化工学报 ›› 2021, Vol. 72 ›› Issue (1): 276-291.DOI: 10.11949/0438-1157.20201131
收稿日期:
2020-08-10
修回日期:
2020-11-26
出版日期:
2021-01-05
发布日期:
2021-01-05
通讯作者:
朱文帅
作者简介:
吴沛文(1990—),男,博士,讲师,基金资助:
WU Peiwen1(),XUN Suhang2,JIANG Wei3,LI Huaming3,ZHU Wenshuai1()
Received:
2020-08-10
Revised:
2020-11-26
Online:
2021-01-05
Published:
2021-01-05
Contact:
ZHU Wenshuai
摘要:
随着社会不断发展,汽、柴油的消耗量逐年增大,开发温和条件下对芳香族硫化物具有优异脱除性能的非加氢脱硫方法对我国汽、柴油标准升级具有重要意义。萃取脱硫法能够在室温常压条件下脱除油品中的芳香族硫化物,且能够通过萃取剂结构设计实现选择性脱硫。综述了近年来离子液体反应型萃取脱硫方法的研究进展,主要探讨了离子液体反应型萃取脱硫方法的原理和萃取作用机制,重点论述了离子液体反应型萃取脱硫方法中离子液体设计、氧化剂类型、外场强化作用、离子液体的分离回收等研究现状,分析了制约反应型萃取脱硫广泛工业化应用的瓶颈,并提出合适的解决策略,以期推动基于离子液体反应型萃取脱硫方法和技术的进一步工业化应用。
中图分类号:
吴沛文, 荀苏杭, 蒋伟, 李华明, 朱文帅. 离子液体反应型萃取燃油脱硫研究进展[J]. 化工学报, 2021, 72(1): 276-291.
WU Peiwen, XUN Suhang, JIANG Wei, LI Huaming, ZHU Wenshuai. Recent progress on extractive desulfurization of fuel oils through reactions based on ionic liquids as solvents and catalysts[J]. CIESC Journal, 2021, 72(1): 276-291.
序号 | 离子液体 | 硫化物类型 | 萃取剂/催化剂 | 文献 |
---|---|---|---|---|
1 | [(C8H17)3NCH3]2[W6O19] | DBT, 4,6-DMDBT, BT | 催化剂 | [ |
2 | [(C4H9)4N]4[W10O32] | DBT, 4,6-DMDBT, BT | 萃取剂/催化剂 | [ |
3 | [PSPy]3[PW12O40] | DBT, 4,6-DMDBT, BT | 催化剂 | [ |
4 | [MIMPS]3[PW12O40]·2H2O | DBT, 4,6-DMDBT, BT | 催化剂 | [ |
5 | [VO(O2)2(phen)]·H2O | DBT | 催化剂 | [ |
6 | [WO(O2)2]·[2C3H7NO2]·H2O | DBT | 催化剂 | [ |
7 | [PyPS]3[(NH4)3Mo7O24] | DBT, 4,6-DMDBT, BT | 催化剂 | [ |
8 | [(CH3)N(n-C8H17)3]2[Mo2O11] | DBT, 4,6-DMDBT, BT | 催化剂 | [ |
9 | [(CH3)4N][FeCl4] | DBT | 催化剂 | [ |
10 | [Ch][FeCl4] | DBT, 4,6-DMDBT, BT | 催化剂 | [ |
11 | [C4mpip][FeCl4] | DBT, 4,6-DMDBT, BT | 催化剂 | [ |
12 | [C4mim]3[Fe(CN)6] | DBT, 4,6-DMDBT, BT | 催化剂 | [ |
13 | [C83MPy][FeCl4] | DBT | 萃取剂/催化剂 | [ |
14 | [Me3NCH2C6H5Cl]·[2ZnCl2] | DBT | 萃取剂/催化剂 | [ |
表1 不同离子液体活化H2O2用于反应型萃取脱硫
Table 1 Ionic liquids for reactive extraction desulfurization using activated H2O2 as the oxidant
序号 | 离子液体 | 硫化物类型 | 萃取剂/催化剂 | 文献 |
---|---|---|---|---|
1 | [(C8H17)3NCH3]2[W6O19] | DBT, 4,6-DMDBT, BT | 催化剂 | [ |
2 | [(C4H9)4N]4[W10O32] | DBT, 4,6-DMDBT, BT | 萃取剂/催化剂 | [ |
3 | [PSPy]3[PW12O40] | DBT, 4,6-DMDBT, BT | 催化剂 | [ |
4 | [MIMPS]3[PW12O40]·2H2O | DBT, 4,6-DMDBT, BT | 催化剂 | [ |
5 | [VO(O2)2(phen)]·H2O | DBT | 催化剂 | [ |
6 | [WO(O2)2]·[2C3H7NO2]·H2O | DBT | 催化剂 | [ |
7 | [PyPS]3[(NH4)3Mo7O24] | DBT, 4,6-DMDBT, BT | 催化剂 | [ |
8 | [(CH3)N(n-C8H17)3]2[Mo2O11] | DBT, 4,6-DMDBT, BT | 催化剂 | [ |
9 | [(CH3)4N][FeCl4] | DBT | 催化剂 | [ |
10 | [Ch][FeCl4] | DBT, 4,6-DMDBT, BT | 催化剂 | [ |
11 | [C4mpip][FeCl4] | DBT, 4,6-DMDBT, BT | 催化剂 | [ |
12 | [C4mim]3[Fe(CN)6] | DBT, 4,6-DMDBT, BT | 催化剂 | [ |
13 | [C83MPy][FeCl4] | DBT | 萃取剂/催化剂 | [ |
14 | [Me3NCH2C6H5Cl]·[2ZnCl2] | DBT | 萃取剂/催化剂 | [ |
序号 | 离子液体 | 硫化物类型 | 萃取剂/催化剂 | 文献 |
---|---|---|---|---|
1 | [Bmim][BF4] | DBT, 4,6-DMDBT, 4-MDBT | 萃取剂 | [ |
2 | [C18H37N(CH3)3]5[PV2Mo10O40] | DBT | 催化剂 | [ |
3 | [(C18H37)2N(CH3)2]3[Co(OH)6Mo6O18]·3H2O | DBT, 4,6-DMDBT, BT | 催化剂 | [ |
4 | [Cnmim]3[H3V10O28] | DBT, 4-MDBT, 4,6-DMDBT | 催化剂 | [ |
5 | [(C8H17)3NCH3]3[PMo12O40] | DBT, 4-MDBT, 4,6-DMDBT | 催化剂 | [ |
6 | [(C8H17)3NCH3]3[H3V10O28] | DBT, 4-MDBT, 4,6-DMDBT | 催化剂 | [ |
7 | [C4VIM][PMoV] | DBT, 4-MDBT, 4,6-DMDBT | 催化剂 | [ |
8 | [PyPS]3[Co(OH)6Mo6O18] | DBT, 4,6-DMDBT, BT | 催化剂 | [ |
9 | [(NH4)3Co(OH)6][Mo6O18] | DBT, 4,6-DMDBT, BT | 催化剂 | [ |
10 | [(CH3)3NCH2CH2OH]x[Na5-xIMo6O24] | DBT, 4,6-DMDBT, BT | 催化剂 | [ |
表2 不同离子液体活化O2用于反应型萃取脱硫
Table 2 Ionic liquids for reactive extraction desulfurization using activated O2 as the oxidant
序号 | 离子液体 | 硫化物类型 | 萃取剂/催化剂 | 文献 |
---|---|---|---|---|
1 | [Bmim][BF4] | DBT, 4,6-DMDBT, 4-MDBT | 萃取剂 | [ |
2 | [C18H37N(CH3)3]5[PV2Mo10O40] | DBT | 催化剂 | [ |
3 | [(C18H37)2N(CH3)2]3[Co(OH)6Mo6O18]·3H2O | DBT, 4,6-DMDBT, BT | 催化剂 | [ |
4 | [Cnmim]3[H3V10O28] | DBT, 4-MDBT, 4,6-DMDBT | 催化剂 | [ |
5 | [(C8H17)3NCH3]3[PMo12O40] | DBT, 4-MDBT, 4,6-DMDBT | 催化剂 | [ |
6 | [(C8H17)3NCH3]3[H3V10O28] | DBT, 4-MDBT, 4,6-DMDBT | 催化剂 | [ |
7 | [C4VIM][PMoV] | DBT, 4-MDBT, 4,6-DMDBT | 催化剂 | [ |
8 | [PyPS]3[Co(OH)6Mo6O18] | DBT, 4,6-DMDBT, BT | 催化剂 | [ |
9 | [(NH4)3Co(OH)6][Mo6O18] | DBT, 4,6-DMDBT, BT | 催化剂 | [ |
10 | [(CH3)3NCH2CH2OH]x[Na5-xIMo6O24] | DBT, 4,6-DMDBT, BT | 催化剂 | [ |
图6 [(C18H37)2N(CH3)2]3[Co(OH)6Mo6O18]·3H2O活化氧气反应型萃取脱硫机理[67]
Fig.6 Mechanism of [(C18H37)2N(CH3)2]3[Co(OH)6Mo6O18]·3H2O for reaction-type extraction desulfurization using oxygen as the oxidant[67]
图8 微波场强化离子液体反应型萃取脱硫[83]1—nitrogen cylinder;2—input pressure gauge;3—output pressure gauge;4—control valve;5—organic phase injection;6—aqucous phase injection;7—piezoelectric transducer;8—amplifier;9—titanium probe;10—jackcted ss-316 reactor;11—thermometer;12—drain valve;13—pressure gauge;14—regulator;15—vent;16—power supply;17—cold water bath;18—circulation pump
Fig.8 Microwave field enhanced ionic liquid reaction-type extractive desulfurization[83]
1 | 苗广, 董磊, 任晓玲, 等. 燃油吸附脱硫研究进展[J]. 化工进展, 2020, 39(6): 2251-2261. |
Miao G, Dong L, Ren X L, et al. An overview on adsorptive desulfurization of fuels [J]. Chem. Ind. Eng. Progress, 2020, 39(6): 2251-2261. | |
2 | Zhang W, Zhang H, Xiao J, et al. Carbon nanotube catalysts for oxidative desulfurization of a model diesel fuel using molecular oxygen[J]. Green Chem., 2014, 16(1): 211-220. |
3 | Yang R T, Hernandez-Maldonado A J, Yang F H. Desulfurization of transportation fuels with zeolites under ambient conditions[J]. Science, 2003, 301(5629): 79-81. |
4 | Babich I V, Moulijn J A. Science and technology of novel processes for deep desulfurization of oil refinery streams: a review[J]. Fuel, 2003, 82(6): 607-631. |
5 | Ahmed I, Jhung S H. Adsorptive desulfurization and denitrogenation using metal-organic frameworks[J]. J. Hazard. Mater., 2016, 301: 259-276. |
6 | Bösmann A, Datsevich L, Jess A, et al. Deep desulfurization of diesel fuel by extraction with ionic liquids[J]. Chem. Commun., 2001, 23: 2494-2495. |
7 | 王玉新, 李丹东, 曹祖宾, 等. 室温氯铝酸离子液体络合吸附噻吩类硫化物的研究[J]. 石油化工高等学校学报, 2004, 17(4): 54-57. |
Wang Y X, Li D D, Cao Z B, et al. Complex adsorption thiophene sulfide using room -temperature aluminum chloride-based ionic liquids [J]. J. Petrol. Univ., 2004, 17(4): 54-57. | |
8 | 王玉新, 李丹东, 袁秋菊. 室温离子液体对噻吩硫化物的络合吸附工艺[J]. 辽宁化工, 2004, 33(9): 512-514. |
Wang Y X, Li D D, Yuan Q J. study on complexing adsorption removal thiophene sulfide using room - temperature ionic liquids [J]. Liaoning Chem. Ind., 2004, 33(9): 512-514. | |
9 | 张姝妍, 曹祖宾, 赵德智, 等. 室温离子液体对FCC汽油络合萃取脱硫的研究[J]. 炼油技术与工程, 2005, 35(5): 35-38. |
Zhang Z Y, Cao Z B, Zhao D Z, et al. Study on FCC naphtha desulfurization with complexing extraction and room temperature ionic liquid [J]. Petrol. Refinery Eng., 2005, 35(5): 35-38. | |
10 | Weng J, Wang C, Li H, et al. Novel quaternary ammonium ionic liquids and their use as dual solvent-catalysts in the hydrolytic reaction[J]. Green Chem., 2006, 8(1): 96-99. |
11 | 张傑, 黄崇品, 陈标华, 等. 用 [BMIM][Cu2Cl3] 离子液体萃取脱除汽油中的硫化物[J]. 燃料化学学报, 2005, 33(4): 431-434. |
Zhang J, Huang C P, Chen B H, et al. Extractive desulfurization from gasoline by [BMIM][Cu2Cl3] [J]. J. Fuel. Chem. Technol., 2005, 33(4): 431-434. | |
12 | 张成中, 黄崇品, 李建伟, 等. 离子液体的结构及其汽油萃取脱硫性能[J]. 化学研究, 2005, 16(1): 23-25. |
Zhang C Z, Huang C P, Li J W, et al. Structures and extractive desulfurization ability of ionic liquids[J]. Chemical Research, 2005, 16(1): 23-25. | |
13 | Huang C, Chen B, Zhang J, et al. Desulfurization of gasoline by extraction with new ionic liquids[J]. Energy & Fuels, 2004, 18(6): 1862-1864. |
14 | 黄蔚霞, 李云龙, 汪燮卿. 离子液体在催化裂化汽油脱硫中的应用[J]. 化工进展, 2004, 23(3): 297-299. |
Huang W X, Li Y L, Wang X Q. Reducing sulfur content in FCC naphtha by using ionic liquid [J]. Chem. Ind. Eng. Progress, 2004, 23(3): 297-299. | |
15 | Zhang S, Zhang Q, Zhang Z C. Extractive desulfurization and denitrogenation of fuels using ionic liquids[J]. Ind. Eng. Chem. Res., 2004, 43(2): 614-622. |
16 | 周瀚成, 陈楠, 石峰, 等. 离子液体萃取脱硫新工艺研究[J]. 分子催化, 2005, 19(2): 94-97. |
Zhou H C, Chen N, Shi F, et al. Studies on desulfurization of gasoline by extracting with ionic liquids [J]. J. Mol. Catal. (China), 2005, 19(2): 94-97. | |
17 | Jess A, Eβer J. Deep Desulfurization of Fuels by Extraction with Ionic Liquids[M]. ACS Publications, 2005. |
18 | Eßer J, Wasserscheid P, Jess A. Deep desulfurization of oil refinery streams by extraction with ionic liquids[J]. Green Chem., 2004, 6(7): 316-322. |
19 | Planeta J, Karásek P, Roth M. Distribution of sulfur-containing aromatics between [hmim][Tf2N] and supercritical CO2: a case study for deep desulfurization of oil refinery streams by extraction with ionic liquids[J]. Green Chem., 2006, 8(1): 70-77. |
20 | Jiang X, Nie Y, Li C, et al. Imidazolium-based alkylphosphate ionic liquids—a potential solvent for extractive desulfurization of fuel[J]. Fuel, 2008, 87(1): 79-84. |
21 | Lo W H, Yang H Y, Wei G T. One-pot desulfurization of light oils by chemical oxidation and solvent extraction with room temperature ionic liquids[J]. Green Chem., 2003, 5(5): 639-642. |
22 | Zhang S, Zhang J, Zhang Y, et al. Nanoconfined ionic liquids[J]. Chem. Rev., 2017, 117(10): 6755-6833. |
23 | Zhang X, Liu C, Ren Q, et al. Green chemical engineering in China[J]. Rev. Chem. Eng., 2019, 35(8): 995-1077. |
24 | 崔国凯, 吕书贞, 王键吉. 功能化离子液体在二氧化碳吸收分离中的应用[J]. 化工学报, 2020, 71(1): 16-25. |
Cui G K, Lyu S Z, Wang J J. Functional ionic liquids for carbon dioxide capture and separation [J]. CIESC Journal, 2020, 71(1): 16-25. | |
25 | Qian W, Tan X, Su Q, et al. Transesterification of isosorbide with dimethyl carbonate catalyzed by task-specific ionic liquids[J]. ChemSusChem, 2019, 12(6): 1169-1178. |
26 | 李萌, 刘宇, 王强, 等. 离子液体合成研究进展[J]. 化工时刊, 2011, 25(5): 44-49+63. |
Li M, Liu Y, Wang Q, et al. Synthesis progress of ionic liquids [J]. Chem. Ind. Times, 2011, 25(5): 44-49+63. | |
27 | Singh S K, Savoy A W. Ionic liquids synthesis and applications: an overview[J]. J. Mol. Liq., 2020, 297: 112038. |
28 | Zhu W, Ding Y, Li H, et al. Application of a self-emulsifiable task-specific ionic liquid in oxidative desulfurization of fuels[J]. RSC Adv., 2013, 3(12): 3893-3898. |
29 | Li M, Zhou Z, Zhang F, et al. Deep oxidative-extractive desulfurization of fuels using benzyl‐based ionic liquid[J]. AIChE J., 2016, 62(11): 4023-4034. |
30 | Xu J, Zhao S, Chen W, et al. Highly efficient extraction and oxidative desulfurization system using Na7H2LaW10O36·32H2O in bmim BF4 at room temperature[J]. Chem. Eur. J., 2012, 18(15): 4775-4781. |
31 | Guo Y F, Gao C Y, Yang K G, et al. Mild and deep oxidative extraction desulfurization using dual-function imidazolium peroxydisulfate ionic liquid[J]. Energy & Fuels, 2019, 33(11): 10728-10733. |
32 | Lissner E, de Souza W F, Ferrera B, et al. Oxidative desulfurization of fuels with task-specific ionic liquids[J]. ChemSusChem, 2009, 2(10): 962-964. |
33 | Yu F L, Wang Y Y, Liu C Y, et al. Oxidative desulfurization of fuels catalyzed by ammonium oxidative-thermoregulated bifunctional ionic liquids[J]. Chem. Eng. J., 2014, 255: 372-376. |
34 | Ding Y X, Zhu W S, Li H M, et al. Catalytic oxidative desulfurization with a hexatungstate/aqueous H2O2/ionic liquid emulsion system[J]. Green Chem., 2011, 13(5): 1210-1216. |
35 | Li H M, Jiang X, Zhu W H, et al. Deep oxidative desulfurization of fuel oils catalyzed by decatungstates in the ionic liquid of Bmim PF6[J]. Ind. Eng. Chem. Res., 2009, 48(19): 9034-9039. |
36 | Huang W, Zhu W, Li H, et al. Heteropolyanion-based ionic liquid for deep desulfurization of fuels in ionic liquids[J]. Ind. Eng. Chem. Res., 2010, 49(19): 8998-9003. |
37 | Zhu W S, Huang W L, Li H M, et al. Polyoxometalate-based ionic liquids as catalysts for deep desulfurization of fuels[J]. Fuel Process. Technol., 2011, 92(10): 1842-1848. |
38 | 朱文帅, 徐丹, 巢艳红, 等. 离子液体萃取耦合过氧钒配合物催化氧化燃油脱硫[J]. 石油化工, 2011, 40(8): 810-812. |
Zhu W S, Xu D, Chao Y H, et al. Oxidative desulfurization of fuel catalyzed by peroxovanadium complex in ionic liquids as extractants [J]. Petrochem. Technol., 2011, 40(8): 810-812. | |
39 | 朱文帅, 巢艳红, 李华明, 等. 离子液体中过氧钨配合物催化氧化燃油脱硫[J]. 化学研究与应用, 2011, 23(10): 1309-1312. |
Zhu W S, Chao Y H, Li H M, et al. Oxidative desulfurization of fuels catalyzed by peroxotungsten complex in ionic liquids [J]. Chem. Res. Appl., 2011, 23(10): 1309-1312. | |
40 | Hao L W, Sun L L, Su T, et al. Polyoxometalate-based ionic liquid catalyst with unprecedented activity and selectivity for oxidative desulfurization of diesel in OminBF4[J]. Chem. Eng. J., 2019, 358: 419-426. |
41 | Zhu W S, Zhu G P, Li H M, et al. Oxidative desulfurization of fuel catalyzed by metal-based surfactant-type ionic liquids[J]. J. Mol. Catal. A: Chem., 2011, 347(1/2): 8-14. |
42 | Jiang W, Zhu W, Li H, et al. Deep oxidative desulfurization of fuels catalyzed by magnetic Fenton-like hybrid catalysts in ionic liquids[J]. RSC Adv., 2013, 3(7): 2355-2361. |
43 | Jiang W, Zhu W S, Li H M, et al. Mechanism and optimization for oxidative desulfurization of fuels catalyzed by Fenton-like catalysts in hydrophobic ionic liquid[J]. J. Mol. Catal. A: Chem., 2014, 382: 8-14. |
44 | Jiang W, Zhu W S, Chang Y H, et al. Ionic liquid extraction and catalytic oxidative desulfurization of fuels using dialkylpiperidinium tetrachloroferrates catalysts[J]. Chem. Eng. J., 2014, 250: 48-54. |
45 | Jiang W, Zhu W, Chang Y H, et al. Oxidation of aromatic sulfur compounds catalyzed by organic hexacyanoferrates in ionic liquids with a low concentration of H2O2 as an oxidant[J]. Energy & Fuels., 2014, 28(4): 2754-2760. |
46 | Nie Y, Dong Y, Bai L, et al. Fast oxidative desulfurization of fuel oil using dialkylpyridinium tetrachloroferrates ionic liquids[J]. Fuel, 2013, 103: 997-1002. |
47 | Li F T, Liu R H, Wen J H, et al. Desulfurization of dibenzothiophene by chemical oxidation and solvent extraction with Me3NCH2C6H5Cl·2ZnCl2 ionic liquid[J]. Green Chem., 2009, 11(6): 883-888. |
48 | Zhu W, Li H, Jiang X, et al. Commercially available molybdic compound-catalyzed ultra-deep desulfurization of fuels in ionic liquids[J]. Green Chem., 2008, 10(6): 641-646. |
49 | Zhu W, Li H, Hang X, et al. Oxidative desulfurization of fuels catalyzed by peroxotungsten and peroxomolybdenum complexes in ionic liquids[J]. Energy & Fuels, 2007, 21(5): 2514-2516. |
50 | He L N, Li H M, Zhu W S, et al. Deep oxidative desulfurization of fuels using peroxophosphomolybdate catalysts in ionic liquids[J]. Ind. Eng. Chem. Res., 2008, 47(18): 6890-6895. |
51 | Li H M, He L N, Lu J D, et al. Deep oxidative desulfurization of fuels catalyzed by phosphotungstic acid in ionic liquids at room temperature[J]. Energy & Fuels, 2009, 23: 1354-1357. |
52 | Jiang W, Jia H, Zheng Z, et al. Catalytic oxidative desulfurization of fuels in acidic deep eutectic solvents with [(C6H13)3P(C14H29)]3PMo12O40 as a catalyst[J]. Petrol. Sci., 2018, 4(15): 890-897. |
53 | Zhang H, Gao J, Meng H, et al. Removal of thiophenic sulfurs using an extractive oxidative desulfurization process with three new phosphotungstate catalysts[J]. Ind. Eng. Chem. Res., 2012, 51(19): 6658-6665. |
54 | Zhang J, Zhu W, Li H, et al. Deep oxidative desulfurization of fuels by Fenton-like reagent in ionic liquids[J]. Green Chem., 2009, 11(11): 1801-1807. |
55 | Li H, Zhu W, Wang Y, et al. Deep oxidative desulfurization of fuels in redox ionic liquids based on iron chloride[J]. Green Chem., 2009, 11(6): 810-815. |
56 | Jiang Y, Zhu W, Li H, et al. Oxidative desulfurization of fuels catalyzed by fenton-like ionic liquids at room temperature[J]. ChemSusChem, 2011, 4(3): 399-403. |
57 | Zhu W, Wu P, Yang L, et al. Pyridinium-based temperature-responsive magnetic ionic liquid for oxidative desulfurization of fuels[J]. Chem. Eng. J., 2013, 229: 250-256. |
58 | Zhao D, Wang J, Zhou E. Oxidative desulfurization of diesel fuel using a Bronsted acid room temperature ionic liquid in the presence of H2O2[J]. Green Chem., 2007, 9(11): 1219-1222. |
59 | Gao H S, Guo C, Xing J M, et al. Extraction and oxidative desulfurization of diesel fuel catalyzed by a Bronsted acidic ionic liquid at room temperature[J]. Green Chem., 2010, 12(7): 1220-1224. |
60 | 赵地顺, 孙智敏, 李发堂, 等. 酸性离子液体萃取/催化二苯并噻吩氧化脱硫反应的优化[J]. 燃料化学学报, 2009, 37(2): 68-72. |
Zhao D S, Sun M Z, Li F T, et al. Optimization of oxidative desulfurization of dibenzothiophen using acidic ionic liquid as catalytic solvent [J]. J. Fuel Chem. Technol., 2009, 37(2): 68-72. | |
61 | 张薇, 丁永萍, 宫敬, 等. 羧基功能化离子液体催化二苯并噻吩氧化脱硫[J]. 燃料化学学报, 2012, 40(5): 626-629. |
Zhang W, Ding Y P, Gong J, et al. Oxidative desulfurization of dibenzothiophene catalyzed by carboxyl-functionalized ionic liquid [cmmim] BF4 [J]. J. Fuel Chem. Technol., 2012, 40(5): 626-629. | |
62 | Lu Y, Wang Y, Gao L, et al. Aerobic oxidative desulfurization: a promising approach for sulfur removal from fuels[J]. ChemSusChem, 2008, 1(4): 302-306. |
63 | Dong Y, Zhang J, Ma Z, et al. Preparation of Co-Mo-O ultrathin nanosheets with outstanding catalytic performance in aerobic oxidative desulfurization[J]. Chem. Commun., 2019, 55(93): 13995-13998. |
64 | Yang H, Zhang Q, Zhang J, et al. Cellulose nanocrystal shelled with poly(ionic liquid)/polyoxometalate hybrid as efficient catalyst for aerobic oxidative desulfurization[J]. J. Colloid. Interface Sci., 2019, 554: 572-579. |
65 | Wang C, Chen Z, Yao X, et al. One-pot extraction and aerobic oxidative desulfurization with highly dispersed V2O5/SBA-15 catalyst in ionic liquids[J]. RSC Adv., 2017, 7(62): 39383-39390. |
66 | Lü H Y, Gao J B, Jiang Z X, et al. Oxidative desulfurization of dibenzothiophene with molecular oxygen using emulsion catalysis[J]. Chem. Commun., 2007, 2: 150-152. |
67 | Lü H Y, Ren W Z, Liao W P, et al. Aerobic oxidative desulfurization of model diesel using a B-type Anderson catalyst [(C18H37)2N(CH3)2]3Co(OH)6Mo6O18·3H2O[J]. Appl. Catal. B: Environ., 2013, 138: 79-83. |
68 | Wang C, Chen Z G, Yao X Y, et al. Decavanadates anchored into micropores of graphene-like boron nitride: efficient heterogeneous catalysts for aerobic oxidative desulfurization[J]. Fuel, 2018, 230: 104-112. |
69 | Xun S H, Jiang W, Guo T, et al. Magnetic mesoporous nanospheres supported phosphomolybdate-based ionic liquid for aerobic oxidative desulfurization of fuel[J]. J. Colloid Interface Sci., 2019, 534: 239-247. |
70 | Gu J Y, Liu M G, Xun S H, et al. Lipophilic decavanadate supported by three-dimensional porous carbon nitride catalyst for aerobic oxidative desulfurization[J]. Mol. Catal., 2020, 483: 110709. |
71 | Zhang M, Liu J Q, Li H P, et al. Tuning the electrophilicity of vanadium-substituted polyoxometalate based ionic liquids for high-efficiency aerobic oxidative desulfurization[J]. Appl. Catal. B: Environ., 2020, 271: 118936. |
72 | Chi M Y, Su T, Sun L L, et al. Biomimetic oxygen activation and electron transfer mechanism for oxidative desulfurization[J]. Appl. Catal. B: Environ., 2020, 275: 119134. |
73 | Sun L, Su T, Xu J, et al. Aerobic oxidative desulfurization coupling of Co polyanion catalysts and p-TsOH-based deep eutectic solvents through a biomimetic approach[J]. Green Chem., 2019, 21(10): 2629-2634. |
74 | Yu X, Shi M, Yan S, et al. Designation of choline functionalized polyoxometalates as highly active catalysts in aerobic desulfurization on a combined oxidation and extraction procedure[J]. Fuel, 2017, 207: 13-21. |
75 | Sun L L, Su T, Li P C, et al. Extraction coupled with aerobic oxidative desulfurization of model diesel using a B-type Anderson polyoxometalate catalyst in ionic liquids[J]. Catal. Lett., 2019, 149(7): 1888-1893. |
76 | Li A, Song H Y, Meng H, et al. Ultrafast desulfurization of diesel oil with ionic liquid based PMoO catalysts and recyclable NaClO oxidant[J]. Chem. Eng. J., 2020, 380: 122453. |
77 | Wang J L, Zhao D S, Li K X. Oxidative desulfurization of dibenzothiophene using ozone and hydrogen peroxide in ionic liquid[J]. Energy & Fuels, 2010, 24: 2527-2529. |
78 | Ma C H, Dai B, Liu P, et al. Deep oxidative desulfurization of model fuel using ozone generated by dielectric barrier discharge plasma combined with ionic liquid extraction[J]. J. Ind. Eng. Chem., 2014, 20(5): 2769-2774. |
79 | Zhao D, Liu R, Wang J, et al. Photochemical oxidation-ionic liquid extraction coupling technique in deep desulphurization of light oil[J]. Energy & Fuels, 2008, 22(2): 1100-1103. |
80 | Zhu W, Xu Y, Li H, et al. Photocatalytic oxidative desulfurization of dibenzothiophene catalyzed by amorphous TiO2 in ionic liquid[J]. Korean J. Chem. Eng., 2014, 31(2): 211-217. |
81 | Zhu W, Wang C, Li H, et al. One-pot extraction combined with metal-free photochemical aerobic oxidative desulfurization in deep eutectic solvent[J]. Green Chem., 2015, 17(4): 2464-2472. |
82 | Liu R, Zhang J, Xu Z, et al. Visible light photocatalytic oxidative desulfurization using Ti-MCM-41-loaded iron phthalocyanine combined with ionic liquid extraction[J]. J. Mater. Sci., 2018, 53(7): 4927-4938. |
83 | Mesdour S, Lekbir C, Doumandji L, et al. Microwave-assisted extractive catalytic-oxidative desulfurization of diesel fuel via a VO(acac)2/ionic liquid system with H2O2 and H2SO4 as oxidizing agents[J]. J. Sulfur Chem., 2017, 38(4): 421-439. |
84 | Benmabrouka H, Mesdour S, Boufades D, et al. Vanadium-catalyzed extractive oxidesulfurization of commercial diesel in ionic liquid with combined oxidizing agents[J]. Petrol. Sci. Technol., 2019, 37(6): 662-670. |
85 | Coletti A, Sabuzi F, Floris B, et al. Efficient and sustainable V-catalyzed oxidative desulfurization of fuels assisted by ionic liquids[J]. J. Fuel Chem. Technol., 2018, 46(9): 1121-1129. |
86 | Khodaei B, Rahimi M, Sobati M A, et al. Effect of operating pressure on the performance of ultrasound-assisted oxidative desulfurization (UAOD) using a horn type sonicator: experimental investigation and CFD simulation[J]. Chem. Eng. Process., 2018, 132: 75-88. |
87 | 解从霞, 谢盼辉, 于凤丽, 等. 有机-无机杂多酸类离子液体催化汽油超声氧化脱硫[J]. 高等学校化学学报, 2016, 37(12): 2184-2190. |
Xie C X, Xie P H, Yu F L, et al. Oxidative desulfurization of gasoline catalyzed by organic-inorganic heteropoly acid ionic liquids under ultrasound [J]. Chem. J. Chinese Univ., 2016, 37(12): 2184-2190. | |
88 | Cheng S S. Ultra clean fuels via modified UAOD process with room temperature ionic liquid (RTIL) & solid catalyst polishing[D]. Los Angeles: University of Southern California, 2008. |
89 | Safa M, Mokhtarani B, Mortaheb H R, et al. Oxidative desulfurization of model diesel using ionic liquid 1-octyl-3-methylimidazolium hydrogen sulfate: an investigation of the ultrasonic irradiation effect on performance[J]. Energy & Fuels, 2016, 30(12): 10909-10916. |
90 | 胡亚一, 陈嘉磊, 刘琦, 等. 杂多酸离子液体负载氨基化Fe3O4 磁性复合材料的制备及其超声辅助催化脱硫性能[J]. 复合材料学报, 2020, 37(3): 650-661. |
Hu Y Y, Chen J L, Liu Q, et al. Preparation of heteropoly acid ionic liquids supported amino-functionalized Fe3O4 magnetic composite and its catalytic property for ultrasound-assisted desulfurization [J]. Acta Materiae Compositae Sinica, 2020, 37(3): 650-661. | |
91 | Rajendran A, Cui T-Y, Fan H-X, et al. A comprehensive review on oxidative desulfurization catalysts targeting clean energy and environment[J]. J. Mater. Chem. A, 2020, 8(5): 2246-2285. |
92 | Mohumed H, Rahman S, Imtiaz S A, et al. Oxidative-extractive desulfurization of model fuels using a pyridinium ionic liquid[J]. ACS Omega, 2020, 5(14): 8023-8031. |
93 | Jiang W, Zhu W, Li H, et al. Fast oxidative removal of refractory aromatic sulfur compounds by a magnetic ionic liquid[J]. Chem. Eng. Technol., 2014, 37(1): 36-42. |
94 | Zhu W, Wu P, Chao Y, et al. A novel reaction-controlled foam-type polyoxometalate catalyst for deep oxidative desulfurization of fuels[J]. Ind. Eng. Chem. Res., 2013, 52(49): 17399-17406. |
[1] | 王琪, 张斌, 张晓昕, 武虎建, 战海涛, 王涛. 氯铝酸-三乙胺离子液体/P2O5催化合成伊索克酸和2-乙基蒽醌[J]. 化工学报, 2023, 74(S1): 245-249. |
[2] | 车睿敏, 郑文秋, 王小宇, 李鑫, 许凤. 基于离子液体的纤维素均相加工研究进展[J]. 化工学报, 2023, 74(9): 3615-3627. |
[3] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[4] | 陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639. |
[5] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[6] | 王俐智, 杭钱程, 郑叶玲, 丁延, 陈家继, 叶青, 李进龙. 离子液体萃取剂萃取精馏分离丙酸甲酯+甲醇共沸物[J]. 化工学报, 2023, 74(9): 3731-3741. |
[7] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[8] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
[9] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[10] | 宋明昊, 赵霏, 刘淑晴, 李国选, 杨声, 雷志刚. 离子液体脱除模拟油中挥发酚的多尺度模拟与研究[J]. 化工学报, 2023, 74(9): 3654-3664. |
[11] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[12] | 杨绍旗, 赵淑蘅, 陈伦刚, 王晨光, 胡建军, 周清, 马隆龙. Raney镍-质子型离子液体体系催化木质素平台分子加氢脱氧制备烷烃[J]. 化工学报, 2023, 74(9): 3697-3707. |
[13] | 陆俊凤, 孙怀宇, 王艳磊, 何宏艳. 离子液体界面极化及其调控氢键性质的分子机理[J]. 化工学报, 2023, 74(9): 3665-3680. |
[14] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[15] | 吴雷, 刘姣, 李长聪, 周军, 叶干, 刘田田, 朱瑞玉, 张秋利, 宋永辉. 低阶粉煤催化微波热解制备含碳纳米管的高附加值改性兰炭末[J]. 化工学报, 2023, 74(9): 3956-3967. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||