化工学报 ›› 2021, Vol. 72 ›› Issue (1): 259-275.DOI: 10.11949/0438-1157.20201018
收稿日期:
2020-07-27
修回日期:
2020-11-11
出版日期:
2021-01-05
发布日期:
2021-01-05
通讯作者:
陈冬赟,路建美
作者简介:
张顾平(1993—),男,博士研究生,基金资助:
ZHANG Guping(),WANG Beibei,ZHOU Zhou,CHEN Dongyun(),LU Jianmei()
Received:
2020-07-27
Revised:
2020-11-11
Online:
2021-01-05
Published:
2021-01-05
Contact:
CHEN Dongyun,LU Jianmei
摘要:
氮氧化物(NOx)是一类有害的空气污染物,会引发酸雨、雾霾、光化学烟雾等严重的环境问题。目前,如何有效地去除空气中低浓度的NOx(十亿分之一)是研究的热点和难点。半导体光催化氧化法可以将空气中低浓度NOx氧化成无毒的硝酸盐,是一种经济有效的净化技术之一。本文主要围绕二氧化钛(TiO2),氮化碳(g-C3N4)和Bi系三类半导体光催化材料,对近年来包括本课题组在内的国内外对光催化去除低浓度NOx研究进行了简要概述。其中,通过代表性的工作介绍了贵金属沉积、元素掺杂、构建异质结和表面空位缺陷工程等改性策略,以提高半导体材料在去除低浓度NOx的光催化活性和性能。此外,对半导体材料在光净化低浓度NOx的未来发展进行了展望,以期待为高性能半导体光催化剂的理性设计和制备以及催化机理的探索等方面的研究提供思路。
中图分类号:
张顾平, 王贝贝, 周舟, 陈冬赟, 路建美. 半导体材料在光催化低浓度氮氧化物的研究进展[J]. 化工学报, 2021, 72(1): 259-275.
ZHANG Guping, WANG Beibei, ZHOU Zhou, CHEN Dongyun, LU Jianmei. Research progress of semiconductor materials for photocatalytic low concentration nitrogen oxides[J]. CIESC Journal, 2021, 72(1): 259-275.
图1 半导体材料在光催化低浓度氮氧化物的整体内容的简要说明
Fig.1 A brief description of the overall content of semiconductor materials for photocatalytic low concentration nitrogen oxides
图4 可见光照射下材料光催化降解NO (a);NO去除效率和NO2转化效率 (b)[46]
Fig.4 NO photocatalytic degradation of materials under visible light irradiation (a); NO removal efficiency and NO2 conversion efficiency (b)[46]
图6 TiO2-OV和TiO2的光催化去除NO (a);相应生成NO2 (b)[48]
Fig.6 Photocatalytic NO removal over the TiO2-OV and TiO2 (a); the corresponding generation of NO2 (b)[48]
图7 N-g-C3N4和P-g-C3N4样品的紫外可见吸收光谱 (a);变换的漫反射光谱 (b)[57]
Fig.7 UV-Vis absorption (a), transformed diffuse reflectance (b) spectra of N-g-C3N4 and P-g-C3N4 samples[57]
图8 所制备样品去除NO的光催化活性(插图是NO2生成率) (a);DFT计算的g-C3N4 (b)和CNB-0.10 (c)上主要中间吸附物种的吸附能和键长,长度以?表示[59]
Fig.8 Photocatalytic activities for NO removal and the inset is the NO2 production rate of the as-prepared samples (a); DFT calculated adsorption energies and bond lengths of the major intermediate adsorption species on g-C3N4 (b) and CNB-0.10 (c), the lengths are given in ?[59]
图10 块状g-C3N4、HCNS、HCN/rGO和CNCF样品的可见光催化去除NO的性能 (a);CNCF样品的多次光催化循环反应 (b)[66]
Fig.10 Visible-light photocatalytic performance of bulk-g-C3N4, HCNS, HCNS/rGO, and CNCF samples for the removal NO (a); multiple runs of photocatalytic reactions for CNCF (b)[66]
图12 BOC-MoS2-CNF的合成示意图 (a),CNF、BOC、BOC-CNF以及BOC-MoS2-CNF样品的可见光光催化去除NO的活性 (b) [82]
Fig.12 Schematic illustration of the fabrication of BOC-MoS2-CNFs (a); visible-light photocatalytic activities of CNFs, BOC, BOC-CNFs and BOC-MoS2-CNFs samples for NO removal (b)[82]
图13 BP/MBWO异质结的合成示意图 (a);用于去除NO的光催化剂的性能 (b);12% BP/MBWO样品的多次光催化循环 (c) [84]
Fig.13 Illustration of the fabrication of the BP/MBWO heterojunction (a); performance of the photocatalysts for NO removal (b); multiple cycles of photocatalytic reactions over 12% BP/MBWO (c)[84]
1 | Wang Z Y, Huang Y, Ho W K, et al. Fabrication of Bi2O2CO3/g-C3N4 heterojunctions for efficiently photocatalytic NO in air removal: in-situ self-sacrificial synthesis, characterizations and mechanistic study[J]. Applied Catalysis B: Environmental, 2016, 199: 123-133. |
2 | Skalska K, Miller K S, Ledakowicz S, et al. Trends in NOx abatement: a review[J]. Science of the Total Environment, 2010, 408(19): 3976-3989. |
3 | Mills A, Elouali S. The nitric oxide ISO photocatalytic reactor system: measurement of NOx removal activity and capacity[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2015, 305: 29-36. |
4 | Todorova N, Giannakopoulou T, Karapati S, et al. Composite TiO2/clays materials for photocatalytic NOx oxidation[J]. Applied Surface Science, 2014, 319: 113-120. |
5 | Pan L Y, Zhou X X, Zhao H, et al. Nanoflower-like Mg-doped MnOx for facile removal of low-concentration NOx at room temperature[J]. Catalysis Communications, 2017, 97: 70-73. |
6 | Lundberg J O, Govoni M. Inorganic nitrate is a possible source for systemic generation of nitric oxide[J]. Free Radical Biology and Medicine, 2004, 37(3): 395-400. |
7 | Elzey S, Mubayi A, Larsen S C, et al. FTIR study of the selective catalytic reduction of NO2 with ammonia on nanocrystalline NaY and CuY[J]. Journal of Molecular Catalysis A: Chemical, 2008, 285(1/2): 48-57. |
8 | Olivier J G, Bouwman A F, van der Hoek K W, et al. Global air emission inventories for anthropogenic sources of NOx, NH3 and N2O in 1990[J]. Environmental Pollution, 1998, 102(1): 135-148. |
9 | Dong G H, Ho W K, Zhang L Z, et al. Photocatalytic NO removal on BiOI surface: the change from nonselective oxidation to selective oxidation[J]. Applied Catalysis B: Environmental, 2015, 168/169: 490-496. |
10 | Cui W, Li J Y, Dong F, et al. Highly efficient performance and conversion pathway of photocatalytic NO oxidation on SrO-clusters@amorphous carbon nitride[J]. Environmental Scicence & Technology, 2017, 51(18): 10682-10690. |
11 | Ma J Z, Wu H M, Liu Y C, et al. Photocatalytic removal of NOx over visible light responsive oxygen-deficient TiO2[J]. Journal of Physical Chemistry C, 2014, 118(14): 7434-7441. |
12 | Dong F, Wang Z Y, Li Y H, et al. Immobilization of polymeric g-C3N4 on structured ceramic foam for efficient visible light photocatalytic air purification with real indoor illumination[J]. Environmental Science & Technology, 2014, 48(17): 10345-10353. |
13 | Jiang G M, Li X W, Lan M N, et al. Monodisperse bismuth nanoparticles decorated graphitic carbon nitride: enhanced visible-light-response photocatalytic NO removal and reaction pathway[J]. Applied Catalysis B: Environmental, 2017, 205: 532-540. |
14 | Fiore A M, Naik V, Spracklen D V, et al. Global air quality and climate[J]. Chemical Society Reviews, 2012, 41(19): 6663-6683. |
15 | Rodriguez J A, Jirsak T, Liu G, et al. Chemistry of NO2 on oxide surfaces: formation of NO3 on TiO2(110) and NO2↔O vacancy interactions[J]. Journal of the American Chemical Society, 2001, 123(39): 9597-9605. |
16 | Nikokavoura A, Trapalis C. Graphene and g-C3N4 based photocatalysts for NOx removal: a review[J]. Applied Surface Science, 2018, 430: 18-52. |
17 | Xiao B, Wheatley P S, Zhao X B, et al. High-capacity hydrogen and nitric oxide adsorption and storage in a metal-organic framework[J]. Journal of the American Chemical Society, 2007, 129(5): 1203-1209. |
18 | Yang W F, Hsing H J, Yang Y C, et al. The effects of selected parameters on the nitricoxide removal by biofilter[J]. Journal of Hazardous Materials, 2007, 148(3): 653-659. |
19 | Bröer S, Hammer T. Selective catalytic reduction of nitrogen oxides by combining anon-thermal plasma and a V2O5-WO3/TiO2 catalyst[J]. Applied Catalysis B: Environmental, 2000, 28: 101-111. |
20 | Adewuyi Y G, Sakyi N Y. Simultaneous absorption and oxidation of nitric oxide and sulfur dioxide by aqueous solutions of sodium persulfate activated by temperature[J]. Industrial and Engineering Chemistry Research, 2013, 52(33): 11702-11711. |
21 | Khan N E, Adewuyi Y G. Absorption and oxidation of nitric oxide (NO) by aqueous solutions of sodium persulfate in a bubble column reactor[J]. Industrial and Engineering Chemistry Research, 2010, 49(18): 8749-8760. |
22 | Heo I, Kim M K, Sung S, et al. Combination of photocatalysis and HC/SCR for improved activity and durability of DeNOx catalysts[J]. Environmental Science & Technology, 2013, 47(8): 3657-3664. |
23 | Guo Q B, Sun T H, Wang Y L, et al. Spray absorption and electrochemical reduction of nitrogen oxides from flue gas[J]. Environmental Science & Technology, 2013, 47(16): 9514-9522. |
24 | Rezaei F, Rownaghi A A, Monjezi S, et al. SOx/NOx removal from flue gas streams by solid adsorbents: a review of current challenges and future directions[J]. Energy and Fuels, 2015, 29(9): 5467-5486. |
25 | Xiong S G, Weng J X, Liao Y, et al. Alkali metal deactivation on the low temperature selective catalytic reduction of NOx with NH3 over MnOx-CeO2: a mechanism study[J]. Journal of Physical Chemistry C, 2016, 120(28): 15299-15309. |
26 | Wang A, Guo Y L, Gao F, et al. Ambient-temperature NO oxidation over amorphous CrOx-ZrO2 mixed oxide catalysts: significant promoting effect of ZrO2[J]. Applied Catalysis B: Environmental, 2017, 202: 706-714. |
27 | Li G, Zhang D, Yu J C,et al. An efficient bismuth tungstate visible-light-driven photocatalyst for breaking down nitric oxide[J]. Environmental Science & Technology, 2010, 44(11): 4276-4281. |
28 | Zhang W, Zhang Q, Dong F, et al. Visible-light photocatalytic removal of NO in air over BiOX (X = Cl, Br, I) single-crystal nanoplates prepared at room temperature[J]. Industrial and Engineering Chemistry Research, 2013, 52(20): 6740-6746. |
29 | Ai Z H, Ho W K, Lee S C, et al. Efficient photocatalytic removal of NO in indoor air with hierarchical bismuth oxybromide nanoplate microspheres under visible light[J]. Environmental Science & Technology, 2009, 43(11): 4143-4150. |
30 | Huang Y, Liang Y L, Rao Y F, et al. Environment-friendly carbon quantum dots/ZnFe2O4 photocatalysts: characterization: bio-compatibility and mechanisms for NO removal[J]. Environmental Science & Technology, 2017, 51(5): 2924-2933. |
31 | Jin S, Dong G H, Luo J M, et al. Improved photocatalytic NO removal activity of SrTiO3 by using SrCO3 as a new co-catalyst[J]. Applied Catalysis B: Environmental, 2018, 227: 24-34. |
32 | Lu Y F, Huang Y, Zhang Y F, et al. Oxygen vacancy engineering of Bi2O3/Bi2O2CO3 heterojunctions: implications of the interfacial charge transfer, NO adsorption and removal[J]. Applied Catalysis B: Environmental, 2018, 231: 357-367. |
33 | Liu D N, Chen D Y, Li N J, et al. Integration of 3D macroscopic graphene aerogel with 0D-2D AgVO3-g-C3N4 heterojunction for highly efficient photocatalytic oxidation of nitric oxide[J]. Applied Catalysis B: Environmental, 2019, 243: 576-584. |
34 | Li X W, Chen D Y, Li N J, et al. One-step synthesis of honeycomb-like carbon nitride isotype heterojunction as low-cost, high-performance photocatalyst for removal of NO[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(8): 11063-11070. |
35 | Zhang Q, Huang Y, Peng S Q, et al. Perovskite LaFeO3-SrTiO3 composite for synergistically enhanced NO removal under visible light excitation[J]. Applied Catalysis B: Environmental, 2017, 204: 346-357. |
36 | Zhou Y, Zhao Z Y, Wang F, et al. Facile synthesis of surface N-doped Bi2O2CO3: origin of visible light photocatalytic activity and in situ DRIFTS studies[J]. Journal of Hazardous Materials, 2016, 307: 163-172. |
37 | Liu Y, Yu S, Zhao Z Y, et al. N-doped Bi2O2CO3/graphene quantum dot composite photocatalyst: enhanced visible-light photocatalytic NO oxidation and in situ DRIFTS studies[J]. The Journal of Physical Chemistry C, 2017, 121(22): 12168-12177. |
38 | Zou Q, Li H, Yang Y P, et al. Bi2O3/TiO2 photocatalytic film coated on floated glass balls for efficient removal of organic pollutant[J]. Applied Surface Science, 2019, 467/468: 354-360. |
39 | Low J X, Cheng B, Yu J G, et al. Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: a review[J]. Applied Surface Science, 2017, 392: 658-686. |
40 | Park H, Kim H I, Moon G H, et al. Photoinduced charge transfer processes in solar photocatalysis based on modified TiO2[J]. Energy & Environmental Science, 2016, 9(2): 411-433. |
41 | Xu H, Ouyang S X, Liu L Q, et al. Recent advances in TiO2-based photocatalysis[J]. Journal of Materials Chemistry A, 2014, 2(32): 12642-12661. |
42 | Wu Z B, Sheng Z Y, Liu Y, et al. Characterization and activity of Pd-modified TiO2 catalysts for photocatalytic oxidation of NO in gas phase[J]. Journal of Hazardous Materials, 2009, 164: 542-548. |
43 | Zhang D P, Wen M C, Zhang S S, et al. Au nanoparticles enhanced rutile TiO2 nanorod bundles with high visible-light photocatalytic performance for NO oxidation[J]. Applied Catalysis B: Environmental, 2014, 147: 610-616. |
44 | Duan Y Y, Zhang M, Wang L, et al. Plasmonic Ag-TiO2-x nanocomposites for the photocatalytic removal of NO under visible light with high selectivity: the role of oxygen vacancies[J]. Applied Catalysis B: Environmental, 2017, 204: 67-77. |
45 | Hipolito E L, Cruz A M, Cuellar E L, et al. Synthesis, characterization and photocatalytic activity of WO3/TiO2 for NO removal under UV and visible light irradiation[J]. Materials Chemistry and Physics, 2014, 148(1/2): 208-213. |
46 | Huy T H, Phat B D, Kang F, et al. SnO2/TiO2 nanotube heterojunction: the first investigation of NO degradation by visible light-driven photocatalysis[J]. Chemosphere, 2019, 215: 323-332. |
47 | Xiao S N, Zhang D Q, Pan D L, et al. A chloroplast structured photocatalyst enabled by microwave synthesis[J]. Nature Communications, 2019, 10: 1570. |
48 | Shang H, Li M Q, Li H, et al. Oxygen vacancies promoted the selective photocatalytic removal of NO with blue TiO2via simultaneous molecular oxygen activation and photogenerated hole annihilation[J]. Environmental Science & Technology, 2019, 53(11): 6444-6453. |
49 | Ren Y J, Zeng D Q, Ong W J, et al. Interfacial engineering of graphitic carbon nitride (g-C3N4)-based metal sulfide heterojunction photocatalysts for energy conversion: a review[J]. Chinese Journal of Catalysis, 2019, 40(3): 289-319. |
50 | Ong W J, Tan L L, Ng Y H, et al. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability?[J]. Chemical Reviews, 2016, 116(12): 7159-7329. |
51 | Sun S D, Liang S H. Recent advances in functional mesoporous graphitic carbon nitride (mpg-C3N4) polymers[J]. Nanoscale, 2017, 9(30): 10544-10578. |
52 | 孙丹阳, 翟婷婷, 黎汉生, 等. g-C3N4的改性策略以及g-C3N4/Ti3C2异质结研究进展[J]. 化工学报, 2020, 71: 1-11. |
Sun D Y, Zhai T T, Li H S, et al. Research progress on modification strategy of g-C3N4 and g-C3N4/Ti3C2 heterojunction[J]. CIESC Journal, 2020, 71: 1-11. | |
53 | Ismael M, Wu Y. A mini-review on the synthesis and structural modification of g-C3N4-based materials, and their applications in solar energy conversion and environmental remediation[J]. Sustainable Energy & Fuels, 2019, 3(11): 2907-2925. |
54 | Tian N, Huang H W, Du X, et al. Rational nanostructure design of graphitic carbon nitride for photocatalytic applications[J]. Journal of Materials Chemistry A, 2019, 7(19): 11584-11612. |
55 | Sano T Z, Tsutsui S, Koike K, et al. Activation of graphitic carbon nitride (g-C3N4) by alkaline hydrothermal treatment for photocatalytic NO oxidation in gas phase[J]. Journal of Materials Chemistry A, 2013, 1(21): 6489-6496. |
56 | Dong F, Wang Z Y, Sun Y J, et al. Engineering the nanoarchitecture and texture of polymeric carbon nitride semiconductor for enhanced visible light photocatalytic activity[J]. Journal of Colloid and Interface Science, 2013, 401: 70-79. |
57 | Luo J M, Dong G H, Zhu Y Q, et al. Switching of semiconducting behavior from n-type to p-type induced high photocatalytic NO removal activity in g-C3N4[J]. Applied Catalysis B: Environmental, 2017, 214: 46-56. |
58 | Xiong T, Cen W L, Zhang Y X, et al. Bridging the g-C3N4 interlayers for enhanced photocatalysis[J]. ACS Catalysis, 2016, 6(4): 2462-2472. |
59 | Li J R, Ran M X, Chen P, et al. Controlling the secondary pollutant on B-doped g-C3N4 during photocatalytic NO removal: a combined DRIFTS and DFT investigation[J]. Catalysis Science & Technology, 2019, 9(17): 4531-4537. |
60 | Liu D N, Chen D Y, Li N J, et al. ZIF-67-derived 3D hollow mesoporous crystalline Co3O4 wrapped by 2D g-C3N4 nanosheets for photocatalytic removal of nitric oxide[J]. Small, 2019, 15(31): 1902291. |
61 | Fu J W, Xu Q L, Low J X, et al. Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst[J]. Applied Catalysis B: Environmental, 2019, 243: 556-565. |
62 | He F, Meng, A Y, Cheng B, et al. Enhanced photocatalytic H2-production activity of WO3/TiO2 step-scheme heterojunction by graphene modification[J]. Chinese Journal of Catalysis, 2020, 41(1): 9-20. |
63 | Xu Q L, Zhang L Y, Cheng B, et al. S-Scheme heterojunction photocatalyst[J]. Chem, 2020, 6(7): 1543-1559. |
64 | Xia P F, Cao S W, Zhu B C, et al. Designing a 0D/2D S-Scheme heterojunction over polymeric carbon nitride for visible-light photocatalytic inactivation of bacteria[J]. Angewandte Chemie International Edition, 2020, 59(13): 5218-5225. |
65 | Ren Y Y, Li Y, Wu X Y, et al. S-scheme Sb2WO6/g-C3N4 photocatalysts with enhanced visible-light-induced photocatalytic NO oxidation performance[J]. Chinese Journal of Catalysis, 2021, 42(1): 69-77. |
66 | Wu H X, Chen D Y, Li N J, et al. Hollow porous carbon nitride immobilized on carbonized nanofibers for highly efficient visible light photocatalytic removal of NO[J]. Nanoscale, 2016, 8(23): 12066-12072. |
67 | Sun J H, Zhang J S, Zhang M W, et al. Bioinspired hollow semiconductor nanospheres as photosynthetic nanoparticles[J]. Nature Communications, 2012, 3: 1139. |
68 | Gu Z Y, Zhang B, Asakura Y, et al. Alkali-assisted hydrothermal preparation of g-C3N4/rGO nanocomposites with highly enhanced photocatalytic NOx removal activity[J]. Applied Surface Science, 2020, 521: 146213. |
69 | Zheng Y M, Liu Y Y, Guo X L, et al. Sulfur-doped g-C3N4/rGO porous nanosheets for highly efficient photocatalytic degradation of refractory contaminants[J]. Journal of Materials Science & Technology, 2020, 41: 117-126. |
70 | Tang B M, Yang X Y, Gao X J, et al. rGO/g-C3N4 photocatalyst with an enhanced catalytic activity for NO removal[J]. Materials Research Express, 2019, 6: 125509. |
71 | Noda C, Asakura Y, Shiraki K, et al. Synthesis of three-component C3N4/rGO/C-TiO2 photocatalyst with enhanced visible-light responsive photocatalytic deNOx activity[J]. Chemical Engineering Journal, 2020, 390: 124616. |
72 | Hu J D, Chen D Y, Li N J, et al. 3D aerogel of graphitic carbon nitride modified with perylene imide and graphene oxide for highly efficient nitric oxide removal under visible light[J]. Small, 2018, 14(19): 1800416. |
73 | Hu J D, Chen D Y, Li N J, et al. Fabrication of graphitic-C3N4 quantum dots/graphene-InVO4 aerogel hybrids with enhanced photocatalytic NO removal under visible-light irradiation[J]. Applied Catalysis B: Environmental, 2018, 236: 45-52. |
74 | Yuan Y J, Wang P, Li Z J, et al. The role of bandgap and interface in enhancing photocatalytic H2 generation activity of 2D-2D black phosphorus/MoS2 photocatalyst[J]. Applied Catalysis B: Environmental, 2019, 242: 1-8. |
75 | Li X B, Xiong J, Gao X M, et al. Novel BP/BiOBr S-scheme nano-heterojunction for enhanced visible-light photocatalytic tetracycline removal and oxygen evolution activity[J]. Journal of Hazardous Materials, 2020, 387: 121690. |
76 | Liu F L, Shi R, Wang Z, et al. Direct Z-Scheme hetero-phase junction of black/red phosphorus for photocatalytic water splitting[J]. Angewandte Chemie International Edition, 2019, 58(34): 11791-11795. |
77 | Qiu P X, Xu C M, Zhou N, et al. Metal-free black phosphorus nanosheets-decorated graphitic carbon nitride nanosheets with CP bonds for excellent photocatalytic nitrogen fixation[J]. Applied Catalysis B: Environmental, 2018, 221: 27-35. |
78 | Hu J D, Ji Y G, Mo Z, et al. Engineering black phosphorus to porous g-C3N4-metal-organic framework membrane: a platform for highly boosting photocatalytic performance[J]. Journal of Materials Chemistry A, 2019, 7(9): 4408-4414. |
79 | Sun Y J, Xiong T, Dong F, et al. Interlayer-I-doped BiOIO3 nanoplates with an optimized electronic structure for efficient visible light photocatalysis[J]. Chemical Communications, 2016, 52(53): 8243-8246. |
80 | Wang B B, Chen D Y, Li N J, et al. Z-Scheme photocatalytic NO removal on a 2D/2D iodine doped BiOIO3/g-C3N4 under visible-light irradiation[J]. Journal of Colloid and Interface Science, 2020, 576: 426-434. |
81 | Zhang G P, Sheng H B, Chen D Y, et al. Hierarchical titanium dioxide nanowire/metal–organic framework/carbon nanofiber membranes for highly efficient photocatalytic degradation of hydrogen sulfide[J]. Chemistry-A European Journal, 2018, 24(56): 15019-15025. |
82 | Hu J D, Chen D Y, Li N J, et al. In situ fabrication of Bi2O2CO3/MoS2 on carbon nanofibers for efficient photocatalytic removal of NO under visible-light irradiation[J]. Applied Catalysis B: Environmental, 2017, 217: 224-231. |
83 | Zhou Y, Zhang X J, Zhang Q, et al. Role of graphene on the band structure and interfacial interaction of Bi2WO6/graphene composites with enhanced photocatalytic oxidation of NO[J] Journal of Materials Chemistry A, 2014, 2(39): 16623-16631. |
84 | Hu J D, Chen D Y, Mo Z, et al. Z-Scheme 2D/2D heterojunction of black phosphorus/monolayer Bi2WO6 nanosheets with enhanced photocatalytic activities[J]. Angewandte Chemie International Edition, 2019, 58(7): 2073-2077. |
85 | Huo W C, Dong X A, Li J Y, et al. Synthesis of Bi2WO6 with gradient oxygen vacancies for highly photocatalytic NO oxidation and mechanism study[J]. Chemical Engineering Journal, 2019, 361: 129-138. |
86 | Liu D N, Chen D Y, Li N J, et al. Surface engineering of g-C3N4 by stacked oxygen vacancies-rich BiOBr sheets for boosting photocatalytic performance[J]. Angewandte Chemie International Edition, 2020, 59(11): 4519-4524. |
[1] | 肖川宝, 李林洋, 刘武锋, 钟年丙, 解泉华, 钟登杰, 常海星. 光催化与离子交换吸附耦合有效去除2,4,6-三氯苯酚[J]. 化工学报, 2023, 74(4): 1587-1597. |
[2] | 徐银, 蔡洁, 陈露, 彭宇, 刘夫珍, 张晖. 异相可见光催化耦合过硫酸盐活化技术在水污染控制中的研究进展[J]. 化工学报, 2023, 74(3): 995-1009. |
[3] | 王峰, 张顺鑫, 余方博, 刘亚, 郭烈锦. 光催化CO2还原制碳氢燃料系统优化策略研究[J]. 化工学报, 2023, 74(1): 29-44. |
[4] | 刘坤, 尹远, 耿文强, 夏昊天. 不同操作参数下介质阻挡放电的固氮性能研究及机理分析[J]. 化工学报, 2022, 73(9): 4045-4053. |
[5] | 席国君, 刘子涵, 雷广平. FeTPPs-CuBTC协同强化低浓度煤层气吸附分离[J]. 化工学报, 2022, 73(9): 3940-3949. |
[6] | 张劢, 田瑶, 郭之旗, 王叶, 窦广进, 宋浩. 光催化-生物杂合系统设计优化用于燃料和化学品绿色合成[J]. 化工学报, 2022, 73(7): 2774-2789. |
[7] | 王佳怡, 范垂钢, 李松庚. 碳氧官能团对煤焦低温还原NO的影响[J]. 化工学报, 2022, 73(5): 2140-2148. |
[8] | 张逸伟, 唐海荣, 何勇, 朱燕群, 王智化. 臭氧低温氧化烟气脱硝过程中的氮平衡试验研究[J]. 化工学报, 2022, 73(4): 1732-1742. |
[9] | 戴晓业, 安青松, 许云婷, 史琳. 废弃制冷剂降解方法研究现状及思考[J]. 化工学报, 2021, 72(S1): 1-6. |
[10] | 谢钦崟, 黄晓连, 李元, 李玲, 葛雪惠, 邱挺. TiO2平板微反应器设计优化及光催化性能研究[J]. 化工学报, 2021, 72(7): 3626-3636. |
[11] | 游洋, 刘应书, 杨雄, 吴晓永, 赵春雨, 王正, 侯环宇, 李子宜. 面向烟气NOx净化与回收的新型吸附工艺[J]. 化工学报, 2021, 72(4): 2132-2138. |
[12] | 党永强,李博妮,李可可,张建兰,冯香钰,张亚婷. 铁基催化剂光催化还原CO2研究进展[J]. 化工学报, 2021, 72(10): 5016-5027. |
[13] | 任静, 谭玲, 赵宇飞, 宋宇飞. 超薄二维材料光/电催化CO2还原的最新进展[J]. 化工学报, 2021, 72(1): 398-424. |
[14] | 贾勐, 张嘉宾, 冯亚青, 张宝. 金属-卟啉框架材料在光催化领域的应用[J]. 化工学报, 2020, 71(9): 4046-4057. |
[15] | 周柒, 丁红蕾, 郭得通, 潘卫国, 杜威. CO2催化氢化制清洁能源的研究进展及趋势[J]. 化工学报, 2020, 71(8): 3428-3443. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||