4 gas separation [J]. Journal of Membrane Science, 2015, 480: 11-19.
|
22 |
Ding X L, Tan F F, Zhao H Y, et al. Enhancing gas permeation and separation performance of polymeric membrane by incorporating hollow polyamide nanoparticles with dense shell [J]. Journal of Membrane Science, 2019, 570/571: 53-60.
|
23 |
Zhang J S, Schott J A, Li Y C, et al. Membrane-based gas separation accelerated by hollow nanosphere architectures [J]. Advanced Materials, 2017, 29(4): 1603797.
|
24 |
康长勇, 丁晓莉, 赵红永, 等. 基于聚合物中空微球构建膜内纳米空腔及其对气体渗透性能的影响[J]. 高等学校化学学报, 2018, 39: 2820-2824.
|
|
Kang C Y, Ding X L, Zhao H Y, et al. Construction of nanocavity in membranes based on hollow polymer microspheres and effects on gas permeation performance [J]. Chemical Journal of Chinese Universities, 2018, 39: 2820-2824.
|
25 |
康长勇. 中空纳米微球的制备及其在CO2分离膜中的应用[D]. 天津: 天津工业大学, 2018.
|
|
Kang C Y. The synthesis of hollow nanoparticles for CO2 separation [D]. Tianjin: Tiangong University, 2018.
|
26 |
Liu S L, Shao L, Chua M L, et al. Recent progress in the design of advanced PEO-containing membranes for CO2 removal [J]. Progress in Polymer Science, 2013, 38(7): 1089-1120.
|
27 |
Wang X L, Ding X L, Zhao H Y, et al. Pebax-based mixed matrix membranes containing hollow polypyrrole nanospheres with mesoporous shells for enhanced gas permeation performance [J]. Journal of Membrane Science, 2020, 602: 117968.
|
28 |
杨平平. 星形PEO膜材料及其复合膜的制备及性能研究[D]. 天津: 天津工业大学, 2016.
|
|
Yang P P. The fabrication and performance of the star-like PEO membrane material and its composite membranes [D].Tianjin: Tiangong University, 2016.
|
29 |
刘振峰. 纤维素膜的化学改性及气体渗透性能研究[D]. 大连: 中国科学院研究生院(大连化学物理研究所), 2004.
|
|
Liu Z F. Chemical modification of cellulose membrane and study on the gas permeability of modified membrane [D]. Dalian: University of Chinese Academy of Sciences (Dalian Institute of Chemical Physics, Chinese Academy of Sciences), 2004.
|
30 |
Charati S G, Houde A Y, Kulkarni S S, et al. Transport of gases in aromatic polyesters: correlation with WAXD studies [J]. Journal of Polymer Science Part B: Polymer Physics, 1991, 29(8): 921-931.
|
31 |
姜兆辉, 贾瞾, 李志迎, 等. 聚合物基体中纳米无机粒子的团聚机理研究进展[J]. 工程塑料应用, 2014, (42): 147-151.
|
|
Jiang Z H, Jia Z, Li Z Y, et al. Research progress on mechanism of agglomeration for inorganic nanoparticles in polymer matrix[J]. Engineering Plastics Application, 2014, (42): 147-151.
|
32 |
Parthasarathy R V, Menon V P, Martin C R. Unusual gas-transport selectivity in a partially oxidized form of the conductive polymer polypyrrole [J]. Chemistry of Materials, 1997, 9(2): 560-566.
|
33 |
Lin H Q, Freeman B D. Materials selection guidelines for membranes that remove CO2 from gas mixtures [J]. Journal of Molecular Structure, 2005, 739(1/2/3): 57-74.
|