化工学报 ›› 2020, Vol. 71 ›› Issue (S2): 210-215.DOI: 10.11949/0438-1157.20200974
收稿日期:
2020-07-20
修回日期:
2020-09-10
出版日期:
2020-11-06
发布日期:
2020-11-06
通讯作者:
丁晓莉
作者简介:
赵红永(1981—),男,博士,副教授,基金资助:
Hongyong ZHAO(),Jincheng CAO,Xiaoli DING(
),Qianqian CAO,Xinlan WANG,Yuzhong ZHANG
Received:
2020-07-20
Revised:
2020-09-10
Online:
2020-11-06
Published:
2020-11-06
Contact:
Xiaoli DING
摘要:
采用壳层具有介孔结构的聚吡咯中空纳米微球作为填料,和聚氧化乙烯单体共混自由基聚合制备了混合基质膜。结果表明,聚吡咯微球与基质相容性较好,未见明显团聚现象和缺陷。混合基质膜的渗透系数随填料含量的增加先增大后减少,在0.5%处达到最大值,CO2渗透系数增长31%;CO2/N2分离系数有所降低,CO2/CH4分离系数则变化不大。研究表明,由于聚合物链段对微球壳层的介孔填充,气体在膜内的扩散系数不升反降,渗透系数的提高主要是由于溶解度系数的变化,而这也导致了溶解选择性的变化,进而影响了分离系数。
中图分类号:
赵红永, 曹金城, 丁晓莉, 曹倩倩, 王鑫兰, 张玉忠. PEO/聚吡咯中空纳米微球混合基质膜的制备及其CO2渗透分离性能[J]. 化工学报, 2020, 71(S2): 210-215.
Hongyong ZHAO, Jincheng CAO, Xiaoli DING, Qianqian CAO, Xinlan WANG, Yuzhong ZHANG. Synthesis of PEO/hollow polypyrrole nanoparticle mixed matrix membranes for CO2 separation[J]. CIESC Journal, 2020, 71(S2): 210-215.
1 | Gilassi S, Taghavi S M, Rodrigue D, et al. Techno-economic evaluation of membrane and enzymatic-absorption processes for CO2 capture from flue-gas [J]. Separation and Purification Technology, 2020, 248: 11694. |
2 | Robeson L M. The upper bound revisited [J]. Journal of Membrane Science, 2008, 320(1/2): 390-400. |
3 | Lin H Q. Solubility selective membrane materials for carbon dioxide removal from mixtures with light gases [D]. Austin: The University of Texas at Austin, 2005. |
4 | 田志章, 李奕帆, 姜忠义, 等. 用于生物气提纯的促进传递膜[J]. 化工学报, 2014, 65(5): 1594-1601. |
Tian Z Z, Li Y F, Jiang Z Y, et al. Facilitated transport membranes for biogas upgrading [J]. CIESC Journal, 2014, 65(5): 1594-1601. | |
5 | Wang M D, Quan K D, Zheng X H, et al. Facilitated transport membranes by incorporating self-exfoliated covalent organic nanosheets for CO2/CH4 separation [J]. Separation and Purification Technology, 2020, 237: 116457. |
6 | Wang B, Sheng M L, Xu J Y, et al. Recent advances of gas transport channels constructed with different dimensional nanomaterials in mixed-matrix membranes for CO2 separation [J]. Small Methods, 2020, 4(3): 1900749. |
7 | Wong K K, Jawad Z A. A review and future prospect of polymer blend mixed matrix membrane for CO2 separation [J]. Journal of Polymer Research, 2019, 26: 289. |
8 | Xin Q P, Ma F X, Zhang L, et al. Interface engineering of mixed matrix membrane via CO2-philic polymer brush functionalized graphene oxide nanosheets for efficient gas separation [J]. Journal of Membrane Science, 2019, 586: 23-33. |
9 | Kamble A R, Patel C M, Murthy Z V P. Polyethersulfone based MMMs with 2D materials and ionic liquid for CO2, N2 and CH4 separation [J]. Journal of Environmental Management, 2020, 262: 110256. |
10 | Amirkhani F, Harami H R, Asghari M. CO2/CH4 mixed gas separation using poly(ether-b-amide)-ZnO nanocomposite membranes: experimental and molecular dynamics study [J]. Polymer Testing, 2020, 86: 106464. |
11 | Yang L X, Tian Z Z, Zhang X Y, et al. Enhanced CO2 selectivities by incorporating CO2-philic PEG-POSS into polymers of intrinsic microporosity membrane [J]. Journal of Membrane Science, 2017, 543: 69-78. |
12 | 何玉鹏, 王志, 乔志华, 等. 含有MCM-41分子筛的混合基质复合膜用于CO2分离[J]. 化工学报, 2015, 66(10): 3979-3990. |
He Y P, Wang Z, Qiao Z H, et al. Novel mixed matrix composite membranes containing MCM-41 for CO2 separation [J]. CIESC Journal, 2015, 66(10): 3979-3990. | |
13 | Mohamed M J B G, Mannan H A, Nasir R, et al. Composite mixed matrix membranes incorporating microporous carbon molecular sieve as filler in polyethersulfone for CO2/CH4 separation [J]. Journal of Applied Polymer Science, 2020, 137(12): 48476. |
14 | 杨凯, 阮雪华, 代岩, 等. 氨基MIL-101(Cr)强化CO2分离性能的混合基质膜优化制备[J]. 化工学报, 2020, 71(1): 329-336. |
Yang K, Ruan X H, Dai Y, et al. Optimized fabrication of mixed matrix membranes based on amino-MIL-101(Cr) for highly efficient CO2 separation [J]. CIESC Journal, 2020, 71(1): 329-336. | |
15 | Younas M, Rezakazemi M, Daud M. Recent progress and remaining challenges in post-combustion CO2 capture using metal-organic frameworks (MOFs) [J]. Progress in Energy and Combustion Science, 2020, 80: 100849. |
16 | Hou L, Wang Z, Xu J M, et al. Synthesis and property of novel gas mixed-matrix membrane with carbon nanotubes [J]. Journal of Polymer Research, 2020, 27: 102. |
17 | Song C F, Mujahid M, Li R, et al. Pebax/MWCNTs-NH2 mixed matrix membranes for enhanced CO2/N2 separation [J]. Greenhouse Gases, 2020, 10(2): 408-420. |
18 | Hashemifard S A, Ismail A F, Matsuura T. Mixed matrix membrane incorporated with large pore size halloysite nanotubes (HNT) as filler for gas separation: experimental [J]. Journal of Colloid and Interface Science, 2011, 359(2): 359-370. |
19 | 侯蒙杰, 张新儒, 王永洪, 等. 聚乙烯胺/埃洛石纳米管混合基质膜的制备及其CO2/N2分离[J]. 化工学报, 2018, 69(9): 4106-4113. |
Hou M J, Zhang X R, Wang Y H, et al. Preparation of PVAm mixed matrix membranes by incorporating halloysite nanotubes for CO2/N2 separation [J]. CIESC Journal, 2018, 69(9): 4106-4113. | |
20 | Wu X Y, Ren Y X, Sui G M, et al. Accelerating CO2 capture of highly permeable polymer through incorporating highly selective hollow zeolite imidazolate framework [J]. AIChE Journal, 2020, 66(2): e16800. |
21 | Hwang S, Chi W S, Lee S J, et al. Hollow ZIF-8 nanoparticles improve the permeability of mixed matrix membranes for CO2/CH4 gas separation [J]. Journal of Membrane Science, 2015, 480: 11-19. |
22 | Ding X L, Tan F F, Zhao H Y, et al. Enhancing gas permeation and separation performance of polymeric membrane by incorporating hollow polyamide nanoparticles with dense shell [J]. Journal of Membrane Science, 2019, 570/571: 53-60. |
23 | Zhang J S, Schott J A, Li Y C, et al. Membrane-based gas separation accelerated by hollow nanosphere architectures [J]. Advanced Materials, 2017, 29(4): 1603797. |
24 | 康长勇, 丁晓莉, 赵红永, 等. 基于聚合物中空微球构建膜内纳米空腔及其对气体渗透性能的影响[J]. 高等学校化学学报, 2018, 39: 2820-2824. |
Kang C Y, Ding X L, Zhao H Y, et al. Construction of nanocavity in membranes based on hollow polymer microspheres and effects on gas permeation performance [J]. Chemical Journal of Chinese Universities, 2018, 39: 2820-2824. | |
25 | 康长勇. 中空纳米微球的制备及其在CO2分离膜中的应用[D]. 天津: 天津工业大学, 2018. |
Kang C Y. The synthesis of hollow nanoparticles for CO2 separation [D]. Tianjin: Tiangong University, 2018. | |
26 | Liu S L, Shao L, Chua M L, et al. Recent progress in the design of advanced PEO-containing membranes for CO2 removal [J]. Progress in Polymer Science, 2013, 38(7): 1089-1120. |
27 | Wang X L, Ding X L, Zhao H Y, et al. Pebax-based mixed matrix membranes containing hollow polypyrrole nanospheres with mesoporous shells for enhanced gas permeation performance [J]. Journal of Membrane Science, 2020, 602: 117968. |
28 | 杨平平. 星形PEO膜材料及其复合膜的制备及性能研究[D]. 天津: 天津工业大学, 2016. |
Yang P P. The fabrication and performance of the star-like PEO membrane material and its composite membranes [D].Tianjin: Tiangong University, 2016. | |
29 | 刘振峰. 纤维素膜的化学改性及气体渗透性能研究[D]. 大连: 中国科学院研究生院(大连化学物理研究所), 2004. |
Liu Z F. Chemical modification of cellulose membrane and study on the gas permeability of modified membrane [D]. Dalian: University of Chinese Academy of Sciences (Dalian Institute of Chemical Physics, Chinese Academy of Sciences), 2004. | |
30 | Charati S G, Houde A Y, Kulkarni S S, et al. Transport of gases in aromatic polyesters: correlation with WAXD studies [J]. Journal of Polymer Science Part B: Polymer Physics, 1991, 29(8): 921-931. |
31 | 姜兆辉, 贾瞾, 李志迎, 等. 聚合物基体中纳米无机粒子的团聚机理研究进展[J]. 工程塑料应用, 2014, (42): 147-151. |
Jiang Z H, Jia Z, Li Z Y, et al. Research progress on mechanism of agglomeration for inorganic nanoparticles in polymer matrix[J]. Engineering Plastics Application, 2014, (42): 147-151. | |
32 | Parthasarathy R V, Menon V P, Martin C R. Unusual gas-transport selectivity in a partially oxidized form of the conductive polymer polypyrrole [J]. Chemistry of Materials, 1997, 9(2): 560-566. |
33 | Lin H Q, Freeman B D. Materials selection guidelines for membranes that remove CO2 from gas mixtures [J]. Journal of Molecular Structure, 2005, 739(1/2/3): 57-74. |
[1] | 邵苛苛, 宋孟杰, 江正勇, 张旋, 张龙, 高润淼, 甄泽康. 水平方向上冰中受陷气泡形成和分布实验研究[J]. 化工学报, 2023, 74(S1): 161-164. |
[2] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[3] | 吴延鹏, 李晓宇, 钟乔洋. 静电纺丝纳米纤维双疏膜油性细颗粒物过滤性能实验分析[J]. 化工学报, 2023, 74(S1): 259-264. |
[4] | 宋瑞涛, 王派, 王云鹏, 李敏霞, 党超镔, 陈振国, 童欢, 周佳琦. 二氧化碳直接蒸发冰场排管内流动沸腾换热数值模拟分析[J]. 化工学报, 2023, 74(S1): 96-103. |
[5] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[6] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[7] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[8] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[9] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[10] | 张佳怡, 何佳莉, 谢江鹏, 王健, 赵鹬, 张栋强. 渗透汽化技术用于锂电池生产中N-甲基吡咯烷酮回收的研究进展[J]. 化工学报, 2023, 74(8): 3203-3215. |
[11] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[12] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
[13] | 仪显亨, 周骛, 蔡小舒, 蔡天意. 光纤后向动态光散射测量纳米颗粒的浓度适用范围研究[J]. 化工学报, 2023, 74(8): 3320-3328. |
[14] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
[15] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 251
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 506
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||