化工学报 ›› 2021, Vol. 72 ›› Issue (10): 5196-5205.DOI: 10.11949/0438-1157.20210303
收稿日期:
2021-03-01
修回日期:
2021-08-30
出版日期:
2021-10-05
发布日期:
2021-10-05
通讯作者:
李文英
作者简介:
王学明(1995—),男,硕士, 助理研究员,基金资助:
Xueming WANG(),Xiaohong LI,Wenying LI()
Received:
2021-03-01
Revised:
2021-08-30
Online:
2021-10-05
Published:
2021-10-05
Contact:
Wenying LI
摘要:
以Pt为活性组分、经不同浓度草酸铝处理的USY分子筛为载体,制备了Pt/USY催化剂,并用于菲一步加氢饱和反应和加氢异构反应体系。由于金属活性位点Pt上易发生加氢反应,USY载体酸性位点上易发生异构反应和裂解反应,实验分别考察了Pt颗粒、载体的酸强度和酸量对菲转化率和产物分布的影响。结果表明,活性金属Pt颗粒尺寸及分散度直接影响菲加氢饱和产物分布;草酸处理后制备的催化剂Pt/0.05-USY、Pt/0.1-USY较未经酸处理的Pt/USY更利于菲加氢反应。全氢蒽是菲向目标产物烷基金刚烷转化的关键中间产物,异构产物烷基金刚烷生成需在USY分子筛Br?nsted酸位点完成;随着催化剂载体酸量和酸强度的降低,裂解反应程度迅速减弱;菲加氢反应最终产物以加氢饱和反应产物为主;使用Pt/0.1-USY催化剂异构反应产物烷基金刚烷收率为2.3%。
中图分类号:
王学明,李晓红,李文英. 载体酸性对Pt/USY菲加氢制烷基金刚烷的影响[J]. 化工学报, 2021, 72(10): 5196-5205.
Xueming WANG,Xiaohong LI,Wenying LI. Effect of support acidity on hydrogenation of phenanthrene to alkyl adamantane over Pt/USY catalysts[J]. CIESC Journal, 2021, 72(10): 5196-5205.
简称 | 化合物 | 结构式 | 简称 | 化合物 | 结构式 |
---|---|---|---|---|---|
PHE | 菲 | THP | 四氢菲 | ||
DHP | 二氢菲 | OHP | 八氢菲 | ||
PHP | 全氢菲 | PrA | 1,3,5,6-四甲基金刚烷 | ||
OHA | 八氢蒽 | PrA | 1,3-二甲基-5-乙基金刚烷 | ||
PHA | 全氢蒽 | PrA | 1,3,5,7-四甲基金刚烷 |
表1 菲加氢异构产物组成的简称与结构式
Table 1 Acronyms and structural formula of products in catalytic hydroisomerization of phenanthrene
简称 | 化合物 | 结构式 | 简称 | 化合物 | 结构式 |
---|---|---|---|---|---|
PHE | 菲 | THP | 四氢菲 | ||
DHP | 二氢菲 | OHP | 八氢菲 | ||
PHP | 全氢菲 | PrA | 1,3,5,6-四甲基金刚烷 | ||
OHA | 八氢蒽 | PrA | 1,3-二甲基-5-乙基金刚烷 | ||
PHA | 全氢蒽 | PrA | 1,3,5,7-四甲基金刚烷 |
样品 | 结晶度/% | 晶胞常数/nm | 骨架Si/Al比 |
---|---|---|---|
USY | 100 | 2.451 | 5.59 |
0.05-USY | 82 | 2.442 | 8.85 |
0.1-USY | 68 | 2.436 | 13.05 |
0.2-USY | 40 | 2.430 | 27.9 |
0.3-USY | — | — | — |
表2 不同浓度草酸脱铝后分子筛晶体结构参数
Table 2 Structural parameters of USY treated with different concentration of oxalic acid
样品 | 结晶度/% | 晶胞常数/nm | 骨架Si/Al比 |
---|---|---|---|
USY | 100 | 2.451 | 5.59 |
0.05-USY | 82 | 2.442 | 8.85 |
0.1-USY | 68 | 2.436 | 13.05 |
0.2-USY | 40 | 2.430 | 27.9 |
0.3-USY | — | — | — |
样品 | 比表面积/(m2/g) | 孔容 /(cm3/g) | ||||
---|---|---|---|---|---|---|
总比表面积 | 微孔 | 介孔 | 总孔容 | 微孔 | 介孔 | |
USY | 805 | 590 | 215 | 0.43 | 0.22 | 0.21 |
0.05-USY | 682 | 465 | 217 | 0.39 | 0.18 | 0.21 |
0.1-USY | 648 | 427 | 221 | 0.37 | 0.16 | 0.21 |
0.2-USY | 326 | 162 | 164 | 0.27 | 0.07 | 0.20 |
0.3-USY | 126 | 0 | 126 | 0.19 | 0 | 0.19 |
表3 不同浓度草酸脱铝后USY的比表面积和孔容
Table 3 Specific surface area and pore volume of USY after dealumination with oxalic acid
样品 | 比表面积/(m2/g) | 孔容 /(cm3/g) | ||||
---|---|---|---|---|---|---|
总比表面积 | 微孔 | 介孔 | 总孔容 | 微孔 | 介孔 | |
USY | 805 | 590 | 215 | 0.43 | 0.22 | 0.21 |
0.05-USY | 682 | 465 | 217 | 0.39 | 0.18 | 0.21 |
0.1-USY | 648 | 427 | 221 | 0.37 | 0.16 | 0.21 |
0.2-USY | 326 | 162 | 164 | 0.27 | 0.07 | 0.20 |
0.3-USY | 126 | 0 | 126 | 0.19 | 0 | 0.19 |
样品 | 150℃ | 300℃ | WB③/ (μmol/g) | WL③/ (μmol/g) | ||
---|---|---|---|---|---|---|
B①/(μmol/g) | L①/(μmol/g) | B②/(μmol/g) | L②/(μmol/g) | |||
USY | 337.1 | 160.4 | 272.2 | 125.4 | 64.9 | 35.0 |
0.05-USY | 268.1 | 152.1 | 205.0 | 117.5 | 63.1 | 34.6 |
0.1-USY | 221.2 | 152.5 | 180.9 | 114.0 | 40.3 | 38.5 |
0.2-USY | 101.0 | 61.6 | 74.7 | 53.5 | 26.3 | 21.2 |
0.3-USY | 3.5 | 6.9 | 1.6 | 4.1 | 1.9 | 2.8 |
表4 不同浓度草酸处理USY的酸性变化
Table 4 Changes of acidity of USY after dealumination with oxalic acid
样品 | 150℃ | 300℃ | WB③/ (μmol/g) | WL③/ (μmol/g) | ||
---|---|---|---|---|---|---|
B①/(μmol/g) | L①/(μmol/g) | B②/(μmol/g) | L②/(μmol/g) | |||
USY | 337.1 | 160.4 | 272.2 | 125.4 | 64.9 | 35.0 |
0.05-USY | 268.1 | 152.1 | 205.0 | 117.5 | 63.1 | 34.6 |
0.1-USY | 221.2 | 152.5 | 180.9 | 114.0 | 40.3 | 38.5 |
0.2-USY | 101.0 | 61.6 | 74.7 | 53.5 | 26.3 | 21.2 |
0.3-USY | 3.5 | 6.9 | 1.6 | 4.1 | 1.9 | 2.8 |
样品 | 总酸/(μmol/g) | SHC 收率/% | |||||||
---|---|---|---|---|---|---|---|---|---|
1 h | 2 h | 3 h | 4 h | 5 h | 6 h | 7 h | 8 h | ||
Pt/USY | 497.5 | 20.2 | 68.1 | 79.5 | 84.5 | 86.5 | 87.9 | 89.5 | 91.6 |
Pt/0.05-USY | 420.2 | 0 | 26.8 | 50.6 | 69.4 | 79.0 | 83.6 | 87.3 | 88.8 |
Pt/0.1-USY | 373.7 | 4.7 | 37.7 | 49.0 | 56.1 | 58.4 | 61.3 | 64.4 | 64.5 |
Pt/0.2-USY | 162.6 | 0 | 2.2 | 4.5 | 5.0 | 6.5 | 10.8. | 11.2 | 11.5 |
Pt/0.3-USY | 10.4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
表5 菲加氢裂解反应产物(SHC)收率随催化剂酸量变化
Table 5 Yield variation of cracking reaction products (SHC) with the acid amount of Pt/USY catalysts
样品 | 总酸/(μmol/g) | SHC 收率/% | |||||||
---|---|---|---|---|---|---|---|---|---|
1 h | 2 h | 3 h | 4 h | 5 h | 6 h | 7 h | 8 h | ||
Pt/USY | 497.5 | 20.2 | 68.1 | 79.5 | 84.5 | 86.5 | 87.9 | 89.5 | 91.6 |
Pt/0.05-USY | 420.2 | 0 | 26.8 | 50.6 | 69.4 | 79.0 | 83.6 | 87.3 | 88.8 |
Pt/0.1-USY | 373.7 | 4.7 | 37.7 | 49.0 | 56.1 | 58.4 | 61.3 | 64.4 | 64.5 |
Pt/0.2-USY | 162.6 | 0 | 2.2 | 4.5 | 5.0 | 6.5 | 10.8. | 11.2 | 11.5 |
Pt/0.3-USY | 10.4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 孔京. 高能量密度燃料分子设计及定向合成机理的理论研究[D]. 天津: 天津大学, 2011. |
Kong J. Molecular design and mechanistic simulation on orientated synthesis of high energy density fuel[D]. Tianjin: Tianjin University, 2011. | |
2 | Landa S, Macháček V. Sur l'adamantane, nouvel hydrocarbure extrait du naphte[J]. Collection of Czechoslovak Chemical Communications, 1933, 5: 1-5. |
3 | von R Schleyer P. A simple preparation of adamantane[J]. Journal of the American Chemical Society, 1957, 79(12): 3292. |
4 | Schwertfeger H, Fokin A, Schreiner P. Diamonds are a chemist’s best friend: diamondoid chemistry beyond adamantane[J]. Angewandte Chemie International Edition, 2008, 47(6): 1022-1036. |
5 | Chung H S, Chen C S H, Kremer R A, et al. Recent developments in high-energy density liquid hydrocarbon fuels[J]. Energy & Fuels, 1999, 13(3): 641-649. |
6 | Schneider A, Warren R W, Janoski E J. Formation of perhydrophenalenes and polyalkyladamantanes by isomerization of tricyclic perhydroaromatics[J]. Journal of the American Chemical Society, 1964, 86(23): 5365-5367. |
7 | 顾彦龙, 杨宏洲, 邓友全. 室温离子液体中双环戊二烯加氢以及金刚烷合成[J]. 石油化工, 2002, 31(5): 345-348. |
Gu Y L, Yang H Z, Deng Y Q. Hydrogenation of dicyclopentadiene and synthesis of adamantane in ionic liquids[J]. Petrochemical Technology, 2002, 31(5): 345-348. | |
8 | Brito L, Pirngruber G D, Guillon E, et al. Hydroconversion of perhydrophenanthrene over bifunctional Pt/H-USY zeolite catalyst[J]. ChemCatChem, 2020, 12(13): 3477-3488. |
9 | Wang L, Chen Y J, Jin S H, et al. Selective ring-shift isomerization in hydroconversion of fluorene over supported platinum catalysts[J]. Energy & Fuels, 2016, 30(4): 3403-3412. |
10 | 周卫国, 吴旭洲. 煤焦油中蒽、菲、咔唑的精制及利用[J]. 煤化工, 2002, 30(1): 1-5, 39. |
Zhou W G, Wu X Z. Refinement and application of anthracene, phenanthrene and carbazole from coal tar[J]. Coal Chemical Industry, 2002, 30(1): 1-5, 39. | |
11 | 张香文, 邱立勤, 陶然, 等. 三氯化铝催化体系合成金刚烷[J]. 石油化工, 1999, 28(8): 546-548, 561. |
Zhang X W, Qiu L Q, Tao R, et al. Studies on the AlCl3 catalyst systems for the synthesis of adamantane[J]. Petrochemical Technology, 1999, 28(8): 546-548, 561. | |
12 | Saginayev A. Syntheses, geometrical and electronic structure of alkyladamantanes and their thermodynamic characteristic according to the density functional theory[J]. Science Journal of Chemistry, 2018, 6(4): 50. |
13 | Qian W H, Yoda Y, Hirai Y, et al. Hydrodesulfurization of dibenzothiophene and hydrogenation of phenanthrene on alumina-supported Pt and Pd catalysts[J]. Applied Catalysis A: General, 1999, 184(1): 81-88. |
14 | Leite L, Benazzi E, Marchal-George N. Hydrocracking of phenanthrene over bifunctional Pt catalysts[J]. Catalysis Today, 2001, 65(2/3/4): 241-247. |
15 | Xie Z L, Feng J, Zhao W, et al. Formation of NOx and SOx precursors during the pyrolysis of coal and biomass (Ⅳ): Pyrolysis of a set of Australian and Chinese coals[J]. Fuel, 2001, 80(15): 2131-2138. |
16 | Rollmann L D, Green L A, Bradway R A, et al. Adamantanes from petroleum with zeolites[J]. Catalysis Today, 1996, 31(1/2): 163-169. |
17 | Nie X, Janik M J, Guo X, et al. A computational investigation of ring-shift isomerization of sym-octahydrophenanthrene to sym-octahydroanthracene catalyzed by acidic zeolites[J]. Physical Chemistry Chemical Physics, 2012, 14(48): 16644-16653. |
18 | Benazzi E, Leite L, Marchal-George N, et al. New insights into parameters controlling the selectivity in hydrocracking reactions[J]. Journal of Catalysis, 2003, 217(2): 376-387. |
19 | 郭建维, 米镇涛, 杨军. 沸石催化合成金刚烷[J]. 石油化工, 1998, 27(1): 34-37. |
Guo J W, Mi Z T, Yang J. Synthesis of adamantane on zeolite catalyst[J]. Petrochemical Technology, 1998, 27(1):36-39. | |
20 | Wingert W S. G.C.-M.S. analysis of diamondoid hydrocarbons in Smackover petroleums[J]. Fuel, 1992, 71(1): 37-43. |
21 | Thibault-Starzyk F, Stan I, Abelló S, et al. Quantification of enhanced acid site accessibility in hierarchical zeolites — the accessibility index[J]. Journal of Catalysis, 2009, 264(1): 11-14. |
22 | 王舒君, 刘璞生, 谢鑫, 等. 柠檬酸溶液中NaY分子筛的脱铝行为[J]. 分子催化, 2019, 33(4): 363-370. |
Wang S J, Liu P S, Xie X, et al. Dealumination behavior of zeolite NaY in citric acid solution[J]. Journal of Molecular Catalysis (China), 2019, 33(4): 363-370. | |
23 | 田志坚, 梁东白, 林励吾. 烃类加氢异构化及加氢异构裂化催化剂的研究开发[J]. 催化学报, 2009, 30(8): 705-710. |
Tian Z J, Liang D B, Lin L W. Research and development of hydroisomerization and hydrocracking catalysts in Dalian Institute of Chemical Physics[J]. Chinese Journal of Catalysis, 2009, 30(8): 705-710. | |
24 | 孙晨晨. 柴油芳烃加氢饱和及其选择性开环的研究[D]. 西安: 西安石油大学, 2016. |
Sun C C. Study on hydrogenation saturation and selective ring opening of diesel aromatics[D]. Xi'an: Xi'an Shiyou University, 2016. | |
25 | Corma A, Martı́nez A, Martı́nez-Soria V. Hydrogenation of aromatics in diesel fuels on Pt/MCM-41 catalysts[J]. Journal of Catalysis, 1997, 169(2): 480-489. |
26 | Kubička D, Kumar N, Venäläinen T, et al. Metal-support interactions in zeolite-supported noble metals: influence of metal crystallites on the support acidity[J]. The Journal of Physical Chemistry B, 2006, 110(10): 4937-4946. |
27 | 蒋端六, 蒋持衡. C5馏份的综合利用: 超强酸合成金刚烷[J]. 江苏化工, 1996, 24(6): 25-26. |
Jiang D L, Jiang C H. Comprehensive utilization of C5-fraction-synthesis of adamantane by ultrastrony acid catalyst[J]. Jiangsu Chemical Industry, 1996, 24(6): 25-26. | |
28 | Pu X, Liu N W, Shi L. Acid properties and catalysis of USY zeolite with different extra-framework aluminum concentration[J].Microporous and Mesoporous Materials, 2015, 201: 17-23. |
29 | Emeis C A. Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts[J]. Journal of Catalysis, 1993, 141(2): 347-354. |
30 | Wang Z L, Hu H S, von Szentpály L, et al. Understanding the uniqueness of 2p elements in periodic tables[J]. Chemistry — A European Journal, 2020, 26(67): 15558-15564. |
31 | Wang J, Li Q Z, Yao J D. The effect of metal-acid balance in Pt-loading dealuminated Y zeolite catalysts on the hydrogenation of benzene[J]. Applied Catalysis A: General, 1999, 184(2): 181-188. |
32 | Luo M J, Wang Q F, Li G Z, et al. AlCl3-promoted MCM-41-supported platinum catalysts with high activity and sulfur-tolerance for tetralin hydrogenation: effect of Pt-Al interaction[J]. Catalysis Communications, 2013, 35: 6-10. |
33 | Lai W C, Song C S, van Duin A, et al. Ring-shift isomerization of sym-octahydrophenanthrene into sym-octahydroanthracene. Effects of zeolite catalysts and equilibrium compositions[J]. Catalysis Today, 1996, 31(1/2): 145-161. |
34 | Beltramone A R, Resasco D E, Alvarez W E, et al. Simultaneous hydrogenation of multiring aromatic compounds over NiMo catalyst[J]. Industrial & Engineering Chemistry Research, 2008, 47(19): 7161-7166. |
[1] | 韩奎奎, 谭湘龙, 李金芝, 杨婷, 张春, 张永汾, 刘洪全, 于中伟, 顾学红. 四通道中空纤维MFI分子筛膜用于二甲苯异构体分离[J]. 化工学报, 2023, 74(6): 2468-2476. |
[2] | 王子健, 柯明, 李佳涵, 李舒婷, 孙巾茹, 童燕兵, 赵治平, 刘加英, 任璐. 短b轴ZSM-5分子筛制备方法及应用研究进展[J]. 化工学报, 2023, 74(4): 1457-1473. |
[3] | 王荣, 王永洪, 张新儒, 李晋平. 6FDA型聚酰亚胺炭分子筛气体分离膜的构筑及其应用[J]. 化工学报, 2023, 74(4): 1433-1445. |
[4] | 白宇恩, 张彬瑞, 刘东阳, 赵亮, 高金森, 徐春明. ZSM-5分子筛酸性能和孔结构的协同作用对C5烯烃催化裂解性能的影响[J]. 化工学报, 2023, 74(1): 438-448. |
[5] | 王姝焱, 张瑞阳, 刘润, 刘凯, 周莹. Mn(BO2)2/BNO界面结构调控增强催化臭氧分解性能研究[J]. 化工学报, 2022, 73(7): 3193-3201. |
[6] | 郑涛, 刘海燕, 张睿, 孟祥海, 岳源源, 刘植昌. 基于分子筛绿色合成的天然硅铝矿物介尺度活化研究进展[J]. 化工学报, 2022, 73(6): 2334-2351. |
[7] | 王婵, 肖国锡, 郭小雪, 徐人威, 岳源源, 鲍晓军. 基于介尺度结构解聚-重组装的Beta分子筛的绿色合成及应用[J]. 化工学报, 2022, 73(6): 2690-2697. |
[8] | 王旭, 张乐瑶, 张昊轩, 演嘉辉, 吴玉帅, 吴冬, 陈汇勇, 马晓迅. 中空孔结构对W掺杂MFI分子筛丙酮吸附行为的研究[J]. 化工学报, 2022, 73(3): 1194-1206. |
[9] | 王吴玉, 史玉竹, 严龙, 张兴华, 马隆龙, 张琦. 负载型Co基双功能催化剂上戊酸酯生物燃料的制备[J]. 化工学报, 2022, 73(2): 689-698. |
[10] | 苏畅, 冯晓博, 张立云, 陈峰, 赵小燕, 曹景沛. 四乙基氢氧化铵改性对HMOR分子筛结构及二甲醚羰基化性能的影响[J]. 化工学报, 2022, 73(2): 712-721. |
[11] | 王峥, 许锋, 罗雄麟. 乙炔加氢串联反应器全周期乙炔转化率最优分配研究[J]. 化工学报, 2022, 73(10): 4551-4564. |
[12] | 张超, 陈健, 殷文华, 沈圆辉, 钮朝阳, 余秀鑫, 张东辉, 唐忠利. 变压吸附氢气纯化过程瞬态分析[J]. 化工学报, 2022, 73(1): 308-321. |
[13] | 高文莉, 辛忠. Fe对Ni/SBA-16催化CO低温甲烷化促进作用的研究[J]. 化工学报, 2022, 73(1): 241-254. |
[14] | 李腾飞, 缪赟, 杨柳, 王龙耀, 朱铧丞. 微波强化Y型分子筛离子交换技术[J]. 化工学报, 2021, 72(S1): 406-412. |
[15] | 王伟, 钱伟鑫, 马宏方, 应卫勇, 张海涛. 吡啶修饰H-MOR上二甲醚羰基化吸附-扩散理论研究[J]. 化工学报, 2021, 72(9): 4786-4795. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||