化工学报 ›› 2021, Vol. 72 ›› Issue (5): 2354-2372.DOI: 10.11949/0438-1157.20201655
赵峻逸(),薛士东(),韩敬坤,温荣福,兰忠,郝婷婷,马学虎()
收稿日期:
2020-11-17
修回日期:
2021-01-06
出版日期:
2021-05-05
发布日期:
2021-05-05
通讯作者:
马学虎
作者简介:
赵峻逸(1995—),男,硕士研究生,基金资助:
ZHAO Junyi(),XUE Shidong(),HAN Jingkun,WEN Rongfu,LAN Zhong,HAO Tingting,MA Xuehu()
Received:
2020-11-17
Revised:
2021-01-06
Online:
2021-05-05
Published:
2021-05-05
Contact:
MA Xuehu
摘要:
双液滴碰撞行为广泛存在于雨滴形成、燃油喷雾、喷雾冷却、喷墨印刷、农药喷洒等自然现象与工业应用过程中,其碰撞结果会受到液滴参数及气相环境等因素的综合影响,研究双液滴的碰撞行为规律及调控机制一直是该领域的热点。结合目前双液滴碰撞的实验进展和数值模型,将围绕着碰撞行为的主控因素与调控机制展开综述,具体介绍了碰撞参数、液滴理化性质、气相环境等因素对液滴碰撞行为的影响规律与调控结果,并展望了液滴碰撞理论及应用的发展趋势和方向。
中图分类号:
赵峻逸, 薛士东, 韩敬坤, 温荣福, 兰忠, 郝婷婷, 马学虎. 双液滴碰撞行为及调控机制的研究进展[J]. 化工学报, 2021, 72(5): 2354-2372.
ZHAO Junyi, XUE Shidong, HAN Jingkun, WEN Rongfu, LAN Zhong, HAO Tingting, MA Xuehu. Research progress of binary droplet collision behavior and regulation mechanism[J]. CIESC Journal, 2021, 72(5): 2354-2372.
1 | Chen S S, Bartello P, Yau M K, et al. Cloud droplet collisions in turbulent environment: collision statistics and parameterization[J]. Journal of the Atmospheric Sciences, 2016, 73(2): 621-636. |
2 | Szakáll M, Urbich I. Wind tunnel study on the size distribution of droplets after collision induced breakup of levitating water drops[J]. Atmospheric Research, 2018, 213: 51-56. |
3 | Guo S, Xue H. The enhancement of droplet collision by electric charges and atmospheric electric fields[J]. Atmospheric Chemistry and Physics, 2021, 21(1): 69-85. |
4 | Li X Y, Mehlig B, Svensson G, et al. Fluctuations and growth histories of cloud droplets: superparticle simulations of the collision-coalescence process[EB/OL]. . |
5 | James M, Ray S S. Enhanced droplet collision rates and impact velocities in turbulent flows: the effect of poly-dispersity and transient phases[J]. Scientific Reports, 2017, 7: 12231. |
6 | Xiong G, Gandhi R, Zhong X S, et al. Binary collision of a burning droplet and a non-burning droplet of xylene: outcome regimes and flame dynamics[J]. Proceedings of the Combustion Institute, 2019, 37(3): 3345-3352. |
7 | Chen R H, Wang W C, Chen Y W. Like-drop collisions of biodiesel and emulsion diesel[J]. European Journal of Mechanics - B/Fluids, 2016, 60: 62-69. |
8 | Ahmed F, Kawahara N, Tomita E. Binary collisions and coalescence of droplets in low-pressure fuel injector[J]. Thermal Science, 2020: 185. |
9 | Sharma N, Bachalo W D, Agarwal A K. Spray droplet size distribution and droplet velocity measurements in a firing optical engine[J]. Physics of Fluids, 2020, 32(2): 023304. |
10 | Cho K Y, Pourpoint T L, Son S F, et al. Microexplosion investigation of monomethylhydrazine gelled droplet with OH planar laser-induced fluorescence[J]. Journal of Propulsion and Power, 2013, 29(6): 1303-1310. |
11 | Yang H, Fang K, Liu X, et al. Effect of cotton cationization using copolymer nanospheres on ink-jet printing of different fabrics[J]. Polymers, 2018, 10(11):1219. |
12 | Tang Z Y, Fang K J, Song Y W, et al. Jetting performance of polyethylene glycol and reactive dye solutions[J]. Polymers, 2019, 11(4): 739. |
13 | Finotello G, Padding J T, Buist K A, et al. Numerical investigation of droplet-droplet collisions in a water and milk spray with coupled heat and mass transfer[J]. Drying Technology, 2020, 38(12): 1597-1619. |
14 | Kan H, Nakamura H, Watano S. Effect of collision angle on particle-particle adhesion of colliding particles through liquid droplet[J]. Advanced Powder Technology, 2018, 29(6): 1317-1322. |
15 | 廖达雄, 张海洋, 阮一逍, 等. 氮液滴在气流中的破碎和碰撞模拟[J]. 哈尔滨工业大学学报, 2018, 50(7): 185-191. |
Liao D X, Zhang H Y, Ruan Y X, et al. Numerical study on the breakup and collision of nitrogen droplets in high-speed gas flow[J]. Journal of Harbin Institute of Technology, 2018, 50(7): 185-191. | |
16 | 马学虎, 薛士东, 孙桐, 等. 农药雾滴空间运行中的变形特征分析[J]. 化工进展, 2020, 39(10): 3870-3878. |
Ma X H, Xue S D, Sun T, et al. Deformation characteristics of chemical pesticide spray droplet during spatial motion[J]. Chemical Industry and Engineering Progress, 2020, 39(10): 3870-3878. | |
17 | 赵峻逸, 薛士东, 宋小沫, 等. 农药药液物理性质对雾滴空间运行规律的影响模拟研究[J]. 农药学学报, 2020, 22(2): 306-314. |
Zhao J Y, Xue S D, Song X M, et al. Simulation study on the influence of pesticide liquid properties on droplet motion in space[J]. Chinese Journal of Pesticide Science, 2020, 22(2): 306-314. | |
18 | Huang K L, Pan K L, Josserand C. Pinching dynamics and satellite droplet formation in symmetrical droplet collisions[J]. Physical Review Letters, 2019, 123(23): 234502. |
19 | Shlegel N E, Strizhak P A, Volkov R S. Collision behavior of heterogeneous liquid droplets[J]. Microgravity Science and Technology, 2019, 31(5): 487-503. |
20 | Li J, Huang W. Towards mesoscience: the principle of compromise in competition[J]. SpringerBriefs in Applied Sciences and Technology, 2014: 1-76. |
21 | Vysokomornaya O V, Piskunov M V, Strizhak P A. Breakup of heterogeneous water drop immersed in high-temperature air[J]. Applied Thermal Engineering, 2017, 127: 1340-1345. |
22 | Shlegel N, Strizhak P, Tarlet D, et al. Comparing the integral characteristics of secondary droplet atomization under different situations[J]. International Communications in Heat and Mass Transfer, 2019, 108: 104329. |
23 | Agarwal A, Wang Y, Liang L, et al. The computational cost and accuracy of spray droplet collision models[C]//SAE Technical Paper Series. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2019. |
24 | Rajkotwala A H, Mirsandi H, Peters E A J F, et al. Extension of local front reconstruction method with controlled coalescence model[J]. Physics of Fluids, 2018, 30(2): 022102. |
25 | Ashgriz N, Poo J Y. Coalescence and separation in binary collisions of liquid drops[J]. Journal of Fluid Mechanics, 1990, 221: 183-204. |
26 | Sommerfeld M, Pasternak L. Advances in modelling of binary droplet collision outcomes in sprays: a review of available knowledge[J]. International Journal of Multiphase Flow, 2019, 117: 182-205. |
27 | Sommerfeld M, Kuschel M. Modelling droplet collision outcomes for different substances and viscosities[J]. Experiments in Fluids, 2016, 57(12): 1-23. |
28 | Al-Dirawi K H, Bayly A E. A new model for the bouncing regime boundary in binary droplet collisions[J]. Physics of Fluids, 2019, 31(2): 027105. |
29 | Shlegel' N E, Strizhak P A. Characteristics of “bounce” of interacting water droplets[J]. Technical Physics, 2019, 64(6): 796-801. |
30 | MacKay G D M, Mason S G. The gravity approach and coalescence of fluid drops at liquid interfaces[J]. The Canadian Journal of Chemical Engineering, 1963, 41(5): 203-212. |
31 | Kumar M, Bhardwaj R, Sahu K C. Coalescence dynamics of a droplet on a sessile droplet[J]. Physics of Fluids, 2020, 32(1): 012104. |
32 | Khodabocus M I, Sellier M, Nock V. Scaling laws of droplet coalescence: theory and numerical simulation[J]. Advances in Mathematical Physics, 2018, 2018: 1-16. |
33 | Musehane N M, Oxtoby O F, Reddy B D. Multi-scale simulation of droplet-droplet interaction and coalescence[J]. Journal of Computational Physics, 2018, 373: 924-939. |
34 | 李睿, 张以任, 陈杭, 等. 二元液滴自由碰撞聚并后的振荡行为研究[J]. 化工学报, 2020, 71(4): 1482-1490. |
Li R, Zhang Y R, Chen H, et al. Investigation on droplet oscillatory behavior after free binary collision and coalescence[J]. CIESC Journal, 2020, 71(4): 1482-1490. | |
35 | Rahmat A, Yildiz M. A multiphase ISPH method for simulation of droplet coalescence and electro-coalescence[J]. International Journal of Multiphase Flow, 2018, 105: 32-44. |
36 | Liu M, Bothe D. Numerical study of head-on droplet collisions at high Weber numbers[J]. Journal of Fluid Mechanics, 2016, 789: 785-805. |
37 | Mazloomi M A, Chikatamarla S S, Karlin I V. Simulation of binary droplet collisions with the entropic lattice Boltzmann method[J]. Physics of Fluids, 2016, 28(2): 022106. |
38 | Brenn G, Kolobaric V. Satellite droplet formation by unstable binary drop collisions[J]. Physics of Fluids, 2006, 18(8): 087101. |
39 | Qian J, Law C K. Regimes of coalescence and separation in droplet collision[J]. Journal of Fluid Mechanics, 1997, 331: 59-80. |
40 | Brenn G, Valkovska D, Danov K D. The formation of satellite droplets by unstable binary drop collisions[J]. Physics of Fluids, 2001, 13(9): 2463-2477. |
41 | Notz P K, Basaran O A. Dynamics and breakup of a contracting liquid filament[J]. Journal of Fluid Mechanics, 2004, 512: 223-256. |
42 | Schulkes R M S M. The contraction of liquid filaments[J]. Journal of Fluid Mechanics, 1996, 309: 277-300. |
43 | Lain S, Sommerfeld M. Influence of droplet collision modelling in Euler/Lagrange calculations of spray evolution[J]. International Journal of Multiphase Flow, 2020, 132: 103392. |
44 | Kuschel M, Sommerfeld M. Investigation of droplet collisions for solutions with different solids content[J]. Experiments in Fluids, 2013, 54(2): 1-17. |
45 | Pan Y, Suga K. Numerical simulation of binary liquid droplet collision[J]. Physics of Fluids, 2005, 17(8): 082105. |
46 | Foissac A, Malet J, Mimouni S, et al. Binary water droplet collision study in presence of solid aerosols in air [C] //7th International Conference on Multiphase Flow ICMF2010. Tampa, USA, 2010. |
47 | Jiang Y J, Umemura A, Law C K. An experimental investigation on the collision behaviour of hydrocarbon droplets[J]. Journal of Fluid Mechanics, 1992, 234: 171. |
48 | Brazier-Smith P R, Jennings S G, Latham J. The interaction of falling water drops: coalescence[J]. Proceedings of the Royal Society of London A Mathematical and Physical Sciences, 1972, 326(1566): 393-408. |
49 | Estrade J P, Carentz H, Lavergne G, et al. Experimental investigation of dynamic binary collision of ethanol droplets - a model for droplet coalescence and bouncing[J]. International Journal of Heat and Fluid Flow, 1999, 20(5): 486-491. |
50 | Willis K, Orme M. Viscous oil droplet collisions in a vacuum[J]. Exp. Fluids, 2003, 34: 28-41. |
51 | Gotaas C, Havelka P, Jakobsen H A, et al. Effect of viscosity on droplet-droplet collision outcome: experimental study and numerical comparison[J]. Physics of Fluids, 2007, 19(10): 102106. |
52 | Rabe C, Malet J, Feuillebois F. Experimental investigation of water droplet binary collisions and description of outcomes with a symmetric Weber number[J]. Physics of Fluids, 2010, 22(4): 047101. |
53 | Planchette C, Hinterbichler H, Liu M, et al. Colliding drops as coalescing and fragmenting liquid springs[J]. Journal of Fluid Mechanics, 2017, 814: 277-300. |
54 | Breitenbach J, Reitter L M, Liu M Y, et al. Experimental and computational investigation of binary drop collisions under elevated pressure[C]//Proceedings ILASS–Europe 2017.28th Conference on Liquid Atomization and Spray Systems. Valencia: Universitat Politècnica València, 2017: 815-821. |
55 | Chen X D, Yang V. Direct numerical simulation of multiscale flow physics of binary droplet collision[J]. Physics of Fluids, 2020, 32(6): 062103. |
56 | Li Y, Ning Z, Lü M. Experimental study on fusion and break-up motion after droplet collision[J]. Chinese Journal of Chemical Engineering, 2020, 28(3): 712-720. |
57 | Hu C B, Xia S Y, Li C, et al. Three-dimensional numerical investigation and modeling of binary alumina droplet collisions[J]. International Journal of Heat and Mass Transfer, 2017, 113: 569-588. |
58 | Cong H C, Qian L J, Wang Y T, et al. Numerical simulation of the collision behaviors of binary unequal-sized droplets at high Weber number[J]. Physics of Fluids, 2020, 32(10): 103307. |
59 | Chowdhary S, Reddy S R, Banerjee R. Detailed numerical simulations of unequal sized off-centre binary droplet collisions[J]. International Journal of Multiphase Flow, 2020, 128: 103267. |
60 | Guo Q J, Qi X N, Yin Q, et al. VOF simulation studies on binary seawater droplets collision[J]. International Journal of Heat and Technology, 2018, 36(3): 1148-1153. |
61 | Pan K L, Chou P C, Tseng Y J. Binary droplet collision at high Weber number[J]. Physical Review E, 2009, 80(3): 036301. |
62 | Kuan C K, Pan K L, Shyy W. Study on high-Weber-number droplet collision by a parallel, adaptive interface-tracking method[J]. Journal of Fluid Mechanics, 2014, 759: 104-133. |
63 | Sakakibara B, Inamuro T. Lattice Boltzmann simulation of collision dynamics of two unequal-size droplets[J]. International Journal of Heat and Mass Transfer, 2008, 51(11/12): 3207-3216. |
64 | Nikolopoulos N, Strotos G, Nikas K S, et al. The effect of Weber number on the central binary collision outcome between unequal-sized droplets[J]. International Journal of Heat and Mass Transfer, 2012, 55(7/8): 2137-2150. |
65 | Inamuro T, Tajima S, Ogino F. Lattice Boltzmann simulation of droplet collision dynamics[J]. International Journal of Heat and Mass Transfer, 2004, 47(21): 4649-4657. |
66 | Inamuro T, Ii T. Lattice Boltzmann simulation of the dispersion of aggregated particles under shear flows[J]. Mathematics and Computers in Simulation, 2006, 72(2/3/4/5/6): 141-146. |
67 | Yoshino M, Sawada J, Suzuki K. Numerical simulation of head-on collision dynamics of binary droplets with various diameter ratios by the two-phase lattice kinetic scheme[J]. Computers & Fluids, 2018, 168: 304-317. |
68 | Deka H, Biswas G, Chakraborty S, et al. Coalescence dynamics of unequal sized drops[J]. Physics of Fluids, 2019, 31(1): 012105. |
69 | Hong S W, Zhao L Y, Zhu H P. CFD simulation of pesticide spray from air-assisted sprayers in an apple orchard: tree deposition and off-target losses[J]. Atmospheric Environment, 2018, 175: 109-119. |
70 | Tang C L, Zhao J Q, Zhang P, et al. Dynamics of internal jets in the merging of two droplets of unequal sizes[J]. Journal of Fluid Mechanics, 2016, 795: 671-689. |
71 | He C, Xia X, Zhang P. Vortex-dynamical implications of nonmonotonic viscous dissipation of off-center droplet bouncing[J]. Physics of Fluids, 2020, 32(3): 032004. |
72 | He C, Xia X, Zhang P. Non-monotonic viscous dissipation of bouncing droplets undergoing off-center collision[J]. Physics of Fluids, 2019, 31(5): 052004. |
73 | 马学虎, 兰忠, 王凯, 等. 舞动的液滴: 界面现象与过程调控[J]. 化工学报, 2018, 69(1): 9-43. |
Ma X H, Lan Z, Wang K, et al. Dancing droplet: interface phenomena and process regulation[J]. CIESC Journal, 2018, 69(1): 9-43. | |
74 | 宋小沫, 奚溪, 薛士东, 等. 喷雾助剂对农药雾滴蒸发特性影响研究[J]. 高校化学工程学报, 2020, 34(5): 1143-1150. |
Song X M, Xi X, Xue S D, et al. Effects of pesticide adjuvants on spray pendant droplet evaporation[J]. Journal of Chemical Engineering of Chinese Universities, 2020, 34(5): 1143-1150. | |
75 | Qian L J, Cong H C, Zhu C L. A numerical investigation on the collision behavior of polymer droplets[J]. Polymers, 2020, 12(2): 263. |
76 | Sedano C G, Aguirre C A, Rondan G A, et al. Numerical simulation of spray ejection from a nozzle for herbicide application: evaporation and binary collision models[J]. Computers and Electronics in Agriculture, 2020, 175: 105551. |
77 | Pak C Y, Li W T, Steve Tse Y L. Free energy and dynamics of organic-coated water droplet coalescence[J]. The Journal of Physical Chemistry C, 2020, 124(16): 8749-8757. |
78 | Zhang Z Y, Chi Y C, Shang L J, et al. On the role of droplet bouncing in modeling impinging sprays under elevated pressures[J]. International Journal of Heat and Mass Transfer, 2016, 102: 657-668. |
79 | Lu Y, Zhao C L, Zhang Z Y, et al. Numerical simulation of impinging spray characteristics under high ambient pressures with an improved droplet collision model[J]. Fuel, 2019, 251: 106-117. |
80 | Amsden A A, Orourke P J, Butler T D. KIVA-2: a computer program for chemically reactive flows with sprays[R]. Los Alamos: Los Alamos National Laboratory, 1989. |
81 | Nobari M R, Jan Y J, Tryggvason G. Head-on collision of drops—a numerical investigation[J]. Physics of Fluids, 1996, 8(1): 29-42. |
82 | Li J. Macroscopic model for head-on binary droplet collisions in a gaseous medium[J]. Physical Review Letters, 2016, 117(21): 214502. |
83 | Zhao W D, Zhang Y, Xu B. An improved pseudopotential multi-relaxation-time lattice Boltzmann model for binary droplet collision with large density ratio[J]. Fluid Dynamics Research, 2019, 51(2): 025510. |
[1] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[2] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[3] | 周绍华, 詹飞龙, 丁国良, 张浩, 邵艳坡, 刘艳涛, 郜哲明. 短管节流阀内流动噪声的实验研究及降噪措施[J]. 化工学报, 2023, 74(S1): 113-121. |
[4] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[5] | 温凯杰, 郭力, 夏诏杰, 陈建华. 一种耦合CFD与深度学习的气固快速模拟方法[J]. 化工学报, 2023, 74(9): 3775-3785. |
[6] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[7] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[8] | 袁佳琦, 刘政, 黄锐, 张乐福, 贺登辉. 泡状入流条件下旋流泵能量转换特性研究[J]. 化工学报, 2023, 74(9): 3807-3820. |
[9] | 刘爽, 张霖宙, 许志明, 赵锁奇. 渣油及其组分黏度的分子层次组成关联研究[J]. 化工学报, 2023, 74(8): 3226-3241. |
[10] | 岳林静, 廖艺涵, 薛源, 李雪洁, 李玉星, 刘翠伟. 凹坑缺陷对厚孔板喉部空化流动特性影响研究[J]. 化工学报, 2023, 74(8): 3292-3308. |
[11] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[12] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
[13] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
[14] | 郭雨莹, 敬加强, 黄婉妮, 张平, 孙杰, 朱宇, 冯君炫, 陆洪江. 稠油管道水润滑减阻及压降预测模型修正[J]. 化工学报, 2023, 74(7): 2898-2907. |
[15] | 高金明, 郭玉娇, 鄂承林, 卢春喜. 一种封闭罩内顺流多旋臂气液分离器的分离特性研究[J]. 化工学报, 2023, 74(7): 2957-2966. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||