化工学报 ›› 2021, Vol. 72 ›› Issue (S1): 21-29.DOI: 10.11949/0438-1157.20201321
收稿日期:
2020-09-17
修回日期:
2020-11-18
出版日期:
2021-06-20
发布日期:
2021-06-20
通讯作者:
雷晓宇
作者简介:
吴延鹏(1972—),男,博士,副教授,基金资助:
WU Yanpeng1(),LEI Xiaoyu1(),LU Yuming2,CHEN Huini1
Received:
2020-09-17
Revised:
2020-11-18
Online:
2021-06-20
Published:
2021-06-20
Contact:
LEI Xiaoyu
摘要:
透明超疏水性表面可以阻挡大气尘埃附着,减少表面反射率,提高透光率。超疏水增透膜与传统增透膜相比,具有自清洁性、低反射率和高透光性等优势。本文对增透膜和超疏水表面的基本原理进行了介绍,对比了近年来超疏水增透膜的4种制备方法(沉积法、刻蚀法、自组装法和溶胶-凝胶法)的优缺点,说明了高透光性和低反射率的超疏水表面研究进展。最后对超疏水性增透涂料的潜在应用前景进行了展望,改善超疏水增透膜的耐久性和开发适用于各种应用场合的超疏水增透膜将是未来研究的重点。
中图分类号:
吴延鹏, 雷晓宇, 陆禹名, 陈卉妮. 太阳能利用透光表面超疏水增透膜研究进展[J]. 化工学报, 2021, 72(S1): 21-29.
WU Yanpeng, LEI Xiaoyu, LU Yuming, CHEN Huini. Research progress of superhydrophobic anti-reflection films applied on transparent surfaces of solar devices[J]. CIESC Journal, 2021, 72(S1): 21-29.
文献 | 基底 | 接触角/(°) | 滑动角/(°) | 透光率/% |
---|---|---|---|---|
[ | PET | >150 | — | >90 |
[ | 玻璃 | 154 | — | 82 |
[ | 硅、玻璃、环氧树脂和织物 | >160 | 小于5 | 几乎100 |
[ | 玻璃 | 152 | 8 | 90 |
[ | 玻璃 | 165±1 | 1 | 80 |
[ | 玻璃 | >150 | — | >90 |
[ | 玻璃 | 167 | 4 | 62.6 |
[ | 太阳能板、玻璃 | 161.33±0.763 | 7.7±0.8 | 90 |
[ | 适用于各种基底 | 153±1.7 | 18±3.9 | >98 |
[ | 玻璃 | 160 | — | 反射率6.5~7 |
[ | 玻璃 | — | — | 91.5~93 |
[ | 铝片 | 158.7 | — | 透明(未测试) |
[ | 玻璃 | 163 | 2.6 | 89.7 |
[ | 玻璃 | 165.7 | 2.1 | 90 |
[ | 玻璃 | 165.7 | 2.19 | 90 |
[ | 玻璃 | 165 | <10 | — |
[ | PTFE | 150 | — | 92.91 |
表1 基于沉积法制备超疏水增透膜的研究总结
Table 1 Research summaries on preparation of superhydrophobic anti-reflection films based on deposition method
文献 | 基底 | 接触角/(°) | 滑动角/(°) | 透光率/% |
---|---|---|---|---|
[ | PET | >150 | — | >90 |
[ | 玻璃 | 154 | — | 82 |
[ | 硅、玻璃、环氧树脂和织物 | >160 | 小于5 | 几乎100 |
[ | 玻璃 | 152 | 8 | 90 |
[ | 玻璃 | 165±1 | 1 | 80 |
[ | 玻璃 | >150 | — | >90 |
[ | 玻璃 | 167 | 4 | 62.6 |
[ | 太阳能板、玻璃 | 161.33±0.763 | 7.7±0.8 | 90 |
[ | 适用于各种基底 | 153±1.7 | 18±3.9 | >98 |
[ | 玻璃 | 160 | — | 反射率6.5~7 |
[ | 玻璃 | — | — | 91.5~93 |
[ | 铝片 | 158.7 | — | 透明(未测试) |
[ | 玻璃 | 163 | 2.6 | 89.7 |
[ | 玻璃 | 165.7 | 2.1 | 90 |
[ | 玻璃 | 165.7 | 2.19 | 90 |
[ | 玻璃 | 165 | <10 | — |
[ | PTFE | 150 | — | 92.91 |
文献 | 基底 | 接触角/(°) | 滑动角/(°) | 透光率/% |
---|---|---|---|---|
[ | 玻璃 | 171 | 4 | 85 |
[ | 硅、石英 | 159 | — | >80 |
[ | 玻璃 | 162 | 2 | 92 |
[ | 硅片 | 169 | <3 | 反射率4 |
[ | 玻璃 | >155 | — | 反射率0.96 |
[ | 聚二甲硅氧烷 | 166 | <2 | >85 |
[ | 硅片 | 139 | — | 反射率1.48 |
表2 基于刻蚀法制备超疏水增透膜的研究总结
Table 2 Research summaries on preparation of superhydrophobic anti-reflection films based on etching method
文献 | 基底 | 接触角/(°) | 滑动角/(°) | 透光率/% |
---|---|---|---|---|
[ | 玻璃 | 171 | 4 | 85 |
[ | 硅、石英 | 159 | — | >80 |
[ | 玻璃 | 162 | 2 | 92 |
[ | 硅片 | 169 | <3 | 反射率4 |
[ | 玻璃 | >155 | — | 反射率0.96 |
[ | 聚二甲硅氧烷 | 166 | <2 | >85 |
[ | 硅片 | 139 | — | 反射率1.48 |
文献 | 基底 | 接触角/(°) | 滑动角/(°) | 透光率/% |
---|---|---|---|---|
[ | PET薄膜 | 160 | <2 | 94.2 |
[ | 玻璃 | 159±2 | 7±1.5 | 85 |
[ | 玻璃 | 160.2 | — | 83.5 |
[ | PET薄膜 | 154 | 7 | 94 |
[ | 塑料 | 164 | 5.2±1.1 | 93.2 |
[ | 玻璃 | 156 | 1 | 反射率2.9 |
[ | 玻璃 | 173±2 | 2±1 | 93 |
[ | 玻璃 | 150.1 | — | 77.6 |
表3 基于自组装法制备超疏水增透膜的研究总结
Table 3 Research summaries on preparation of superhydrophobic anti-reflection films based on self-assembly method
文献 | 基底 | 接触角/(°) | 滑动角/(°) | 透光率/% |
---|---|---|---|---|
[ | PET薄膜 | 160 | <2 | 94.2 |
[ | 玻璃 | 159±2 | 7±1.5 | 85 |
[ | 玻璃 | 160.2 | — | 83.5 |
[ | PET薄膜 | 154 | 7 | 94 |
[ | 塑料 | 164 | 5.2±1.1 | 93.2 |
[ | 玻璃 | 156 | 1 | 反射率2.9 |
[ | 玻璃 | 173±2 | 2±1 | 93 |
[ | 玻璃 | 150.1 | — | 77.6 |
文献 | 基材 | 接触角/(°) | 滑动角/(°) | 透光率/% |
---|---|---|---|---|
[ | 玻璃 | 110 | 10 | 95.50 |
[ | 玻璃 | 166±2 | <5 | TMCS改性98;HMDZ改性92 |
[ | 玻璃 | — | — | 95.9~96.6 |
[ | 玻璃 | 172 | <5 | 90.22~90.45 |
[ | 玻璃 | 154.3 | — | 90.9 |
[ | A4书写纸底板 | 163±1 | 3 | 文字清晰可见 |
[ | 玻璃 | 160.1 | <1 | 89 |
[ | 硅基板 | >160 | <5 | >90 |
[ | 硅基板 | 156.4±3.1 | — | >90 |
[ | 硅橡胶 | 156.4 | — | >99.5 |
[ | 玻璃 | 157.9 | 1.2 | 97 |
[ | 玻璃 | 162±2 | 3±1 | 92.6±0.2 |
[ | 瓷砖、混凝土、木材、铁合金 | 162 | <5 | 95.88 |
[ | 瓷砖、混凝土、木材、铁合金 | > 160 | <10 | 88 |
[ | 玻璃 | 168.6 | — | 81 |
表4 基于溶胶-凝胶法制备超疏水增透膜的研究总结
Table 4 Research summaries on preparation of superhydrophobic anti-reflection films based on sol-gel method
文献 | 基材 | 接触角/(°) | 滑动角/(°) | 透光率/% |
---|---|---|---|---|
[ | 玻璃 | 110 | 10 | 95.50 |
[ | 玻璃 | 166±2 | <5 | TMCS改性98;HMDZ改性92 |
[ | 玻璃 | — | — | 95.9~96.6 |
[ | 玻璃 | 172 | <5 | 90.22~90.45 |
[ | 玻璃 | 154.3 | — | 90.9 |
[ | A4书写纸底板 | 163±1 | 3 | 文字清晰可见 |
[ | 玻璃 | 160.1 | <1 | 89 |
[ | 硅基板 | >160 | <5 | >90 |
[ | 硅基板 | 156.4±3.1 | — | >90 |
[ | 硅橡胶 | 156.4 | — | >99.5 |
[ | 玻璃 | 157.9 | 1.2 | 97 |
[ | 玻璃 | 162±2 | 3±1 | 92.6±0.2 |
[ | 瓷砖、混凝土、木材、铁合金 | 162 | <5 | 95.88 |
[ | 瓷砖、混凝土、木材、铁合金 | > 160 | <10 | 88 |
[ | 玻璃 | 168.6 | — | 81 |
25 | Deng X, Mammen L, Butt H J, et al. Candle soot as a template for a transparent robust superamphiphobic coating [J]. Science, 2012, 335(6064): 67-70. |
26 | Kim H M, Sohn S, Ahn J S. Transparent and super-hydrophobic properties of PTFE films coated on glass substrate using RF-magnetron sputtering and Cat-CVD methods [J]. Surface and Coatings Technology, 2013, 228: S389-S392. |
27 | Wang G Y, Liang W X, Wang B, et al. Conductive and transparent superhydrophobic films on various substrates by in situ deposition [J]. Applied Physics Letters, 2013, 102: 203703. |
28 | Yoon Y, Lee D W, Lee J B. Fabrication of optically transparent PDMS artificial lotus leaf film using underexposed and underbaked photoresist mold [J]. Journal of Microelectromechanical Systems, 2013, 22(5): 1073-1080. |
29 | Yoo Y, You J B, Choi W, et al. A stacked polymer film for robust superhydrophobic fabrics [J]. Polymer Chemistry, 2013, 4(5): 1664. |
30 | Zhu Y Q, Shen C, Li J L, et al. Superhydrophobic polytetrafluoroethylene film deposited on solar selective absorber by electron beam evaporation [J]. Materials Chemistry and Physics, 2021, 257: 123828. |
31 | Ogawa K, Soga M, Takada Y, et al. Development of a transparent and ultrahydrophobic glass plate [J]. Japanese Journal of Applied Physics, 1993, 32: L614-L615. |
32 | Behera A K, Viswanath R N, Lakshmanan C, et al. Synthesis of silicon nanowalls exhibiting excellent antireflectivity and near super-hydrophobicity [J]. Nano-Structures & Nano-Objects, 2020, 21: 100424. |
33 | Qi D P, Lu N, Xu H B, et al. Simple approach to wafer-scale self-cleaning antireflective silicon surfaces [J]. Langmuir, 2009, 25(14): 7769-7772. |
34 | Ebert D, Bhushan B. Transparent, superhydrophobic, and wear-resistant surfaces using deep reactive ion etching on PDMS substrates [J]. Journal of Colloid and Interface Science, 2016, 481: 82-90. |
35 | Fresnais J, Chapel J P, Poncin-Epaillard F. Synthesis of transparent superhydrophobic polyethylene surfaces [J]. Surface and Coatings Technology, 2006, 200(18/19): 5296-5305. |
36 | Li G X, Liu Y, Wang B, et al. Preparation of transparent BN films with superhydrophobic surface [J]. Applied Surface Science, 2008, 254(17): 5299-5303. |
1 | Adak D, Ghosh S, Chakrabarty P, et al. Self-cleaning V-TiO2: SiO2 thin-film coatings with enhanced transmission for solar glass cover and related applications [J]. Solar Energy, 2017, 155: 410-418. |
2 | Hu Y, Wang Y H, Yang H X. TEOS/silane coupling agent composed double layers structure: a novel super-hydrophilic coating with controllable water contact angle value [J]. Applied Energy, 2017, 185: 2209-2216. |
37 | Di Mundo R, De Benedictis V, Palumbo F, et al. Fluorocarbon plasmas for nanotexturing of polymers: a route to water-repellent antireflective surfaces [J]. Applied Surface Science, 2009, 255(10): 5461-5465. |
38 | Barshilia H C, John S, Mahajan V. Nanometric multi-scale rough, transparent and anti-reflective ZnO superhydrophobic coatings on high temperature solar absorber surfaces [J]. Solar Energy Materials and Solar Cells, 2012, 107: 219-224. |
3 | Karthik D, Pendse S, Sakthivel S, et al. High performance broad band antireflective coatings using a facile synthesis of ink-bottle mesoporous MgF2 nanoparticles for solar applications [J]. Solar Energy Materials and Solar Cells, 2017, 159: 204-211. |
4 | Chi F T, Zeng Y Y, Liu C, et al. Highly stable self-cleaning antireflection coatings from fluoropolymer brush grafted silica nanoparticles [J]. Applied Surface Science, 2020, 507: 144836. |
39 | Kong J H, Kim T H, Kim J H, et al. Highly flexible, transparent and self-cleanable superhydrophobic films prepared by a facile and scalable nanopyramid formation technique [J]. Nanoscale, 2014, 6(3): 1453-1461. |
40 | Li X Y, He J H, Liu W Y. Broadband anti-reflective and water-repellent coatings on glass substrates for self-cleaning photovoltaic cells [J]. Materials Research Bulletin, 2013, 48(7): 2522-2528. |
5 | Hooda A, Goyat M S, Pandey J K, et al. A review on fundamentals, constraints and fabrication techniques of superhydrophobic coatings [J]. Progress in Organic Coatings, 2020, 142: 105557. |
6 | Wang P, Xie J J, Ni L, et al. Reducing the effect of dust deposition on the generating efficiency of solar PV modules by super-hydrophobic films [J]. Solar Energy, 2018, 169: 277-283. |
41 | Kim D H, Park J H, Lee T I, et al. Superhydrophobic Al-doped ZnO nanorods-based electrically conductive and self-cleanable antireflecting window layer for thin film solar cell [J]. Solar Energy Materials and Solar Cells, 2016, 150: 65-70. |
42 | Siri R, Thongrom S, van Dommelen P, et al. Demonstrating spray deposition of self-regulated nanorough layers for stable transparent superhydrophobic film coatings [J]. Thin Solid Films, 2019, 686: 137429. |
7 | Lin C Y, Lin K Y A, Yang T W, et al. Self-assembled hemispherical nanowell arrays for superhydrophobic antireflection coatings [J]. Journal of Colloid and Interface Science, 2017, 490: 174-180. |
8 | Huang J Y, Wang X D, Wang Z L. Bio-inspired fabrication of antireflection nanostructures by replicating fly eyes [J]. Nanotechnology, 2008, 19(2): 025602. |
43 | He Z K, Ma M, Lan X R, et al. Fabrication of a transparent superamphiphobic coating with improved stability [J]. Soft Matter, 2011, 7(14): 6435-6443. |
44 | Xu J F, Deng X L, Dong Y Y, et al. High-strength, transparent and superhydrophobic nanocellulose/nanochitin membranes fabricated via crosslinking of nanofibers and coating F-SiO2 suspensions [J]. Carbohydrate Polymers, 2020, 247: 116694. |
45 | Lü J J, Wu B R, Wu N, et al. Green preparation of transparent superhydrophobic coatings with persistent dynamic impact resistance for outdoor applications [J]. Chemical Engineering Journal, 2021, 404: 126456. |
46 | El Fouhaili B, Ibrahim A, Dietlin C, et al. Single-step formation of superhydrophobic surfaces using photobase-catalyzed sol-gel process [J]. Progress in Organic Coatings, 2019, 137: 105293. |
9 | Sakhuja M, Son J, Yang H, et al. Outdoor performance and durability testing of antireflecting and self-cleaning glass for photovoltaic applications [J]. Solar Energy, 2014, 110: 231-238. |
10 | 吴延鹏, 郭占闯. 超疏水表面防附尘性能试验分析[J]. 化工学报, 2018, 69(S2): 365-372. |
47 | Wu S Y, Su S K, Chang C J, et al. Sol-gel-synthesized titania-vanadia nanocrystal films for triple-functional window coatings [J]. Ceramics International, 2016, 42(15): 17610-17619. |
48 | Prado R, Beobide G, Marcaide A, et al. Development of multifunctional sol-gel coatings: anti-reflection coatings with enhanced self-cleaning capacity [J]. Solar Energy Materials and Solar Cells, 2010, 94(6): 1081-1088. |
49 | Zhi J H, Zhang L Z. Durable superhydrophobic surface with highly antireflective and self-cleaning properties for the glass covers of solar cells [J]. Applied Surface Science, 2018, 454: 239-248. |
50 | Lu Z Z, Xu L J, He Y, et al. One-step facile route to fabricate functionalized nano-silica and silicone sealant based transparent superhydrophobic coating [J]. Thin Solid Films, 2019, 692: 137560. |
51 | Burkarter E, Saul C K, Thomazi F, et al. Superhydrophobic electrosprayed PTFE [J]. Surface and Coatings Technology, 2007, 202(1): 194-198. |
52 | Celik N, Torun I, Ruzi M, et al. Fabrication of robust superhydrophobic surfaces by one-step spray coating: evaporation driven self-assembly of wax and nanoparticles into hierarchical structures [J]. Chemical Engineering Journal, 2020, 396: 125230. |
10 | Wu Y P, Guo Z C. Experimental analysis of anti-dust property on superhydrophobic surfaces [J]. CIESC Journal, 2018, 69(S2): 365-372. |
11 | Zou X S, Tao C Y, Yang K, et al. Rational design and fabrication of highly transparent, flexible, and thermally stable superhydrophobic coatings from raspberry-like hollow silica nanoparticles [J]. Applied Surface Science, 2018, 440: 700-711. |
53 | Aegerter M A, Almeida R, Soutar A, et al. Coatings made by sol-gel and chemical nanotechnology [J]. Journal of Sol-Gel Science and Technology, 2008, 47(2): 203-236. |
54 | Rao A V, Latthe S S, Nadargi D Y, et al. Preparation of MTMS based transparent superhydrophobic silica films by sol-gel method [J]. Journal of Colloid and Interface Science, 2009, 332(2): 484-490. |
12 | Zhang C, Kalulu M, Sun S, et al. Environmentally safe, durable and transparent superhydrophobic coating prepared by one-step spraying [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 570: 147-155. |
13 | Pour F Z, Karimi H, Avargani V M. Preparation of a superhydrophobic and superoleophilic polyester textile by chemical vapor deposition of dichlorodimethylsilane for water-oil separation [J]. Polyhedron, 2019, 159: 54-63. |
55 | Mahadik S A, Kavale M S, Mukherjee S K, et al. Transparent superhydrophobic silica coatings on glass by sol-gel method [J]. Applied Surface Science, 2010, 257(2): 333-339. |
56 | Li J, Wan H Q, Ye Y P, et al. One-step process to fabrication of transparent superhydrophobic SiO2 paper [J]. Applied Surface Science, 2012, 261: 470-472. |
14 | 陈俊, 王振辉, 王玮, 等. 超疏水表面材料的制备与应用[J]. 中国材料进展, 2013, 32(7): 399-405, 441. |
Chen J, Wang Z H, Wang W, et al. Preparation and application of super hydrophobic surfaces[J]. Materials China, 2013, 32(7): 399-405, 441. | |
57 | Gao L J, He J H. Surface hydrophobic co-modification of hollow silica nanoparticles toward large-area transparent superhydrophobic coatings [J]. Journal of Colloid and Interface Science, 2013, 396: 152-159. |
58 | Lin J B, Chen H L, Fei T, et al. Highly transparent superhydrophobic organic-inorganic nanocoating from the aggregation of silica nanoparticles [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 421: 51-62. |
59 | Zhao T Y, Zhang D M, Ding C M, et al. A multi-functional polymer coating that is heat-resistant, hydrophobic and transparent [J]. Particuology, 2014, 17: 11-14. |
60 | Zhang X X, Zheng F, Ye L Q, et al. A one-pot sol-gel process to prepare a superhydrophobic and environment-resistant thin film from ORMOSIL nanoparticles [J]. RSC Advances, 2014, 4(19): 9838-9841. |
61 | Hooda A, Goyat M S, Kumar A, et al. A facile approach to develop modified nano-silica embedded polystyrene based transparent superhydrophobic coating [J]. Materials Letters, 2018, 233: 340-343. |
62 | Jonsson A, Roos A, Jonson E K. The effect on transparency and light scattering of dip coated antireflection coatings on window glass and electrochromic foil [J]. Solar Energy Materials and Solar Cells, 2010, 94(6): 992-997. |
15 | Meng L Y, Park S J. Effect of growth of graphite nanofibers on superhydrophobic and electrochemical properties of carbon fibers [J]. Materials Chemistry and Physics, 2012, 132(2/3): 324-329. |
16 | Teshima K, Sugimura H, Inoue Y, et al. Transparent ultra water-repellent poly(ethylene terephthalate) substrates fabricated by oxygen plasma treatment and subsequent hydrophobic coating [J]. Applied Surface Science, 2005, 244(1/2/3/4): 619-622. |
17 | Chen Y, Zhang Y B, Shi L, et al. Transparent superhydrophobic/superhydrophilic coatings for self-cleaning and anti-fogging [J]. Applied Physics Letters, 2012, 101(3): 033701. |
18 | Cai Z W, Lin J B, Hong X L. Transparent superhydrophobic hollow films (TSHFs) with superior thermal stability and moisture resistance [J]. RSC Advances, 2018, 8(1): 491-498. |
19 | Kumar P S, Sundaramurthy J, Zhang X, et al. Superhydrophobic and antireflecting behavior of densely packed and size controlled ZnO nanorods [J]. Journal of Alloys and Compounds, 2013, 553: 375-382. |
20 | Chen C N, Wu M J, Hsu C F, et al. Antireflection coating of SiO2 thin film in dye-sensitized solar cell prepared by liquid phase deposition [J]. Surface and Coatings Technology, 2017, 320: 28-33. |
21 | Sun W, Wang L D, Yang Z Q, et al. Fabrication of polydimethylsiloxane-derived superhydrophobic surface on aluminium via chemical vapour deposition technique for corrosion protection [J]. Corrosion Science, 2017, 128: 176-185. |
22 | Zuo Z P, Gao J, Liao R J, et al. A novel and facile way to fabricate transparent superhydrophobic film on glass with self-cleaning and stability [J]. Materials Letters, 2019, 239: 48-51. |
23 | Tarwal N L, Patil P S. Superhydrophobic and transparent ZnO thin films synthesized by spray pyrolysis technique [J]. Applied Surface Science, 2010, 256(24): 7451-7456. |
24 | Karunakaran R G, Lu C H, Zhang Z H, et al. Highly transparent superhydrophobic surfaces from the coassembly of nanoparticles (≤100 nm) [J]. Langmuir, 2011, 27(8): 4594-4602. |
[1] | 苏伟, 马东旭, 金旭, 刘忠彦, 张小松. 表面润湿性对霜层传递特性影响可视化实验研究[J]. 化工学报, 2023, 74(S1): 122-131. |
[2] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[3] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[4] | 傅予, 刘兴翀, 王瀚雨, 李海敏, 倪亚飞, 邹文静, 雷月, 彭永姗. F3EACl修饰层对钙钛矿太阳能电池性能提升的研究[J]. 化工学报, 2023, 74(8): 3554-3563. |
[5] | 张生安, 刘桂莲. 高效太阳能电解水制氢系统及其性能的多目标优化[J]. 化工学报, 2023, 74(3): 1260-1274. |
[6] | 党迎喜, 谈朋, 刘晓勤, 孙林兵. 辐射冷却和太阳能加热驱动的CO2变温捕获[J]. 化工学报, 2023, 74(1): 469-478. |
[7] | 王峰, 张顺鑫, 余方博, 刘亚, 郭烈锦. 光催化CO2还原制碳氢燃料系统优化策略研究[J]. 化工学报, 2023, 74(1): 29-44. |
[8] | 张鑫, 许蕊, 路馨语, 牛永安. SiO2@BiOCl-Bi24O31Cl10核壳微球的合成及光催化[J]. 化工学报, 2022, 73(8): 3636-3646. |
[9] | 钱宇, 陈耀熙, 史晓斐, 杨思宇. 太阳能波动特性大数据分析与风光互补耦合制氢系统集成[J]. 化工学报, 2022, 73(5): 2101-2110. |
[10] | 马荣, 孙杰, 李东辉, 魏进家. 基于Cu/TiO2/C-Wood复合材料的聚光太阳能驱动自漂浮高效海水汽化催化分解制氢体系[J]. 化工学报, 2022, 73(4): 1695-1703. |
[11] | 陈子禾, 赵呈志, 冒文莉, 盛楠, 朱春宇. 定向生物质多孔碳复合相变材料的制备及其热性能研究[J]. 化工学报, 2022, 73(4): 1817-1825. |
[12] | 王洁冰, 高金彤, 徐震原. 基于不同类型溶液蒸气压特性的太阳能界面蒸发实验研究[J]. 化工学报, 2022, 73(2): 663-671. |
[13] | 陈雪梅, 王彤, 高玉箔, 彭鼎程, 罗雨婷. 利用激光诱导石墨烯实现高效太阳能界面蒸发[J]. 化工学报, 2022, 73(12): 5648-5659. |
[14] | 张欣宇, 杨晓宏, 张燕楠, 徐佳锟, 郭枭, 田瑞. 基于二维梯度树状肋相变储热系统强化传热机理[J]. 化工学报, 2022, 73(10): 4399-4409. |
[15] | 李英杰, 李奇侠, 王宏, 朱恂, 陈蓉, 廖强, 丁玉栋. 波浪结构超疏水表面对液滴聚并弹跳的影响[J]. 化工学报, 2022, 73(10): 4345-4354. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||