化工学报 ›› 2022, Vol. 73 ›› Issue (1): 144-152.DOI: 10.11949/0438-1157.20210882
收稿日期:
2021-06-29
修回日期:
2021-10-13
出版日期:
2022-01-05
发布日期:
2022-01-18
通讯作者:
付涛涛
作者简介:
张志伟(1994—),男,硕士研究生,基金资助:
Zhiwei ZHANG(),Chunying ZHU,Youguang MA,Taotao FU(
)
Received:
2021-06-29
Revised:
2021-10-13
Online:
2022-01-05
Published:
2022-01-18
Contact:
Taotao FU
摘要:
微流体技术良好的可控性为制备高通量的单分散性气泡或液滴提供了新的途径,气泡和液滴的流动行为因在材料领域具有较大的应用前景而受到关注。综述了近年来微通道内气泡和液滴自组织行为的研究进展。气泡或液滴自组织晶格具有周期性的流动特征,自组织行为受分散相体积分数、液滴或气泡尺寸、聚并效应和通道构型的影响。展望了气泡和液滴自组织行为研究过程中待解决的关键科学问题,为进一步的模拟和实验研究提供了参考。
中图分类号:
张志伟, 朱春英, 马友光, 付涛涛. 微通道内气泡和液滴自组织行为的研究进展[J]. 化工学报, 2022, 73(1): 144-152.
Zhiwei ZHANG, Chunying ZHU, Youguang MA, Taotao FU. Progress of self-organization behavior of bubbles and droplets in microchannels[J]. CIESC Journal, 2022, 73(1): 144-152.
1 | Gai Y, Leong C M, Cai W, et al. Spatiotemporal periodicity of dislocation dynamics in a two-dimensional microfluidic crystal flowing in a tapered channel[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(43): 12082-12087. |
2 | Gershman I, Gershman E, Mironov A, et al. Application of the self-organization phenomenon in the development of wear resistant materials—a review[J]. Entropy, 2016, 18(11): 385. |
3 | Valdivia J A, Rogan J, Munoz V, et al. Hysteresis provides self-organization in a plasma model[J]. Space Science Reviews, 2006, 122(1/2/3/4): 313-320. |
4 | Gershenson C, Trianni V, Werfel J, et al. Self-organization and artificial life[J]. Artificial Life, 2020, 26(3): 391-408. |
5 | Blank M L. Self-organization under the action of a random force[J]. Doklady Mathematics, 2016, 93(1): 33-36. |
6 | Northrop B H, Zheng Y R, Chi K W, et al. Self-organization in coordination-driven self-assembly[J]. Accounts of Chemical Research, 2009, 42(10): 1554-1563. |
7 | 马余强. 软物质的自组织[J]. 物理学进展, 2002, 22(1): 73-98. |
Ma Y Q. Self organization in soft matter[J]. Progress in Physics, 2002, 22(1): 73-98. | |
8 | Gómez-López M, Preece J A, Stoddart J F. The art and science of self-assembling molecular machines[J]. Nanotechnology, 1996, 7(3): 183-192. |
9 | Umbanhowar P B, Prasad V, Weitz D A. Monodisperse emulsion generation via drop break off in a coflowing stream[J]. Langmuir, 2000, 16(2): 347-351. |
10 | Gañán-Calvo A M, Gordillo J M. Perfectly monodisperse microbubbling by capillary flow focusing[J]. Physical Review Letters, 2001, 87(27pt 1): 274501. |
11 | Clime L, Malic L, Daoud J, et al. Buoyancy-driven step emulsification on pneumatic centrifugal microfluidic platforms[J]. Lab on a Chip, 2020, 20(17): 3091-3095. |
12 | Eggersdorfer M L, Zheng W, Nawar S, et al. Tandem emulsification for high-throughput production of double emulsions[J]. Lab on a Chip, 2017, 17(5): 936-942. |
13 | Zhang Z W, Jiang S K, Zhu C Y, et al. Bubble formation in a step-emulsification microdevice with parallel microchannels[J]. Chemical Engineering Science, 2020, 224: 115815. |
14 | Ofner A, Mattich I, Hagander M, et al. Controlled massive encapsulation via tandem step emulsification in glass[J]. Advanced Functional Materials, 2019, 29(4): 1806821. |
15 | Ofner A, Moore D G, Rühs P A, et al. High-throughput step emulsification for the production of functional materials using a glass microfluidic device[J]. Macromolecular Chemistry and Physics, 2017, 218(2): 1600472. |
16 | Liu L, Xiang N, Ni Z, et al. Step emulsification: high-throughput production of monodisperse droplets[J]. BioTechniques, 2020, 68(3): 114-116. |
17 | Shen Q Y, Zhang C, Tahir M F, et al. Numbering-up strategies of micro-chemical process: uniformity of distribution of multiphase flow in parallel microchannels[J]. Chemical Engineering and Processing-Process Intensification, 2018, 132: 148-159. |
18 | 陈光文, 袁权. 微化工技术[J]. 化工学报, 2003, 54(4): 427-439. |
Chen G W, Yuan Q. Micro-chemical technology[J]. Journal of Chemical Industry and Engineering (China), 2003, 54(4): 427-439. | |
19 | Thorsen T, Roberts R W, Arnold F H, et al. Dynamic pattern formation in a vesicle-generating microfluidic device[J]. Physical Review Letters, 2001, 86(18): 4163-4166. |
20 | Durian D J. Foam mechanics at the bubble scale[J]. Physical Review Letters, 1995, 75(26): 4780-4783. |
21 | Garstecki P, Fuerstman M J, Whitesides G M. Oscillations with uniquely long periods in a microfluidic bubble generator[J]. Nature Physics, 2005, 1(3): 168-171. |
22 | Beatus T, Tlusty T, Bar-Ziv R. Phonons in a one-dimensional microfluidic crystal[J]. Nature Physics, 2006, 2(11): 743-748. |
23 | Shani I, Beatus T, Bar-Ziv R H, et al. Long-range orientational order in two-dimensional microfluidic dipoles[J]. Nature Physics, 2014, 10(2): 140-144. |
24 | Schall P, Weitz D A, Spaepen F. Structural rearrangements that govern flow in colloidal glasses[J]. Science, 2007, 318(5858): 1895-1899. |
25 | Schall P, Cohen I, Weitz D A, et al. Visualization of dislocation dynamics in colloidal crystals[J]. Science, 2004, 305(5692): 1944-1948. |
26 | Kim J H, Choi J H, Sim J Y, et al. Ordered packing of emulsion droplets toward the preparation of adjustable photomasks[J]. Langmuir, 2014, 30(19): 5404-5411. |
27 | Parthiban P, Doyle P S, Hashimoto M. Self-assembly of droplets in three-dimensional microchannels[J]. Soft Matter, 2019, 15(21): 4244-4254. |
28 | Stoffel M, Wahl S, Lorenceau E, et al. Bubble production mechanism in a microfluidic foam generator[J]. Physical Review Letters, 2012, 108(19): 198302. |
29 | Dollet B, Raufaste C. Rheology of aqueous foams[J]. Comptes Rendus Physique, 2014, 15(8/9): 731-747. |
30 | Höhler R, Yip Cheung Sang Y, Lorenceau E, et al. Osmotic pressure and structures of monodisperse ordered foam[J]. Langmuir, 2008, 24(2): 418-425. |
31 | Dollet B, Graner F. Two-dimensional flow of foam around a circular obstacle: local measurements of elasticity, plasticity and flow[J]. Journal of Fluid Mechanics, 2007, 585: 181-211. |
32 | Garstecki P, Whitesides G M. Flowing crystals: nonequilibrium structure of foam[J]. Physical Review Letters, 2006, 97(2): 024503. |
33 | Cohen-Addad S, Höhler R, Pitois O. Flow in foams and flowing foams[J]. Annual Review of Fluid Mechanics, 2013, 45(1): 241-267. |
34 | Montessori A, Lauricella M, Succi S. Mesoscale modelling of soft flowing crystals[J]. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 2019, 377(2142): 20180149. |
35 | Link D R, Anna S L, Weitz D A, et al. Geometrically mediated breakup of drops in microfluidic devices[J]. Physical Review Letters, 2004, 92(5): 054503. |
36 | Shum H C, Zhao Y J, Kim S H, et al. Multicompartment polymersomes from double emulsions[J]. Angewandte Chemie International Edition, 2011, 50(7): 1648-1651. |
37 | Hu H, Gopinadhan M, Osuji C O. Directed self-assembly of block copolymers: a tutorial review of strategies for enabling nanotechnology with soft matter[J]. Soft Matter, 2014, 10(22): 3867-3889. |
38 | Seo M, Nie Z H, Xu S Q, et al. Microfluidics: from dynamic lattices to periodic arrays of polymer disks[J]. Langmuir, 2005, 21(11): 4773-4775. |
39 | Whitesides G M, Boncheva M. Beyond molecules: self-assembly of mesoscopic and macroscopic components[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(8): 4769-4774. |
40 | Amstad E, Chemama M, Eggersdorfer M, et al. Robust scalable high throughput production of monodisperse drops[J]. Lab on a Chip, 2016, 16(21): 4163-4172. |
41 | van Dijke K C, Veldhuis G, Schroën K, et al. Simultaneous formation of many droplets in a single microfluidic droplet formation unit[J]. AIChE Journal, 2010, 56(3): 833-836. |
42 | van Dijke K C, Schroën K, van der Padt A, et al. EDGE emulsification for food-grade dispersions[J]. Journal of Food Engineering, 2010, 97(3): 348-354. |
43 | Fan J, Kim S H, Chen Z, et al. Creation of faceted polyhedral microgels from compressed emulsions[J]. Small, 2017, 13(31): 1701256. |
44 | Mann W B, Stephens R W B. XIV. Bubble formation in glass tubes[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1933, 15(96): 143-146. |
45 | Weaire D, Pittet N, Hutzler S, et al. Steady-state drainage of an aqueous foam[J]. Physical Review Letters, 1993, 71(16): 2670-2673. |
46 | Sun Q C, Hutzler S. Lattice gas simulations of two-dimensional liquid foams[J]. Rheologica Acta, 2004, 43(5): 567-574. |
47 | Bolton F, Weaire D. The effects of plateau borders in the two-dimensional soap froth I. Decoration lemma and diffusion theorem[J]. Philosophical Magazine B, 1991, 63(4): 795-809. |
48 | Furuta Y, Oikawa N, Kurita R. Close relationship between a dry-wet transition and a bubble rearrangement in two-dimensional foam[J]. Scientific Reports, 2016, 6: 37506. |
49 | Katgert G, Tighe B P, van Hecke M. The jamming perspective on wet foams[J]. Soft Matter, 2013, 9(41): 9739. |
50 | Drenckhan W, Hutzler S. Structure and energy of liquid foams[J]. Advances in Colloid and Interface Science, 2015, 224: 1-16. |
51 | Cox S J. A viscous froth model for dry foams in the surface evolver[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 263(1/2/3): 81-89. |
52 | Thutupalli S, Herminghaus S, Seemann R. Bilayer membranes in micro-fluidics: from gel emulsions to soft functional devices[J]. Soft Matter, 2011, 7(4): 1312-1320. |
53 | Hashimoto M, Shevkoplyas S S, Zasońska B, et al. Formation of bubbles and droplets in parallel, coupled flow-focusing geometries[J]. Small, 2008, 4(10): 1795-1805. |
54 | Surenjav E, Herminghaus S, Priest C, et al. Discrete microfluidics: reorganizing droplet arrays at a bend[J]. Applied Physics Letters, 2009, 95(15): 154104. |
55 | Drenckhan W, Cox S J, Delaney G, et al. Rheology of ordered foams—on the way to discrete microfluidics[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 263(1/2/3): 52-64. |
56 | 张志伟, 殷翔宇, 朱春英, 等. 台阶式并行微通道内气泡群自组装行为及其对气泡生成的反馈效应[J]. 力学学报, 2020, 52(2): 420-430. |
Zhang Z W, Yin X Y, Zhu C Y, et al. Self-assembly of bubble swarm in large cavities in step-type parallelized microchannels and its feedback on bubble formation[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 420-430. | |
57 | Raven J P, Marmottant P. Periodic microfluidic bubbling oscillator: insight into the stability of two-phase microflows[J]. Physical Review Letters, 2006, 97(15): 154501. |
58 | Saugey A, Drenckhan W, Weaire D. Wall slip of bubbles in foams[J]. Physics of Fluids, 2006, 18(5): 053101. |
59 | Cantat I, Delannay R. Dissipative flows of 2D foams[J]. The European Physical Journal E, 2005, 18(1): 55-67. |
60 | Raven J P, Marmottant P. Microfluidic crystals: dynamic interplay between rearrangement waves and flow[J]. Physical Review Letters, 2009, 102(8): 084501. |
61 | Priest C, Herminghaus S, Seemann R. Generation of monodisperse gel emulsions in a microfluidic device[J]. Applied Physics Letters, 2006, 88(2): 024106. |
62 | Jang W Y, Kraynik A M, Kyriakides S. On the microstructure of open-cell foams and its effect on elastic properties[J]. International Journal of Solids and Structures, 2008, 45(7/8): 1845-1875. |
63 | Surenjav E, Priest C, Herminghaus S, et al. Manipulation of gel emulsions by variable microchannel geometry[J]. Lab on a Chip, 2009, 9(2): 325-330. |
64 | Anazadehsayed A, Rezaee N, Naser J, et al. A review of aqueous foam in microscale[J]. Advances in Colloid and Interface Science, 2018, 256: 203-229. |
65 | Weaire D, Vaz M F, Teixeira P I C, et al. Instabilities in liquid foams[J]. Soft Matter, 2007, 3(1): 47-57. |
66 | Weaire D, Kermode J P. Computer simulation of a two-dimensional soap froth[J]. Philosophical Magazine B, 1983, 48(3): 245-259. |
67 | Tewari S, Schiemann D, Durian D J, et al. Statistics of shear-induced rearrangements in a two-dimensional model foam[J]. Physical Review E, 1999, 60(4): 4385-4396. |
68 | Graner F, Jiang Y, Janiaud E, et al. Equilibrium states and ground state of two-dimensional fluid foams[J]. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 2001, 63(1Pt 1): 011402. |
69 | Cantat I, Delannay R. Dynamical transition induced by large bubbles in two-dimensional foam flows[J]. Physical Review E, 2003, 67(3): 031501. |
70 | Okuzono T, Kawasaki K. Intermittent flow behavior of random foams: a computer experiment on foam rheology[J]. Physical Review E, 1995, 51(2): 1246-1253. |
[1] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[2] | 吴馨, 龚建英, 靳龙, 王宇涛, 黄睿宁. 超声波激励下铝板表面液滴群输运特性的研究[J]. 化工学报, 2023, 74(S1): 104-112. |
[3] | 周晓庆, 李春煜, 杨光, 蔡爱峰, 吴静怡. 液滴撞击不同曲率过冷波纹面结冰动力学行为及机理研究[J]. 化工学报, 2023, 74(S1): 141-153. |
[4] | 邵苛苛, 宋孟杰, 江正勇, 张旋, 张龙, 高润淼, 甄泽康. 水平方向上冰中受陷气泡形成和分布实验研究[J]. 化工学报, 2023, 74(S1): 161-164. |
[5] | 毕丽森, 刘斌, 胡恒祥, 曾涛, 李卓睿, 宋健飞, 吴翰铭. 粗糙界面上纳米液滴蒸发模式的分子动力学研究[J]. 化工学报, 2023, 74(S1): 172-178. |
[6] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[7] | 袁佳琦, 刘政, 黄锐, 张乐福, 贺登辉. 泡状入流条件下旋流泵能量转换特性研究[J]. 化工学报, 2023, 74(9): 3807-3820. |
[8] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和![]() |
[9] | 岳林静, 廖艺涵, 薛源, 李雪洁, 李玉星, 刘翠伟. 凹坑缺陷对厚孔板喉部空化流动特性影响研究[J]. 化工学报, 2023, 74(8): 3292-3308. |
[10] | 王海, 林宏, 王晨, 许浩洁, 左磊, 王军锋. 高压静电场强化多孔介质表面沸腾传热特性研究[J]. 化工学报, 2023, 74(7): 2869-2879. |
[11] | 何宣志, 何永清, 闻桂叶, 焦凤. 磁液液滴颈部自相似破裂行为[J]. 化工学报, 2023, 74(7): 2889-2897. |
[12] | 李正涛, 袁志杰, 贺高红, 姜晓滨. 疏水界面上的NaCl液滴蒸发过程内环流调控机制研究[J]. 化工学报, 2023, 74(5): 1904-1913. |
[13] | 王泽栋, 石至平, 刘丽艳. 考虑气泡非均匀耗散的矩形反应器声流场数值模拟及结构优化[J]. 化工学报, 2023, 74(5): 1965-1973. |
[14] | 张银宁, 王进卿, 冯致, 詹明秀, 徐旭, 张光学, 池作和. 升温条件下多孔介质内气泡的生长和聚并行为[J]. 化工学报, 2023, 74(4): 1509-1518. |
[15] | 邓璐, 巨晓洁, 张文杰, 谢锐, 汪伟, 刘壮, 潘大伟, 褚良银. 微流控法可控制备放射性壳聚糖栓塞微球[J]. 化工学报, 2023, 74(4): 1781-1794. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 622
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 494
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||