1 |
Harris T J. Assessment of control loop performance[J]. The Canadian Journal of Chemical Engineering, 1989, 67(5): 856-861.
|
2 |
Harris T J, Boudreau F, Macgregor J F. Performance assessment of multivariable feedback controllers[J]. Automatica, 1996, 32(11): 1505-1518.
|
3 |
Grimble M J. Controller performance benchmarking and tuning using generalised minimum variance control[J]. Automatica, 2002, 38(12): 2111-2119.
|
4 |
Huang B. A pragmatic approach towards assessment of control loop performance[J]. International Journal of Adaptive Control and Signal Processing, 2003, 17(7/8/9): 589-608.
|
5 |
张泉灵, 黄其珍. 基于用户自定义指标的多变量控制系统性能评估技术[J]. 控制与决策, 2011, 26(7): 1117-1120.
|
|
Zhang Q L, Huang Q Z. Multivariable control performance assessment techniques based on user-specified benchmark [J]. Control and Decision, 2011, 26(7): 1117-1120.
|
6 |
Yu J, Qin S J. Statistical MIMO controller performance monitoring. Part I: Data-driven covariance benchmark[J]. Journal of Process Control, 2008, 18(3/4): 277-296.
|
7 |
Yu J, Qin S J. Statistical MIMO controller performance monitoring(Ⅱ): Performance diagnosis[J]. Journal of Process Control, 2008, 18(3/4): 297-319.
|
8 |
Qin S J. Survey on data-driven industrial process monitoring and diagnosis[J]. Annual Reviews in Control, 2012, 36(2): 220-234.
|
9 |
孔祥玉, 曹泽豪, 安秋生, 等. 偏最小二乘线性模型及其非线性动态扩展模型综述[J]. 控制与决策, 2018, 33(9): 1537-1548.
|
|
Kong X Y, Cao Z H, An Q S, et al. Review of partial least squares linear models and their nonlinear dynamic expansion models[J]. Control and Decision, 2018, 33(9): 1537-1548.
|
10 |
Li G, Qin S J, Zhou D. Geometric properties of partial least squares for process monitoring[J]. Automatica, 2010, 46(1): 204-210.
|
11 |
Zhou D H, Li G, Qin S J. Total projection to latent structures for process monitoring[J]. AIChE Journal, 2010, 56(1): 168-178.
|
12 |
Liu Y, Chang Y, Wang F. Online process operating performance assessment and nonoptimal cause identification for industrial processes[J]. Journal of Process Control, 2014, 24(10): 1548-1555.
|
13 |
Liu Y, Wang F, Chang Y. Online fuzzy assessment of operating performance and cause identification of nonoptimal grades for industrial processes[J]. Industrial & Engineering Chemistry Research, 2013, 52(50): 18022-18030.
|
14 |
Liu Y, Wang F, Chang Y. Operating optimality assessment based on optimality related variations and nonoptimal cause identification for industrial processes[J]. Journal of Process Control, 2016, 39: 11-20.
|
15 |
刘强, 卓洁, 郎自强, 等. 数据驱动的工业过程运行监控与自优化研究展望[J]. 自动化学报, 2018, 44(11): 1944-1956.
|
|
Liu Q, Zhuo J, Lang Z Q, et al. Perspectives on data-driven operation monitoring and self-optimization of industrial processes[J]. Acta Automatica Sinica, 2018, 44(11): 1944-1956.
|
16 |
Wang M Y, Yan G Y, Fei Z Y. Kernel PLS based prediction model construction and simulation on theoretical cases[J]. Neurocomputing, 2015, 165: 389-394.
|
17 |
曹晨鑫, 杜玉鹏, 王昕, 等. 基于Ms-LWPLS的化工过程网络化性能分级评估方法[J]. 化工学报, 2019, 70: 141-149.
|
|
Cao C X, Du Y P, Wang X, et al. Networked grading performance assessment method of chemical process based on Ms-LWPLS[J]. CIESC Journal, 2019, 70: 141-149.
|
18 |
Gao Y, Kong X, Hu C, et al. Multivariate data modeling using modified kernel partial least squares[J]. Chemical Engineering Research & Design, 2015, 94: 466-474.
|
19 |
赵小强, 薛永飞. 基于核T-PLS的化工过程故障检测算法[J]. 化工学报, 2013, 64(12): 4608-4614.
|
|
Zhao X Q, Xue Y F. Fault detect algorithm of chemical process based on kernal T-PLS[J]. CIESC Journal, 2013, 64(12): 4608-4614.
|
20 |
Sheng N, Liu Q, Qin S J, et al. Comprehensive monitoring of nonlinear processes based on concurrent kernel projection to latent structures[J]. IEEE Transactions on Automation Science & Engineering, 2016, 13(2): 1129-1137.
|
21 |
Liu H, Yang C, Carlsson B, et al. Dynamic nonlinear partial least squares modeling using Gaussian process regression[J]. Industrial & Engineering Chemistry Research, 2019, 58(36): 16676-16686.
|
22 |
Stott A E, Kanna S, Mandic D P, et al. An online NIPALS algorithm for partial least squares[C]//International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2017: 4177-4181.
|
23 |
Qin S J, Dunia R. Determining the number of principal components for best reconstruction[J]. Journal of Process Control, 2000, 10(2/3): 245-250.
|
24 |
赵荣荣, 赵忠盖, 刘飞. 基于k-近邻互信息的发酵过程高斯过程回归建模[J]. 化工学报, 2019, 70(12): 4741-4748.
|
|
Zhao R R, Zhao Z G, Liu F. Gaussian process regression modeling of fermentation process based on k-nearest neighbor mutual information[J].CIESC Journal, 2019, 70(12): 4741-4748.
|
25 |
何志昆, 刘光斌, 赵曦晶, 等. 高斯过程回归方法综述[J]. 控制与决策, 2013, 28(8): 1121-1129.
|
|
He Z K, Liu G B, Zhao X J, et al. Overview of Gaussian process regression[J]. Control and Decision, 2013, 28(8): 1121-1129.
|
26 |
Liu J, Liu T, Zhang J. Window-based stepwise sequential phase partition for nonlinear batch process monitoring[J]. Industrial & Engineering Chemistry Research, 2016, 55(34): 9229-9243.
|
27 |
张壤文, 田学民. 带变遗忘因子的自适应子空间预测控制器设计[J]. 化工学报, 2016, 67(3): 858-864.
|
|
Zhang R W, Tian X M. Design of adaptive subspace predictive controller with variable forgetting factor[J]. CIESC Journal, 2016, 67(3): 858-864.
|
28 |
刘学彦, 王昕, 王振雷. 带遗忘因子的线性回归性能评估算法及应用[J]. 控制工程, 2014, 21(6): 867-872.
|
|
Liu X Y, Wang X, Wang Z L. Performance assessment algorithm of improved linear regression with forgetting factor(ILR) and its application [J]. Control Engineering of China, 2014, 21(6): 867-872.
|
29 |
李平, 李奇安, 雷荣孝, 等. 乙烯裂解炉先进控制系统开发与应用[J]. 化工学报, 2011, 62(8): 2216-2220.
|
|
Li P, Li Q A, Lei R X, et al. Development and application of advanced process control system for ethylene cracking heaters[J]. CIESC Journal, 2011, 62(8): 2216-2220.
|
30 |
杜玉鹏, 王振雷, 王昕. 基于多数据空间全潜结构映射的化工过程性能评估方法[J]. 化工学报, 2018, 69(3): 1014-1021.
|
|
Du Y P, Wang Z L, Wang X. Performance assessment method of chemical process based on multi-space total projection of latent structures[J]. CIESC Journal, 2018, 69(3): 1014-1021.
|