化工学报 ›› 2021, Vol. 72 ›› Issue (5): 2373-2391.DOI: 10.11949/0438-1157.20201456
收稿日期:
2020-10-20
修回日期:
2020-11-28
出版日期:
2021-05-05
发布日期:
2021-05-05
通讯作者:
石磊,杨友麒
作者简介:
贾小平(1974—),男,博士,副教授,基金资助:
JIA Xiaoping1(),SHI Lei2,3(),YANG Youqi4()
Received:
2020-10-20
Revised:
2020-11-28
Online:
2021-05-05
Published:
2021-05-05
Contact:
SHI Lei,YANG Youqi
摘要:
生态化成为过程工业园区可持续发展的必然选择。基于多要素、跨介质、多过程和多目标协同的园区内在特征,其生态化过程有赖于过程系统工程的研究范式和方法。在介绍过程工业园区生态化历程及特点的基础上,提出园区生态化趋势与研究需求;重点综述了在工业园区尺度上应用过程系统工程方法驱动其生态化发展的研究现状;分别就可持续性分析评价、节能、节水、碳管理、物质集成、多重网络集成优化及园区信息化等展开系统化评述。提出工业园区生态化给过程系统工程发展带来的挑战和机遇。
中图分类号:
贾小平, 石磊, 杨友麒. 工业园区生态化发展的挑战与过程系统工程的机遇[J]. 化工学报, 2021, 72(5): 2373-2391.
JIA Xiaoping, SHI Lei, YANG Youqi. Challenges of eco-industrial parks development and opportunities for process systems engineering[J]. CIESC Journal, 2021, 72(5): 2373-2391.
方法 | 主要贡献 | 文献 |
---|---|---|
夹点方法 | 提出全局集成概念 | [ |
能量集成的环境成本纳入TSI中。与单过程相比,可以至多节约20%的燃料,至少减少50%的CO2排放 | [ | |
热量在不同厂区间回收利用的非辅助集成和辅助集成策略 | [ | |
利用TSI分析园区5个企业间的能量梯级利用潜力,结果表明,节约能量高达50% | [ | |
研究了跨厂区能量集成回收低温余热案例,证明跨厂区集成优化比单工厂不回收低温热总年度成本降低37% | [ | |
提出全局费用权衡法,可使得多装置之间的热集成全局费用目标接近TSI目标 | [ | |
将问题表格法引入多装置的集成问题 | [ | |
以某工业聚集区为例,采用TSI实现其节能目标 | [ | |
数学规划方法 | 运用混合整数线性(MILP)模型来同时优化热回收网络及公用工程等过程参数 | [ |
研究了TSI换热网络的操作成本和热公用工程价格变化情景 | [ | |
以经济成本最小化和环境影响为目标函数,分析了园区在公用工程需求随季节变化下如何优化设计园区内换热网络 | [ | |
考虑当企业间存在多股进料和出料时的跨厂区热集成 | [ | |
研究用间接换热介质跨工厂进行热集成 | [ | |
研究用水循环间接跨工厂回收低温余热 | [ | |
同时考虑直接跨厂集成和间接跨厂集成 | [ | |
提出多周期的跨厂区热集成多目标优化问题 | [ | |
研究生物质压缩天然气(CNG)的供应和分配网络能源管理问题 | [ | |
研究园区尺度的换热网络集成优化问题 | [ | |
提出园区尺度的公用工程系统与混合电力系统集成 | [ | |
提出跨厂区热集成优化的博弈策略 | [ |
表1 部分PSE在园区尺度的节能研究
Table 1 PSE applications of energy conservation in industrial parks
方法 | 主要贡献 | 文献 |
---|---|---|
夹点方法 | 提出全局集成概念 | [ |
能量集成的环境成本纳入TSI中。与单过程相比,可以至多节约20%的燃料,至少减少50%的CO2排放 | [ | |
热量在不同厂区间回收利用的非辅助集成和辅助集成策略 | [ | |
利用TSI分析园区5个企业间的能量梯级利用潜力,结果表明,节约能量高达50% | [ | |
研究了跨厂区能量集成回收低温余热案例,证明跨厂区集成优化比单工厂不回收低温热总年度成本降低37% | [ | |
提出全局费用权衡法,可使得多装置之间的热集成全局费用目标接近TSI目标 | [ | |
将问题表格法引入多装置的集成问题 | [ | |
以某工业聚集区为例,采用TSI实现其节能目标 | [ | |
数学规划方法 | 运用混合整数线性(MILP)模型来同时优化热回收网络及公用工程等过程参数 | [ |
研究了TSI换热网络的操作成本和热公用工程价格变化情景 | [ | |
以经济成本最小化和环境影响为目标函数,分析了园区在公用工程需求随季节变化下如何优化设计园区内换热网络 | [ | |
考虑当企业间存在多股进料和出料时的跨厂区热集成 | [ | |
研究用间接换热介质跨工厂进行热集成 | [ | |
研究用水循环间接跨工厂回收低温余热 | [ | |
同时考虑直接跨厂集成和间接跨厂集成 | [ | |
提出多周期的跨厂区热集成多目标优化问题 | [ | |
研究生物质压缩天然气(CNG)的供应和分配网络能源管理问题 | [ | |
研究园区尺度的换热网络集成优化问题 | [ | |
提出园区尺度的公用工程系统与混合电力系统集成 | [ | |
提出跨厂区热集成优化的博弈策略 | [ |
方法 | 主要贡献 | 文献 |
---|---|---|
夹点方法 | 将水网络集成优化研究从单个厂内水网络集成(intra-plant water network)推到跨厂区多水网络集成(inter-plant water network) | [ |
提出跨厂区水网络的直接集成和间接集成策略 | [ | |
提出结合夹点分析和数学规划的混合自动定目标方法 | [ | |
应用水级联分析法求解跨厂区水网络的最小新水用量 | [ | |
以园区总的最小新鲜水量为目标,提出水质分级,给出设计EIP水网络步骤,指导EIP合理分配再生水 | [ | |
提出跨厂区水网络的非辅助集成和辅助集成策略 | [ | |
数学规划方法 | 考虑在供水有限和水价变化条件下,研究园区用水网络变化 | [ |
结合夹点方法和数学规划法确定最小新鲜水量和跨厂区连接,建立混合整数非线性规划(MINLP)模型,实现水网络系统优化 | [ | |
采用水源-处理装置-水阱来优化设计水网络,并以费用最小化来确定最优循环和分离策略 | [ | |
提出设置集中式和分散式储罐的跨厂区水网络模型 | [ | |
提出一种通用的定目标方法,将其应用于多区域、多水源跨厂区水网络集成 | [ | |
以最小新鲜水量、再生水量和网络连接数为目标,研究不同再生单元情景的网络问题 | [ | |
提出柔性分析 | [ | |
以最小新鲜水用量和最小年度总费用为目标,提出一种多周期优化方法 | [ | |
提出interfactory and intrafactory概念重构工业园区的水网络系统 | [ | |
研究管道合并寻址互连选择优化跨厂区水网络问题,并开发了考虑空间方面的优化模型 | [ | |
以钢铁行业为例,提出同步考虑厂内和跨厂区集成的多尺度水网络优化模型 | [ | |
提出考虑水质的生态工业园水系统MILP模型 | [ | |
基于中间水道的多污染跨厂区水网络设计 | [ | |
基于Matlab开发了过程综合工具 (SPDLab),应用于废水处理改进设计 | [ | |
针对不同厂区间的直接集成策略,利用博弈论方法开展工业园区用水网络优化研究 | [ | |
提出基于博弈论的水网络优化定量分析方法,并对具有中间水道跨厂区水网络进行了优化设计 | [ | |
以新鲜水价格变化为驱动力,提出新鲜水价区间与其对应的用水网络综合关系,指出水价对园区内企业之间的水集成具有重要影响 | [ | |
提出基于两阶段优化的工业园区用水系统的水价优化模型 | [ | |
提出模糊双目标优化方法对工业园区用水网络进行优化设计。结果表明,设置过高的新鲜水价和对回用水进行全部补贴并不一定有显著的节水效果 | [ |
表2 部分PSE在园区尺度的节水研究
Table 2 PSE applications of water conservation in industrial parks
方法 | 主要贡献 | 文献 |
---|---|---|
夹点方法 | 将水网络集成优化研究从单个厂内水网络集成(intra-plant water network)推到跨厂区多水网络集成(inter-plant water network) | [ |
提出跨厂区水网络的直接集成和间接集成策略 | [ | |
提出结合夹点分析和数学规划的混合自动定目标方法 | [ | |
应用水级联分析法求解跨厂区水网络的最小新水用量 | [ | |
以园区总的最小新鲜水量为目标,提出水质分级,给出设计EIP水网络步骤,指导EIP合理分配再生水 | [ | |
提出跨厂区水网络的非辅助集成和辅助集成策略 | [ | |
数学规划方法 | 考虑在供水有限和水价变化条件下,研究园区用水网络变化 | [ |
结合夹点方法和数学规划法确定最小新鲜水量和跨厂区连接,建立混合整数非线性规划(MINLP)模型,实现水网络系统优化 | [ | |
采用水源-处理装置-水阱来优化设计水网络,并以费用最小化来确定最优循环和分离策略 | [ | |
提出设置集中式和分散式储罐的跨厂区水网络模型 | [ | |
提出一种通用的定目标方法,将其应用于多区域、多水源跨厂区水网络集成 | [ | |
以最小新鲜水量、再生水量和网络连接数为目标,研究不同再生单元情景的网络问题 | [ | |
提出柔性分析 | [ | |
以最小新鲜水用量和最小年度总费用为目标,提出一种多周期优化方法 | [ | |
提出interfactory and intrafactory概念重构工业园区的水网络系统 | [ | |
研究管道合并寻址互连选择优化跨厂区水网络问题,并开发了考虑空间方面的优化模型 | [ | |
以钢铁行业为例,提出同步考虑厂内和跨厂区集成的多尺度水网络优化模型 | [ | |
提出考虑水质的生态工业园水系统MILP模型 | [ | |
基于中间水道的多污染跨厂区水网络设计 | [ | |
基于Matlab开发了过程综合工具 (SPDLab),应用于废水处理改进设计 | [ | |
针对不同厂区间的直接集成策略,利用博弈论方法开展工业园区用水网络优化研究 | [ | |
提出基于博弈论的水网络优化定量分析方法,并对具有中间水道跨厂区水网络进行了优化设计 | [ | |
以新鲜水价格变化为驱动力,提出新鲜水价区间与其对应的用水网络综合关系,指出水价对园区内企业之间的水集成具有重要影响 | [ | |
提出基于两阶段优化的工业园区用水系统的水价优化模型 | [ | |
提出模糊双目标优化方法对工业园区用水网络进行优化设计。结果表明,设置过高的新鲜水价和对回用水进行全部补贴并不一定有显著的节水效果 | [ |
范式内容 | 末端处理工程 end-of-pipe | 过程系统工程 process SE | 产品系统工程 product SE | 园区系统工程 park SE |
---|---|---|---|---|
研究对象 | 末端治理系统 | 生产过程系统 | 产品-服务系统 | 工业园区尺度复合产业生态系统 |
研究目的 | 设计、建设和运营末端治理设施,污染导向的达标排放 | 设计、建设和运营优化生产过程系统,集成导向的清洁生产和全过程优化 | 设计、规划和管理优化产品-服务系统,生命周期导向的可持续生产与消费 | 规划、建设和改造工业园区,生态导向的绿色、低碳、循环和高质量发展 |
系统分析 | 解析末端治理设施与主体工程及排放标准的定量依存关系,强调技术经济评价,多采用技术经济分析方法和工具 | 解析过程单元或系统之间的物质流、能量流和信息流作用关系,强调环境与经济的协调评价,多采用过程系统分析方法和工具 | 解析生命周期不同环节之间的关联关系,强调综合评价,多采用生命周期分析方法和工具 | 解析园区尺度产业、基础设施与生态要素之间的互馈关系,强调人工要素与生态要素的相容评价,多采用物质流分析和网络分析方法和工具 |
模拟优化 | 模拟优化末端治理系统的达标排放效果,强调达标的硬约束 | 模拟优化生产过程系统,优化目标包括经济性、环境性和操作柔性等。方法包括机理模型模拟和统计模型模拟等 | 模拟优化产品-服务系统,强调产品生命周期尺度上的综合目标优化。主要采用生命周期优化等方法 | 模拟优化园区产业生态系统,强调社会经济要素主体的作用,强调物料-能量-水协同优化。方法包括多主体建模、多尺度建模、多人多目标优化等 |
系统集成 | 末端治理设施与主体装置的物质、能量和信息集成 | 不同生产过程单元或系统之间的物质、能量和信息集成 | 生命周期不同环节过程和主体之间的物质、能量和信息集成,强调硬关系和软关系的同时集成 | 产业系统、基础设施系统和自然生态系统之间的生态集成,强调生态系统演化意义上的综合集成 |
决策研判 | 末端治理系统的技术路线选择,强调稳定达标的确定性 | 生产过程系统的技术路线、建设方案和运行模式选择,强调操作弹性和灵活性,强调多准则综合决策 | 产品-服务系统的技术路线和商业模式的选择,强调应对市场和政策波动的不确定性,强调信息私密与产业共生协同,强调基于产业大数据的综合决策 | 产业生态系统的演替模式和路径选择,强调生态系统完整性和生态韧性,强调基于生态大数据的智慧决策 |
表3 园区系统工程与传统PSE的比较
Table 3 Comparison between park system engineering and traditional PSEs
范式内容 | 末端处理工程 end-of-pipe | 过程系统工程 process SE | 产品系统工程 product SE | 园区系统工程 park SE |
---|---|---|---|---|
研究对象 | 末端治理系统 | 生产过程系统 | 产品-服务系统 | 工业园区尺度复合产业生态系统 |
研究目的 | 设计、建设和运营末端治理设施,污染导向的达标排放 | 设计、建设和运营优化生产过程系统,集成导向的清洁生产和全过程优化 | 设计、规划和管理优化产品-服务系统,生命周期导向的可持续生产与消费 | 规划、建设和改造工业园区,生态导向的绿色、低碳、循环和高质量发展 |
系统分析 | 解析末端治理设施与主体工程及排放标准的定量依存关系,强调技术经济评价,多采用技术经济分析方法和工具 | 解析过程单元或系统之间的物质流、能量流和信息流作用关系,强调环境与经济的协调评价,多采用过程系统分析方法和工具 | 解析生命周期不同环节之间的关联关系,强调综合评价,多采用生命周期分析方法和工具 | 解析园区尺度产业、基础设施与生态要素之间的互馈关系,强调人工要素与生态要素的相容评价,多采用物质流分析和网络分析方法和工具 |
模拟优化 | 模拟优化末端治理系统的达标排放效果,强调达标的硬约束 | 模拟优化生产过程系统,优化目标包括经济性、环境性和操作柔性等。方法包括机理模型模拟和统计模型模拟等 | 模拟优化产品-服务系统,强调产品生命周期尺度上的综合目标优化。主要采用生命周期优化等方法 | 模拟优化园区产业生态系统,强调社会经济要素主体的作用,强调物料-能量-水协同优化。方法包括多主体建模、多尺度建模、多人多目标优化等 |
系统集成 | 末端治理设施与主体装置的物质、能量和信息集成 | 不同生产过程单元或系统之间的物质、能量和信息集成 | 生命周期不同环节过程和主体之间的物质、能量和信息集成,强调硬关系和软关系的同时集成 | 产业系统、基础设施系统和自然生态系统之间的生态集成,强调生态系统演化意义上的综合集成 |
决策研判 | 末端治理系统的技术路线选择,强调稳定达标的确定性 | 生产过程系统的技术路线、建设方案和运行模式选择,强调操作弹性和灵活性,强调多准则综合决策 | 产品-服务系统的技术路线和商业模式的选择,强调应对市场和政策波动的不确定性,强调信息私密与产业共生协同,强调基于产业大数据的综合决策 | 产业生态系统的演替模式和路径选择,强调生态系统完整性和生态韧性,强调基于生态大数据的智慧决策 |
1 | Francis C, Erkman S. Environmental management for industrial estates: a background paper on the UNEP-DTIE approach [EB/OL]. 2001 [2020-10-15]. . |
2 | Grossmann I E, Westerberg A W. Research challenges in process systems engineering[J]. AIChE Journal, 2000, 46(9): 1700-1703. |
3 | 李有润, 沈静珠, 胡山鹰, 等. 生态工业及生态工业园区的研究与进展[J]. 化工学报, 2001, 52(3): 189-192. |
Li Y R, Shen J Z, Hu S Y, et al. Study and progress on industrial ecology and eco-industrial parks[J]. Journal of Chemical Industry and Engineering (China), 2001, 52(3): 189-192. | |
4 | 李有润, 胡山鹰, 沈静珠, 等. 工业生态学及生态工业的研究现状及展望[J]. 中国科学基金, 2003, 17(4): 208-210 |
Li Y R, Hu S Y, Shen J Z, et al. Eco-industry—a new pattern for industrial development[J]. Bulletin of National Science Foundation of China, 2003, 17(4): 208-210 | |
5 | Lawal M, Alwi S R W, Manan Z A, et al. Industrial symbiosis tools—a review[J]. Journal of Cleaner Production, 2021, 280: 124327. |
6 | Chertow M R. Industrial symbiosis: literature and taxonomy[J]. Annual Review of Energy and the Environment, 2000, 25(1): 313-337. |
7 | 钱宇, 杨思宇, 贾小平, 等. 能源和化工系统的全生命周期评价和可持续性研究[J]. 化工学报, 2013, 64(1): 133-147. |
Qian Y, Yang S Y, Jia X P, et al. Life cycle assessment and sustainability of energy and chemical processes[J]. CIESC Journal, 2013, 64(1): 133-147. | |
8 | Côté R, Hall J. Industrial parks as ecosystems[J]. Journal of Cleaner Production, 1995, 3(1/2): 41-46. |
9 | Anderberg S. Industrial metabolism and the linkages between economics, ethics and the environment[J]. Ecological Economics, 1998, 24(2/3): 311-320. |
130 | Aguilar-Oropeza G, Rubio-Castro E, Ponce-Ortega J M. Involving acceptability in the optimal synthesis of water networks in eco-industrial parks[J]. Industrial & Engineering Chemistry Research, 2019, 58(6): 2268-2279. |
131 | Liew P Y, Theo W L, Alwi S R W, et al. Total site heat integration planning and design for industrial, urban and renewable systems[J]. Renewable and Sustainable Energy Reviews, 2017, 68: 964-985. |
10 | 石垚, 杨建新, 刘晶茹, 等. 基于MFA的生态工业园区物质代谢研究方法探析[J]. 生态学报, 2010, 30(1): 228-237. |
Shi Y, Yang J X, Liu J R, et al. The exploration of material metabolism based on MFA for eco-industrial parks[J]. Acta Ecologica Sinica, 2010, 30(1): 228-237. | |
11 | 韩峰. 生态工业园区工业代谢及共生网络结构解析[D]. 济南: 山东大学, 2017. |
Han F. Industrial metabolism and structural analysis of industrial symbiosis network in eco-industrial parks[D]. Jinan: Shandong University, 2017. | |
12 | 周哲, 李有润, 沈静珠, 等. 煤工业的代谢分析及其生态优化[J]. 计算机与应用化学, 2001, 18(3): 193-198. |
Zhou Z, Li Y R, Shen J Z, et al. Coal-based industrial metabolism and ecological optimization[J]. Computers and Applied Chemistry, 2001, 18(3): 193-198. | |
13 | Tian J P, Guo Q P, Chen Y, et al. Study on industrial metabolism of carbon in a Chinese fine chemical industrial park[J]. Environmental Science & Technology, 2013, 47(2): 1048-1056. |
14 | 武娟妮, 石磊. 工业园区氮代谢: 以江苏宜兴经济开发区为例[J]. 生态学报, 2010, 30(22): 6208-6217. |
Wu J N, Shi L. Nitrogen metabolism in industrial parks: a case of Yixing economic development zone[J]. Acta Ecologica Sinica, 2010, 30(22): 6208-6217. | |
15 | 武娟妮, 石磊. 工业园区磷代谢分析: 以江苏宜兴经济开发区为例[J]. 生态学报, 2010, 30(9): 2397-2405. |
Wu J N, Shi L. Phosphorus metabolism in industrial parks: a case study of Yixing economic development zone[J]. Acta Ecologica Sinica, 2010, 30(9): 2397-2405. | |
16 | Ma L, Zhao S F, Shi L. Industrial metabolism of chlorine in a chemical industrial park: the Chinese case[J]. Journal of Cleaner Production, 2016, 112: 4367-4376. |
17 | Jørgensen S E, Nielsen S N, Emergy Mejer H., environ, exergy and ecological modelling[J]. Ecological Modelling, 1995, 77(2/3): 99-109. |
18 | Bakshi B R. A thermodynamic framework for ecologically conscious process systems engineering[J]. Computers & Chemical Engineering, 2002, 26(2): 269-282. |
19 | Lou H H, Kulkarni M A, Singh A, et al. A game theory based approach for emergy analysis of industrial ecosystem under uncertainty[J]. Clean Technologies and Environmental Policy, 2004, 6(3): 156-161. |
20 | 杨(王乐), 胡山鹰, 陈定江, 等. 生态工业系统分析[J]. 中国科学B辑, 2005, 35(5): 432-440. |
Yang L, Hu S Y, Chen D J, et al. Exergy analysis for eco-industrial system [J]. Science in China (Series B), 2005, 35(5): 432-440. | |
21 | 李强, 张文娟, 李会泉. 工业园区产业链接效益评价: 以化工冶金工业园区为例[C]//2015年中国环境科学学会学术年会论文集. 深圳, 2015: 481-486. |
Li Q, Zhang W J, Li H Q. Evaluation of the benefits of industrial links in industrial parks——taking chemical metallurgical industrial parks as an example[C]//2015 Annual Conference of Chinese Society of Environmental Sciences. Shenzhen, 2015: 481-486. | |
22 | Valenzuela-Venegas G, Henríquez-Henríquez F, Boix M, et al. A resilience indicator for eco-industrial parks[J]. Journal of Cleaner Production, 2018, 174: 807-820. |
23 | Tian J P, Liu W, Lai B J, et al. Study of the performance of eco-industrial park development in China[J]. Journal of Cleaner Production, 2014, 64: 486-494. |
24 | Costanza R, de Groot R, Sutton P, et al. Changes in the global value of ecosystem services[J]. Global Environmental Change, 2014, 26: 152-158. |
25 | 杨挺. 基于社会生态系统理论的化工园区生态化研究[D]. 大连: 大连理工大学, 2019. |
Yang T. Research on ecologicalization of chemical industrial parks based on social-ecological system theory[D]. Dalian: Dalian University of Technology, 2019. | |
26 | Lim S R, Park J M. Environmental and economic analysis of a water network system using LCA and LCC[J]. AIChE Journal, 2007, 53(12): 3253-3262. |
27 | Jia X P, Zhang J, Li Z W, et al. Inoperability input-output models for water system in industrial parks [J]. Chem. Eng. Trans., 2020, 81: 979-984. |
28 | Montastruc L, Boix M, Pibouleau L, et al. On the flexibility of an eco-industrial park (EIP) for managing industrial water[J]. Journal of Cleaner Production, 2013, 43: 1-11. |
29 | 刘文涛. 基于动态模拟的焦化过程污染迁移转化分析研究[D]. 北京: 中国科学院大学, 2018. |
Liu W T. Transformation and analysis of coking process pollution based on dynamic simulation[D]. Beijing: University of Chinese Academy of Sciences, 2018. | |
30 | Aviso K B. Design of robust water exchange networks for eco-industrial symbiosis[J]. Process Safety and Environmental Protection, 2014, 92(2): 160-170. |
31 | Klemeš J J, Kravanja Z. Forty years of heat integration: pinch analysis (PA) and mathematical programming (MP)[J]. Current Opinion in Chemical Engineering, 2013, 2(4): 461-474. |
32 | Klemeš J J, Varbanov P S, Walmsley T G, et al. New directions in the implementation of pinch methodology (PM)[J]. Renewable and Sustainable Energy Reviews, 2018, 98: 439-468. |
33 | Foo D. Process Integration for Resource Conservation[M]. NY: CRC Press, 2016. |
34 | El-Hawagi M M. Sustainable Design Through Process Integration: Fundamentals and Applications to Industrial Pollution Prevention, Resource Conservation, and Profitability Enhancement [M]. Oxford: Butterworth-Heinemann Elsevier, 2017. |
35 | Dhole V R, Linnhoff B. Total site targets for fuel, co-generation, emissions, and cooling[J]. Computers & Chemical Engineering, 1993, 17: S101-S109. |
36 | Klemeš J, Dhole V R, Raissi K, et al. Targeting and design methodology for reduction of fuel, power and CO2 on total sites[J]. Applied Thermal Engineering, 1997, 17(8/9/10): 993-1003. |
37 | Rodera H, Bagajewicz M J. Targeting procedures for energy savings by heat integration across plants[J]. AIChE Journal, 1999, 45(8): 1721-1742. |
38 | Bagajewicz M, Rodera H. Multiple plant heat integration in a total site[J]. AIChE Journal, 2002, 48(10): 2255-2270. |
39 | Hackl R, Andersson E, Harvey S. Targeting for energy efficiency and improved energy collaboration between different companies using total site analysis (TSA)[J]. Energy, 2011, 36(8): 4609-4615. |
40 | Hipólito-Valencia B J, Rubio-Castro E, Ponce-Ortega J M, et al. Optimal design of inter-plant waste energy integration[J]. Applied Thermal Engineering, 2014, 62(2): 633-652. |
41 | Hu C W, Ahmad S. Total site heat integration using the utility system[J]. Computers & Chemical Engineering, 1994, 18(8): 729-742. |
42 | Hui C W, Ahmad S. Minimum cost heat recovery between separate plant regions[J]. Computers & Chemical Engineering, 1994, 18(8): 711-728. |
43 | Amidpour M, Polley G T. Application of problem decomposition in process integration[J]. Chemical Engineering Research and Design, 1997, 75(1): 53-63. |
44 | Matsuda K, Hirochi Y, Tatsumi H, et al. Applying heat integration total site based pinch technology to a large industrial area in Japan to further improve performance of highly efficient process plants[J]. Energy, 2009, 34(10): 1687-1692. |
45 | Papoulias S A, Grossmann I E. A structural optimization approach in process synthesis(Ⅲ): Total processing systems[J]. Computers & Chemical Engineering, 1983, 7(6): 723-734. |
46 | Bagajewicz M J, Barbaro A F. Financial risk management in the planning of energy recovery in the total site[J]. Industrial & Engineering Chemistry Research, 2003, 42(21): 5239-5248. |
47 | Kim S H, Yoon S G, Chae S H, et al. Economic and environmental optimization of a multi-site utility network for an industrial complex[J]. Journal of Environmental Management, 2010, 91(3): 690-705. |
48 | Zhang B J, Luo X L, Chen Q L, et al. Heat integration by multiple hot discharges/feeds between plants[J]. Industrial & Engineering Chemistry Research, 2011, 50(18): 10744-10754. |
49 | Kapil A, Bulatov I, Smith R, et al. Site-wide low-grade heat recovery with a new cogeneration targeting method[J]. Chemical Engineering Research and Design, 2012, 90(5): 677-689. |
50 | Song R R, Feng X, Wang Y F. Feasible heat recovery of interplant heat integration between two plants via an intermediate medium analyzed by interplant shifted composite curves[J]. Applied Thermal Engineering, 2016, 94: 90-98. |
51 | Chang C L, Wang Y F, Feng X. Indirect heat integration across plants using hot water circles[J]. Chinese Journal of Chemical Engineering, 2015, 23(6): 992-997. |
52 | Chang C L, Chen X L, Wang Y F, et al. Simultaneous synthesis of multi-plant heat exchanger networks using process streams across plants[J]. Computers & Chemical Engineering, 2017, 101: 95-109. |
53 | Chang C L, Wang Y F, Feng X. Optimal synthesis of multi-plant heat exchanger networks considering both direct and indirect methods[J]. Chinese Journal of Chemical Engineering, 2020, 28(2): 456-465. |
54 | Chang C L, Chen X L, Wang Y F, et al. Simultaneous optimization of multi-plant heat integration using intermediate fluid circles[J]. Energy, 2017, 121: 306-317. |
55 | Ma J Z, Chang C L, Wang Y F, et al. Multi-objective optimization of multi-period interplant heat integration using steam system[J]. Energy, 2018, 159: 950-960. |
56 | Lee M K, Hashim H, Lim J S, et al. Spatial planning and optimisation for virtual distribution of BioCNG derived from palm oil mill effluent to meet industrial energy demand[J]. Renewable Energy, 2019, 141: 526-540. |
57 | Nair S K, Soon M, Karimi I A. Locating heat exchangers in an EIP-wide heat integration network[M]//Computer Aided Chemical Engineering. Amsterdam: Elsevier, 2017: 793-798. |
58 | Mousqué F, Boix M, Montastruc L, et al. Optimal design of eco-industrial parks with coupled energy networks addressing complexity bottleneck through an interdependence analysis[J]. Computers & Chemical Engineering, 2020, 138: 106859. |
59 | Cheng S L, Chang C T, Jiang D. A game-theory based optimization strategy to configure inter-plant heat integration schemes[J]. Chemical Engineering Science, 2014, 118: 60-73. |
60 | Takama N, Kuriyama T, Shiroko K, et al. Optimal water allocation in a petroleum refinery[J]. Computers & Chemical Engineering, 1980, 4(4): 251-258. |
61 | 冯霄, 刘永忠, 沈人杰, 等. 水系统集成优化: 节水减排的系统综合方法[M]. 北京: 化学工业出版社, 2008. |
Feng X, Liu Y Z, Shen R J, et al. Water System Integration and Optimization—A Comprehensive Method of Water Saving and Emission Reduction [M]. Beijing: Chemical Industry Press, 2008. | |
62 | 杨友麒, 贾小平, 石磊. 水网络与虚拟水的过程系统工程研究进展[J]. 化工学报, 2015, 66(1): 32-51. |
Yang Y Q, Jia X P, Shi L. Progress of process systems engineering for water network and virtual water studies[J]. CIESC Journal, 2015, 66(1): 32-51. | |
63 | Olesen S G, Polley G T. Dealing with plant geography and piping constraints in water network design[J]. Process Safety and Environmental Protection, 1996, 74(4): 273-276. |
64 | Chew I M L, Tan R, Ng D K S, et al. Synthesis of direct and indirect interplant water network[J]. Industrial & Engineering Chemistry Research, 2008, 47(23): 9485-9496. |
65 | Chew I M L, Foo D C Y. Automated targeting for inter-plant water integration[J]. Chemical Engineering Journal, 2009, 153(1/2/3): 23-36. |
66 | Foo D C Y. Flowrate targeting for threshold problems and plant-wide integration for water network synthesis[J]. Journal of Environmental Management, 2008, 88(2): 253-274. |
67 | Manan Z A, Tan Y L, Foo D C Y. Targeting the minimum water flow rate using water cascade analysis technique[J]. AIChE Journal, 2004, 50(12): 3169-3183. |
68 | Zeng L, Zhang T Z, Jia X P. A framework for designing inter-plant water networks in eco-industrial parks[C]//2011 International Conference on Electric Technology and Civil Engineering (ICETCE). Lushan, China. IEEE, 2011: 3793-3796. |
69 | Chew I M L, Foo D C Y, Ng D K S, et al. Flowrate targeting algorithm for interplant resource conservation network(Ⅰ): Unassisted integration scheme [J]. Industrial & Engineering Chemistry Research, 2010, 49(14): 6439-6455. |
70 | Chew I M L, Foo D C Y, Tan R R. Flowrate targeting algorithm for interplant resource conservation network(Ⅱ): Assisted integration scheme[J]. Industrial & Engineering Chemistry Research, 2010, 49(14): 6456-6468. |
71 | Keckler S, Allen D. Materials reuse modeling: a case study of water reuse at an industrial park [J]. J. Ind. Ecol., 1999, 2: 79-92. |
72 | Liao Z W, Wu J T, Jiang B B, et al. Design methodology for flexible multiple plant water networks[J]. Industrial & Engineering Chemistry Research, 2007, 46(14): 4954-4963. |
73 | Lovelady E M, El-Halwagi M M. Design and integration of eco-industrial parks for managing water resources[J]. Environmental Progress & Sustainable Energy, 2009, 28(2): 265-272. |
74 | Chen C L, Hung S W, Lee J Y. Design of inter-plant water network with central and decentralized water mains[J]. Computers & Chemical Engineering, 2010, 34(9): 1522-1531. |
75 | Bandyopadhyay S, Sahu G C, Foo D C Y, et al. Segregated targeting for multiple resource networks using decomposition algorithm[J]. AIChE Journal, 2010, 56(5): 1235-1248. |
76 | Boix M, Montastruc L, Pibouleau L, et al. Industrial water management by multiobjective optimization: from individual to collective solution through eco-industrial parks[J]. Journal of Cleaner Production, 2012, 22(1): 85-97. |
77 | Bishnu S K, Linke P, Alnouri S Y, et al. Multiperiod planning of optimal industrial city direct water reuse networks[J]. Industrial & Engineering Chemistry Research, 2014, 53(21): 8844-8865. |
78 | Lim S R, Park J M. Interfactory and intrafactory water network system to remodel a conventional industrial park to a green eco-industrial park[J]. Industrial & Engineering Chemistry Research, 2010, 49(3): 1351-1358. |
79 | Alnouri S Y, Linke P, El-Halwagi M. Water integration in industrial zones: a spatial representation with direct recycle applications[J]. Clean Technologies and Environmental Policy, 2014, 16(8): 1637-1659. |
80 | Zhang K L, Zhao Y H, Cao H B, et al. Multi-scale water network optimization considering simultaneous intra- and inter-plant integration in steel industry[J]. Journal of Cleaner Production, 2018, 176: 663-675. |
81 | Tiu B T C, Cruz D E. An MILP model for optimizing water exchanges in eco-industrial parks considering water quality[J]. Resources, Conservation and Recycling, 2017, 119: 89-96. |
82 | Wang X, Fan X, Liu Z Y, Design of interplant water network of multiple contaminants with an interplant water main [J]. Chem. Eng. Trans., 2019, 72: 295-300. |
83 | Behera C R, Al R, Gernaey K V, et al. A process synthesis tool for WWTP — an application to design sustainable energy recovery facilities[J]. Chemical Engineering Research and Design, 2020, 156: 353-370. |
84 | Chew I M L, Tan R R, Foo D C Y, et al. Game theory approach to the analysis of inter-plant water integration in an eco-industrial park[J]. Journal of Cleaner Production, 2009, 17(18): 1611-1619. |
85 | 刘永忠, 段海涛, 冯霄. 水系统集成优化方案的博弈分析与评价方法[J]. 化工学报, 2009, 60(4): 945-951. |
Liu Y Z, Duan H T, Feng X. Approach to evaluation of optimal schemes for water networks based on game theory[J]. CIESC Journal, 2009, 60(4): 945-951. | |
86 | 贾小平, 刘彩洪, 石磊. 用水成本不确定条件下生态工业园区全局用水网络综合研究[J]. 计算机与应用化学, 2010, 27(10): 1449-1452. |
Jia X P, Liu C H, Shi L. Synthesis of total water network based on water prices in eco-industrial parks[J]. Computers and Applied Chemistry, 2010, 27(10): 1449-1452. | |
87 | Bi R S, Chen C, Tang J, et al. Two-level optimization model for water consumption based on water prices in eco-industrial parks[J]. Resources, Conservation and Recycling, 2019, 146: 308-315. |
88 | Aviso K B, Tan R R, Culaba A B, et al. Bi-level fuzzy optimization approach for water exchange in eco-industrial parks[J]. Process Safety and Environmental Protection, 2010, 88(1): 31-40. |
89 | Bogataj M, Bagajewicz M J. Synthesis of non-isothermal heat integrated water networks in chemical processes[J]. Computers & Chemical Engineering, 2008, 32(12): 3130-3142. |
90 | Dong H G, Lin C Y, Chang C T. Simultaneous optimization approach for integrated water-allocation and heat-exchange networks[J]. Chemical Engineering Science, 2008, 63(14): 3664-3678. |
91 | Zhou R J, Li L J, Dong H G, et al. Synthesis of interplant water-allocation and heat-exchange networks(Ⅰ): Fixed flow rate processes[J]. Industrial & Engineering Chemistry Research, 2012, 51(11): 4299-4312. |
92 | Zhou R J, Li L J, Dong H G, et al. Synthesis of interplant water-allocation and heat-exchange networks(Ⅱ): Integrations between fixed flow rate and fixed contaminant-load processes[J]. Industrial & Engineering Chemistry Research, 2012, 51(45): 14793-14805. |
93 | Liu L L, Song H D, Zhang L, et al. Heat-integrated water allocation network synthesis for industrial parks with sequential and simultaneous design[J]. Computers & Chemical Engineering, 2018, 108: 408-424. |
94 | Yan F Y, Wu H, Li W, et al. Simultaneous optimization of heat-integrated water networks by a nonlinear program[J]. Chemical Engineering Science, 2016, 140: 76-89. |
95 | Huang X J, Luo X L, Chen J Y, et al. Synthesis and dual-objective optimization of industrial combined heat and power plants compromising the water-energy nexus[J]. Applied Energy, 2018, 224: 448-468. |
96 | Guo Y, Tian J P, Zang N, et al. The role of industrial parks in mitigating greenhouse gas emissions from China[J]. Environmental Science & Technology, 2018, 52(14): 7754-7762. |
97 | Foo D C Y, Tan R R. Process Integration Approaches to Planning Carbon Management Networks[M]. Boca Raton: CRC Press, 2020. |
98 | Manan Z A, Nawi W N R M, Alwi S R W, et al. Advances in process integration research for CO2 emission reduction — a review[J]. Journal of Cleaner Production, 2017, 167: 1-13. |
99 | Tan R R, Foo D C Y. Pinch analysis approach to carbon-constrained energy sector planning[J]. Energy, 2007, 32(8): 1422-1429. |
100 | 贾小平, 刘彩洪, 钱宇. 碳夹点分析技术与化工园区能源规划[J]. 现代化工, 2009, 29(9): 81-83, 85. |
Jia X P, Liu C H, Qian Y. Carbon emission pinch analysis for energy planning in chemical industrial park[J]. Modern Chemical Industry, 2009, 29(9): 81-83, 85. | |
101 | Munir S M, Manan Z A, Alwi S R W. Holistic carbon planning for industrial parks: a waste-to-resources process integration approach[J]. Journal of Cleaner Production, 2012, 33: 74-85. |
102 | Leung D Y C, Caramanna G, Maroto-Valer M M. An overview of current status of carbon dioxide capture and storage technologies[J]. Renewable and Sustainable Energy Reviews, 2014, 39: 426-443. |
103 | Nawi W N R M, Alwi S R W, Manan Z A, et al. Pinch analysis targeting for CO2 total site planning[J]. Clean Technologies and Environmental Policy, 2016, 18(7): 2227-2240. |
104 | Hasan M M F, First E L, Boukouvala F, et al. A multi-scale framework for CO2 capture, utilization, and sequestration: CCUS and CCU[J]. Computers & Chemical Engineering, 2015, 81: 2-21. |
105 | Lee J Y. A multi-period optimisation model for planning carbon sequestration retrofits in the electricity sector[J]. Applied Energy, 2017, 198: 12-20. |
106 | Lee J Y, Lin H F. Multi-footprint constrained energy sector planning[J]. Energies, 2019, 12(12): 2329. |
107 | Al-Mohannadi D M, Linke P. On the systematic carbon integration of industrial parks for climate footprint reduction[J]. Journal of Cleaner Production, 2016, 112: 4053-4064. |
108 | Al-Mohannadi D M, Alnouri S Y, Bishnu S K, et al. Multi-period carbon integration[J]. Journal of Cleaner Production, 2016, 136: 150-158. |
109 | Hassiba R J, Al-Mohannadi D M, Linke P. Carbon dioxide and heat integration of industrial Parks[J]. Journal of Cleaner Production, 2017, 155: 47-56. |
110 | Hassiba R J, Linke P. On the simultaneous integration of heat and carbon dioxide in industrial Parks[J]. Applied Thermal Engineering, 2017, 127: 81-94. |
111 | Aziz E A, Alwi S R W, Lim J S, et al. An integrated pinch analysis framework for low CO2 emissions industrial site planning[J]. Journal of Cleaner Production, 2017, 146: 125-138. |
112 | Aviso K B, Belmonte B A, Benjamin M F D, et al. Synthesis of optimal and near-optimal biochar-based carbon management networks with P-graph[J]. Journal of Cleaner Production, 2019, 214: 893-901. |
113 | Rudd D F, Fathi-Afshar S, Trevino A, et al. Petrochemical Technology Assessment[M]. NY: John Wiley & Sons, 1981. |
114 | Spriggs D, Lowe E A, Watz J, et al. Design and development of eco-industrial parks[C]//2004 AIChE Spring National Meeting. New Orleans, 2004. |
115 | Shah N. Single- and multisite planning and scheduling: current status and future challenges[C]//AIChE Symposium Series. 1998. |
116 | Terrazas-Moreno S, Grossmann I E. A multiscale decomposition method for the optimal planning and scheduling of multi-site continuous multiproduct plants[J]. Chemical Engineering Science, 2011, 66(19): 4307-4318. |
117 | Terrazas-Moreno S, Trotter P A, Grossmann I E. Temporal and spatial Lagrangean decompositions in multi-site, multi-period production planning problems with sequence-dependent changeovers[J]. Computers & Chemical Engineering, 2011, 35(12): 2913-2928. |
118 | Castro P M, Grossmann I E, Zhang Q. Expanding scope and computational challenges in process scheduling[J]. Computers & Chemical Engineering, 2018, 114: 14-42. |
119 | Misrol M A, Alwi S R W, Lim J S, et al. Synthesis of optimal biogas production system from multiple sources of wastewater and organic waste[J]. IOP Conference Series: Materials Science and Engineering, 2019, 702: 012014. |
120 | Li M H, Hu S Y, Li Y R, et al. A hierarchical optimization method for reaction path synthesis[J]. Industrial & Engineering Chemistry Research, 2000, 39(11): 4315-4319. |
121 | Li M H, Hu S Y, Li Y R, et al. Reaction path synthesis for a mass closed-cycle system[J]. Computers & Chemical Engineering, 2000, 24(2/3/4/5/6/7): 1215-1221. |
122 | 胡山鹰, 李明恒, 李有润, 等. 废物最小化的反应路径综合方法[J]. 中国科学 (B辑 化学), 2004, 34(1): 52-60. |
Hu S Y, Li M H, Li Y R, et al. Reaction path synthesis for waste minimization [J]. Science in China, Ser. B, 2004, 34(1): 52-60. | |
123 | Fan J M, Hu S Y, Chen D J, et al. Study on the construction and optimization of a resource-based industrial ecosystem[J]. Resources, Conservation and Recycling, 2017, 119: 97-108. |
124 | 郑东晖, 胡山鹰, 李有润, 等. 考虑动力学的反应路径多目标优化方法[J]. 化工学报, 2003, 54(6): 770-774. |
Zheng D H, Hu S Y, Li Y R, et al. Multi-objective optimization of reaction path synthesis with consideration of reacting kinetics[J]. Journal of Chemical Industry and Engineering (China), 2003, 54(6): 770-774. | |
125 | Valenzuela-Venegas G, Vera-Hofmann G, Díaz-Alvarado F A. Design of sustainable and resilient eco-industrial parks: planning the flows integration network through multi-objective optimization[J]. Journal of Cleaner Production, 2020, 243: 118610. |
126 | Grant G B, Seager T P, Massard G, et al. Information and communication technology for industrial symbiosis[J]. Journal of Industrial Ecology, 2010, 14(5): 740-753. |
127 | Singh A, Lou H H. Hierarchical Pareto optimization for the sustainable development of industrial ecosystems[J]. Industrial & Engineering Chemistry Research, 2006, 45(9): 3265-3279. |
128 | Noureldin M M B, El-Halwagi M M. Synthesis of C-H-O symbiosis networks[J]. AIChE Journal, 2015, 61(4): 1242-1262. |
129 | El-Halwagi M M. A shortcut approach to the multi-scale atomic targeting and design of C-H-O symbiosis networks[J]. Process Integration and Optimization for Sustainability, 2017, 1(1): 3-13. |
132 | 杨(王乐), 胡山鹰, 梁日忠, 等. 中国鲁北生态工业模式[J]. 过程工程学报, 2004, 4(5): 467-474. |
Yang L, Hu S Y, Liang R Z, et al. The Lubei eco-industrial model of China[J]. The Chinese Journal of Process Engineering, 2004, 4(5): 467-474. | |
133 | 周哲, 刘征, 李有润, 等. 系统集成方法在磷煤化工生态工业示范基地规划中的应用[J]. 现代化工, 2005, 25(S1): 1-4. |
Zhou Z, Liu Z, Li Y R, et al. Application of systemic integration method in planning of demonstration base for phosphorus-coal-based chemical ecological industry[J]. Modern Chemical Industry, 2005, 25(S1): 1-4. | |
134 | Pan M, Sikorski J, Akroyd J, et al. Design technologies for eco-industrial parks: from unit operations to processes, plants and industrial networks[J]. Applied Energy, 2016, 175: 305-323. |
135 | Kuznetsova E, Zio E, Farel R. A methodological framework for eco-industrial park design and optimization[J]. Journal of Cleaner Production, 2016, 126: 308-324. |
136 | 杨友麒, 刘裔安. 国外化工园区的发展现况和启示[J]. 现代化工, 2020, 40(1): 1-7, 13. |
Yang Y Q, Liu Y A. Development status of abroad chemical parks and enlightenment to China[J]. Modern Chemical Industry, 2020, 40(1): 1-7, 13. | |
137 | 杨友麒. 我国化工园区的发展和前景展望(下)[J]. 中国化工信息, 2018, 16: 26-28. |
Yang Y Q. Development and prospects of chemical industry parks in China [J]. China Chemical News, 2018, 16: 26-28. | |
138 | 陈定江, 李有润, 沈静珠, 等. 生态工业园区的MINLP模型[J]. 过程工程学报, 2002, 2(1): 75-80. |
Chen D J, Li Y R, Shen J Z, et al. A MINLP model of eco-industrial parks[J]. The Chinese Journal of Process Engineering, 2002, 2(1): 75-80. | |
139 | 王剑婷, 陈定江, 胡山鹰. 决策网络图方法用于天然气化工企业发展的规划决策[J]. 化工学报, 2008, 59(9): 2289-2294. |
Wang J T, Chen D J, Hu S Y. Planning decision for a natural gas chemical company by map of decision network[J]. Journal of Chemical Industry and Engineering (China), 2008, 59(9): 2289-2294. | |
140 | Martín G A M, González F A, Bárcena M M. Smart eco-industrial parks: a circular economy implementation based on industrial metabolism[J]. Resources, Conservation and Recycling, 2018, 135: 58-69. |
141 | Brückner J. Infrastruktur und logistik in chemieparks am beispiel CHEMPARK[J]. Chemie Ingenieur Technik, 2010, 82(7): 1001-1003. |
142 | Yazdanpanah V, Yazan D M, Zijm W H M. FISOF: a formal industrial symbiosis opportunity filtering method[J]. Engineering Applications of Artificial Intelligence, 2019, 81: 247-259. |
143 | 周哲, 李有润, 胡山鹰, 等. 复杂自适应系统理论在生态工业研究中的应用 [J], 清华大学学报, 2008, 48(6): 1019-1022. |
Zhou Z, Li Y R, Hu S Y, et al. Complex adaptive system theory for industrial ecological systems [J]. J. Tsinghua Univ., 2008, 48(6): 1019-1022. | |
144 | Zhang C, Romagnoli A, Zhou L, et al. Knowledge management of eco-industrial park for efficient energy utilization through ontology-based approach[J]. Applied Energy, 2017, 204: 1412-1421. |
145 | van Capelleveen G, Amrit C, Yazan D M. A literature survey of information systems facilitating the identification of industrial symbiosis[M]//Progress in IS. Cham: Springer International Publishing, 2017: 155-169. |
146 | Zhu J M, Ruth M. Exploring the resilience of industrial ecosystems[J]. Journal of Environmental Management, 2013, 122: 65-75. |
147 | Taddeo R. Local industrial systems towards the eco-industrial parks: the model of the ecologically equipped industrial areas[J]. Journal of Cleaner Production, 2016, 131: 189-197. |
148 | Ribeiro P, Fonseca F, Neiva C, et al. An integrated approach towards transforming an industrial park into an eco-industrial park: the case of Salaise-Sablons[J]. Journal of Environmental Planning and Management, 2018, 61(2): 195-213. |
149 | Tan R R, Aviso K B, Promentilla M A B, et al. Input–output models of infrastructure systems[M]//Lecture Notes in Management and Industrial Engineering. Singapore: Springer Singapore, 2018: 63-74. |
150 | Meerow S, Newell J P. Resilience and complexity: a bibliometric review and prospects for industrial ecology[J]. Journal of Industrial Ecology, 2015, 19(2): 236-251. |
151 | Fraccascia L, Giannoccaro I, Albino V. Rethinking resilience in industrial symbiosis: conceptualization and measurements[J]. Ecological Economics, 2017, 137: 148-162. |
152 | 马蔚钧, 胡山鹰, 陈定江, 等. 基于SIMULINK工具箱的生态工业系统仿真和柔性分析[J]. 计算机与应用化学, 2006, 23(2): 113-117. |
Ma W J, Hu S Y, Chen D J, et al. Simulation and fexibility analysis of eco-industrial systems using simulink toolbox[J]. Computers and Applied Chemistry, 2006, 23(2): 113-117. | |
153 | Li Y, Shi L. The resilience of interdependent industrial symbiosis networks: a case of Yixing economic and technological development zone[J]. Journal of Industrial Ecology, 2015, 19(2): 264-273. |
154 | Kuznetsova E, Louhichi R, Zio E, et al. Input-output inoperability model for the risk analysis of eco-industrial parks[J]. Journal of Cleaner Production, 2017, 164: 779-792. |
155 | Chopra S S, Khanna V. Understanding resilience in industrial symbiosis networks: insights from network analysis[J]. Journal of Environmental Management, 2014, 141: 86-94. |
156 | Li B, Xiang P C, Hu M M, et al. The vulnerability of industrial symbiosis: a case study of Qijiang industrial park, China[J]. Journal of Cleaner Production, 2017, 157: 267-277. |
157 | Sargent R. Process systems engineering: a retrospective view with questions for the future[J]. Computers & Chemical Engineering, 2005, 29(6): 1237-1241. |
158 | Barbosa-Póvoa A P, Pinto J M. Challenges and perspectives of process systems engineering in supply chain management[C]//13th International Symposium on Process Systems Engineering (PSE 2018). Amsterdam: Elsevier, 2018: 87-96. |
159 | Yuan Z H, Chen B Z, Zhao J S. An overview on controllability analysis of chemical processes[J]. AIChE Journal, 2011, 57(5): 1185-1201. |
160 | Grossmann I E, Harjunkoski I. Process Systems engineering: academic and industrial perspectives[J]. Computers & Chemical Engineering, 2019, 126: 474-484. |
161 | Chertow M R. The eco-industrial park model reconsidered[J]. Journal of Industrial Ecology, 1998, 2(3): 8-10. |
162 | 王如松, 骆世明, 蒋菊生, 等. 生态学研究和应用的新动态 [R]//2006~2007环境科学技术学科发展报告. 北京: 中国科学技术出版社, 2006: 165-194. |
Wang R S, Luo S M, Jiang J S, et al. New trends in ecological research and application [R]// 2006—2007 Environmental Science and Technology Discipline Development Report. Beijing:China Science and Technology Press, 2006: 165-194. | |
163 | Wang R S, Li F, Hu D, et al. Understanding eco-complexity: social-economic-natural complex ecosystem approach[J]. Ecological Complexity, 2011, 8(1): 15-29. |
164 | Chertow M, Ehrenfeld J. Organizing self-organizing systems[J]. Journal of Industrial Ecology, 2012, 16(1): 13-27. |
165 | Stephanopoulos G. Process systems engineering: from solvay to the 21st century. A history of development, successes and prospects for the future[J]. Computer Aided Chemical Engineering, 2009, 27: 149-155. |
166 | Avraamidou S, Baratsas S G, Tian Y H, et al. Circular economy — a challenge and an opportunity for process systems engineering[J]. Computers & Chemical Engineering, 2020, 133: 106629. |
[1] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[2] | 曹跃, 余冲, 李智, 杨明磊. 工业数据驱动的加氢裂化装置多工况切换过渡状态检测[J]. 化工学报, 2023, 74(9): 3841-3854. |
[3] | 郑玉圆, 葛志伟, 韩翔宇, 王亮, 陈海生. 中高温钙基材料热化学储热的研究进展与展望[J]. 化工学报, 2023, 74(8): 3171-3192. |
[4] | 王光, 单发顺, 钱禹丞, 焦建芳. 基于集成学习传递熵的化工过程微小故障检测方法[J]. 化工学报, 2023, 74(7): 2967-2978. |
[5] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[6] | 李贵贤, 曹阿波, 孟文亮, 王东亮, 杨勇, 周怀荣. 耦合固体氧化物电解槽的CO2制甲醇过程设计与评价研究[J]. 化工学报, 2023, 74(7): 2999-3009. |
[7] | 邵远哲, 赵忠盖, 刘飞. 基于共同趋势模型的非平稳过程质量相关故障检测方法[J]. 化工学报, 2023, 74(6): 2522-2537. |
[8] | 贠程, 王倩琳, 陈锋, 张鑫, 窦站, 颜廷俊. 基于社团结构的化工过程风险演化路径深度挖掘[J]. 化工学报, 2023, 74(4): 1639-1650. |
[9] | 王子宗, 索寒生, 赵学良. 数字孪生智能乙烯工厂研究与构建[J]. 化工学报, 2023, 74(3): 1175-1186. |
[10] | 张生安, 刘桂莲. 高效太阳能电解水制氢系统及其性能的多目标优化[J]. 化工学报, 2023, 74(3): 1260-1274. |
[11] | 袁海鸥, 叶方俊, 张硕, 罗祎青, 袁希钢. 考虑中间换热器的能量集成精馏序列合成[J]. 化工学报, 2023, 74(2): 796-806. |
[12] | 王雅琳, 潘雨晴, 刘晨亮. 基于GSA-LSTM动态结构特征提取的间歇过程监测方法[J]. 化工学报, 2022, 73(9): 3994-4002. |
[13] | 高学金, 程琨, 韩华云, 高慧慧, 齐咏生. 基于中心损失的条件生成式对抗网络的冷水机组故障诊断[J]. 化工学报, 2022, 73(9): 3950-3962. |
[14] | 陈昊, 陈鹏忠, 彭孝军. 金属基极紫外光刻胶[J]. 化工学报, 2022, 73(8): 3307-3325. |
[15] | 杨岭, 崔国民, 周志强, 肖媛. 精细搜索策略应用于质量交换网络综合[J]. 化工学报, 2022, 73(7): 3145-3155. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||