化工学报 ›› 2021, Vol. 72 ›› Issue (12): 6216-6231.DOI: 10.11949/0438-1157.20211200
邹文奇1(),陈通1,叶海木2,张淑景1,徐军1(),郭宝华1()
收稿日期:
2021-08-20
修回日期:
2021-11-26
出版日期:
2021-12-05
发布日期:
2021-12-22
通讯作者:
徐军,郭宝华
作者简介:
邹文奇(1991—),男,博士,助理研究员,基金资助:
Wenqi ZOU1(),Tong CHEN1,Haimu YE2,Shujing ZHANG1,Jun XU1(),Baohua GUO1()
Received:
2021-08-20
Revised:
2021-11-26
Online:
2021-12-05
Published:
2021-12-22
Contact:
Jun XU,Baohua GUO
摘要:
相对于传统高分子材料,生物降解高分子材料由于其能够在自然环境下降解为环境无害的物质,作为解决塑料白色污染的重要手段之一,近年来获得快速发展。对本课题组生物降解聚酯结构设计、改性及产业化等方面的研究进展进行了总结。通过无规/嵌段共聚的方式在聚二元酸二元醇酯中引入共聚单体单元、长/短支化结构可有效对材料的结晶性能、熔体强度等性能进行调控,进而实现对材料加工性能、力学性能以及生物降解速率的调控。通过对聚合工艺的创新优化,实现高分子量不饱和聚酯的合成,并阐明了其聚合机理;进一步,通过在不饱和聚酯中引入Diels-Alder反应/金属配位活性位点实现可逆交联弹性体的制备。对聚二元酸二元醇酯的结晶结构调控与结晶机理进行了深入的研究,提出了一种基于结晶成核动力学测定高分子结晶次级临界核尺寸的方法;基于类质同晶构型构象匹配设计了新型高效大分子型成核剂。在实验室研究的基础上,与企业合作建成了年产万吨生物降解聚酯及其共聚酯的生产线,生产的产品已应用于一次性餐具、超市购物袋和地膜的制备,并在新疆进行了农田可降解地膜的应用示范。
中图分类号:
邹文奇, 陈通, 叶海木, 张淑景, 徐军, 郭宝华. 可生物降解聚酯的制备及性能研究进展[J]. 化工学报, 2021, 72(12): 6216-6231.
Wenqi ZOU, Tong CHEN, Haimu YE, Shujing ZHANG, Jun XU, Baohua GUO. Research progress on the preparation and properties of biodegradable polyester[J]. CIESC Journal, 2021, 72(12): 6216-6231.
1 | Xu J, Guo B H. Poly(butylene succinate) and its copolymers: research, development and industrialization[J]. Biotechnology Journal, 2010, 5(11): 1149-1163. |
2 | 刁晓倩, 翁云宣, 宋鑫宇, 等. 国内外生物降解塑料产业发展现状[J]. 中国塑料, 2020, 34(5):123-135. |
Diao X Q, Weng Y X, Song X Y, et al. Current development situation of biodegradable plastic industry in China and abroad[J]. China Plastics, 2020, 34(5): 123-135. | |
3 | 弗里斯, 卢斯, 凯克, 等. 可生物降解的聚酯薄膜: 201280022427[P]. 2012-05-09. |
Frith F, Luz R, Keck J, et al. Biodegradable polyester film: 201280022427[P]. 2012-05-09. | |
4 | 本森, 萨姆纳, 施勒德. 利用内消旋丙交酯再循环来制备丙交酯的方法: 201080021187[P]. 2010-03-12. |
Benson R D, Sumner E S, Schroeder J D. Methods for producing lactide with recycle of meso-lactide: 201080021187[P]. 2010-03-12. | |
5 | 戈比乌斯杜萨特. 用于制备丙交酯和聚丙交酯混合物的方法: 201980043025[P]. 2019-06-25. |
Gobius Du Sart G. Process for preparation of lactide and polylactide mixture: 201980043025[P]. 2019-06-25. | |
6 | 青岛敬之, 三木康彰, 熊泽胜久, 等. 来自生物质资源的聚酯及其制造方法: 201310070301[P]. 2006-04-21. |
Takayuki A, Yasuaki M, Katsuhisa K, et al. Polyester derived from biomass resources and method for production thereof: 201310070301[P]. 2006-04-21. | |
7 | 巴斯蒂奥利, 卡普兹, 罗梭, 等. 抗光降解的可生物降解的薄膜: 201380052953[P]. 2013-10-09. |
Bastioli C, Capuzzi L, Russo C, et al. Photodegradation-resistant biodegradable films: 201380052953[P]. 2013-10-09. | |
8 | 赵巍, 焦建, 叶丹滢, 等. 一种生物降解脂肪族-芳香族共聚酯组合物及其应用: 201410711829[P]. 2014-12-01. |
Zhao W, Jiao J, Ye D L, et al. Biodegradable aliphatic-aromatic copolyester composition and application thereof: 201410711829[P]. 2014-12-01. | |
9 | 赵巍, 焦建, 叶丹滢, 等. 一种生物降解脂肪族-芳香族共聚酯及其应用: 201410711818[P]. 2014-12-01. |
Zhao W, Jiao J, Ye D L, et al. Biodegradable aliphatic-aromatic copolyester and application thereof: 201410711818[P]. 2014-12-01. | |
10 | 罗子辉, 丁建萍, 陈雷, 等. 一种全生物降解地膜及其制备方法和应用: 201910427423[P]. 2019-05-22. |
Luo Z H, Ding J P, Chen L, et al. Fully-biodegradable mulch film, and preparation method and application thereof: 201910427423[P]. 2019-05-22. | |
11 | Holmberg A L, Reno K H, Wool R P, et al. Biobased building blocks for the rational design of renewable block polymers[J]. Soft Matter, 2014, 10(38):7405-7424. |
12 | 王国利, 徐军, 郭宝华. 可生物降解聚丁二酸丁二醇酯及其共聚物的合成及改性研究进展[J]. 高分子通报, 2011(4):99-109. |
Wang G L, Xu J, Guo B H. Development in synthesis and modification of biodegradable poly(butylene succinate) and its copolymers[J]. Polymer Bulletin, 2011(4): 99-109. | |
13 | Ma J P, Pang Y, Wang M, et al. The copolymerization reactivity of diols with 2,5-furandicarboxylic acid for furan-based copolyester materials[J]. Journal of Materials Chemistry, 2012, 22(8): 3457-3461. |
14 | Wu H L, Wen B B, Zhou H, et al. Synthesis and degradability of copolyesters of 2, 5-furandicarboxylic acid, lactic acid, and ethylene glycol[J]. Polymer Degradation and Stability, 2015, 121: 100-104. |
15 | Zheng L C, Wang Z D, Wu S H, et al. Novel poly(butylene fumarate) and poly(butylene succinate) multiblock copolymers bearing reactive carbon-carbon double bonds: synthesis, characterization, cocrystallization, and properties[J]. Industrial & Engineering Chemistry Research, 2013, 52(18): 6147-6155. |
16 | Wang J G, Liu X Q, Zhu J, et al. Copolyesters based on 2, 5-furandicarboxylic acid (FDCA): effect of 2, 2, 4, 4-tetramethyl-1, 3-cyclobutanediol units on their properties[J]. Polymers, 2017, 9(12): 305. |
17 | Sousa A F, Matos M, Freire C S R, et al. New copolyesters derived from terephthalic and 2, 5-furandicarboxylic acids: a step forward in the development of biobased polyesters[J]. Polymer, 2013, 54(2): 513-519. |
18 | 唐一壬, 齐治国, 张旸, 等. 生物降解塑料聚丁二酸丁二酯及其共聚物: 从基础研究到产业化[J]. 高分子通报, 2015(9): 126-141. |
Tang Y R, Qi Z G, Zhang Y, et al. Biodegradable plastics poly(butylene succinate) and its copolymers: from fundamental research to industrialization[J]. Polymer Bulletin, 2015(9): 126-141. | |
19 | 孙元碧, 徐军, 徐永祥, 等. 生物可降解聚丁二酸/甲基丁二酸丁二酯系列共聚物的合成和表征[J]. 高等学校化学学报, 2006, 27(2): 360-364. |
Sun Y B, Xu J, Xu Y X, et al. Synthesis and characterization of biodegradable poly(butylene succinate-co-butylene methyl succinate)[J]. Chemical Journal of Chinese Universities, 2006, 27(2): 360-364. | |
20 | Liu J, Ye H M, Xu J, et al. Formation of ring-banded spherulites of α and β modifications in poly(butylene adipate)[J]. Polymer, 2011, 52(20): 4619-4630. |
21 | 徐永祥, 徐军, 孙元碧,等. 聚(丁二酸丁二酯-co-丁二酸丙二酯)的等温结晶行为研究[J]. 高分子学报, 2006 (8):1000-1006. |
Xu Y X, Xu J, Sun Y B, et al. Crystallization behavior of poly(butylene succinate-co-propylene succinate)s[J]. Acta Polymerica Sinica, 2006 (8):1000-1006. | |
22 | Xu Y X, Xu J, Guo B H, et al. Crystallization kinetics and morphology of biodegradable poly(butylene succinate-co-propylene succinate)s[J]. Journal of Polymer Science Part B: Polymer Physics, 2007, 45(4):420-428. |
23 | Wang G L, Gao B, Ye H M, et al. Synthesis and characterizations of branched poly(butylene succinate) copolymers with 1, 2-octanediol segments[J]. Journal of Applied Polymer Science, 2010, 117(5): 2538-2544. |
24 | Ye H M, Tang Y R, Song Y Y, et al. Aliphatic copolyester with isomorphism in limited composition range[J]. Polymer, 2014, 55(22): 5811-5820. |
25 | 孙元碧, 徐军, 徐永祥,等. 生物可降解聚丁二酸/苯基丁二酸丁二醇酯系列共聚物的合成及其结晶行为[J]. 高分子学报, 2006, 6(6):745-749. |
Sun Y B, Xu J, Xu Y X, et al. Synthesis and crystallization behavior of biodegradable poly(butylene succinate-co-butylene phenylsuccinate)[J]. Acta Polymerica Sinica, 2006, 6(6):745-749. | |
26 | Ye H M, Wang R D, Liu J, et al. Isomorphism in poly(butylene succinate-co-butylene fumarate) and its application as polymeric nucleating agent for poly(butylene succinate)[J]. Macromolecules, 2012, 45(14): 5667-5675. |
27 | Ye H M, Tang Y R, Xu J, et al. Role of poly(butylene fumarate) on crystallization behavior of poly(butylene succinate)[J]. Industrial & Engineering Chemistry Research, 2013, 52(31): 10682-10689. |
28 | Mochizuki M, Mukai K, Yamada K, et al. Structural effects upon enzymatic hydrolysis of poly(butylene succinate-co-ethylene succinate)s[J]. Macromolecules, 1997, 30(24):7403-7407. |
29 | Xu Y X, Xu J, Liu D H, et al. Synthesis and characterization of biodegradable poly(butylene succinate-co-propylene succinate)s[J]. Journal of Applied Polymer Science, 2008, 109(3): 1881-1889. |
30 | Rizzarelli P, Puglisi C, Montaudo G. Soil burial and enzymatic degradation in solution of aliphatic co-polyesters[J]. Polymer Degradation and Stability, 2004, 85(2): 855-863. |
31 | 郭宝华, 丁慧鸽, 徐晓琳, 等. 生物可降解共聚物聚丁二酸/对苯二甲酸丁二醇酯(PBST)的序列结构及结晶性研究[J]. 高等学校化学学报, 2003, 24(12): 2312-2316. |
Guo B H, Ding H G, Xu X L, et al. Studies on the sequence structure and crystallinity of poly(butylene succinate) copolymers with terephthalic acid[J]. Chemical Research in Chinese Universities, 2003, 24(12): 2312-2316. | |
32 | Xu J, Guo B H. Microbial succinic acid, its polymer poly (butylene succinate), and applications[M]// |
Chen G Q. Plastics from Bacteria. Microbiology Monographs.vol 14. Berlin, Heidelberg: Springer, 2010, 347-388. | |
33 | Fujimaki T. Processability and properties of aliphatic polyesters, 'BIONOLLE', synthesized by polycondensation reaction[J]. Polymer Degradation and Stability, 1998, 59( 1/2/3):209-214. |
34 | 高兵. 可降解聚丁二酸丁二酯及其共聚物的合成及性能研究[D].北京: 清华大学, 2009. |
Gao B. Synthesis and characterization of biodegradable poly(butylene succinate) copolymers[D]. Beijing: Tsinghua University, 2009. | |
35 | Zheng L C, Wang Z D, Li C C, et al. Novel unsaturated aliphatic polyesters: synthesis, characterization, and properties of multiblock copolymers composing of poly(butylene fumarate) and poly(1, 2-propylene succinate)[J]. Industrial & Engineering Chemistry Research, 2012, 51(43): 14107-14114. |
36 | Zheng L C, Li C C, Wang Z D, et al. Novel biodegradable and double crystalline multiblock copolymers comprising of poly(butylene succinate) and poly(ε-caprolactone): synthesis, characterization, and properties[J]. Industrial & Engineering Chemistry Research, 2012, 51(21): 7264-7272. |
37 | Zhou J L, Zhu Q Q, Pan W N, et al. Thermal stability of bio-based aliphatic-semiaromatic copolyester for melt-spun fibers with excellent mechanical properties[J]. Macromolecular Rapid Communications, 2021, 42(3): 2000498. |
38 | Li S M, Rashkov I, Espartero J L, et al. Synthesis, characterization, and hydrolytic degradation of PLA/PEO/PLA triblock copolymers with long poly(L-lactic acid) blocks[J]. Macromolecules, 1996, 29(1): 57-62. |
39 | Wu S Y, Zhang Y, Han J R, et al. Copolymerization with polyether segments improves the mechanical properties of biodegradable polyesters[J]. ACS Omega, 2017, 2(6):2639-2648. |
40 | Nojima S, Kakihira H, Tanimoto S, et al. Crystallization of poly(ε-caprolactone)-block-polystyrene copolymers from glassy microdomain structures[J]. Polymer Journal, 2000,32(1):75-78. |
41 | Castillo R V, Müller A J. Crystallization and morphology of biodegradable or biostable single and double crystalline block copolymers[J]. Progress in Polymer Science, 2009, 34(6): 516-560. |
42 | Gan Z, Abe H, Kurokawa H, et al. Solid-state microstructures, thermal properties, and crystallization of biodegradable poly(butylene succinate) (PBS) and its copolyesters[J]. Biomacromolecules, 2001, 2(2):605-613. |
43 | 邬舒怡. 生物可降解丁二酸基共聚酯的合成和性能研究[D].北京: 清华大学, 2017. |
Wu S Y. Synthesis and properties study on biodegradable poly(butylene succinate) copolymers[D]. Beijing: Tsinghua University, 2017. | |
44 | Han J R, Weng Y X, Xu J, et al. Thermo-sensitive micelles based on amphiphilic poly(butylene 2-methylsuccinate)-poly(ethylene glycol) multi-block copolyesters as the pesticide carriers[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 575:84-93. |
45 | Souza P M S, Morales A R, Sanchez E M S, et al. Study of PBAT photostabilization with ultraviolet absorber in combination with hindered amine light stabilizer and vitamin E, aiming mulching film application[J]. Journal of Polymers and the Environment, 2018, 26(8): 3422-3436. |
46 | 唐钰晗. 负载型紫外线吸收剂的制备及其在 PBAT中的应用研究[D]. 广州: 华南理工大学, 2018. |
Tang Y H. The preparation of supported UV absorber and its application in PBAT films[D]. Guangzhou: South China University of Technology, 2018. | |
47 | Sintim H Y, Bary A I, Hayes D G, et al. Release of micro-and nanoparticles from biodegradable plastic during in situ composting[J]. The Science of The Total Environment, 2019, 675:686-693. |
48 | Zhang Y, Han J R, Wu S Y, et al. Synthesis, physical properties and photodegradation of functional poly(butylene succinate) covalently linking UV stabilizing moieties in molecular chains[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 524:160-168. |
49 | Lehn J M, Eliseev A V. Dynamic combinatorial chemistry[J]. Science, 2001, 291(5512):2331-2332. |
50 | Jin Y, Yu C, Denman R J, et al. Recent advances in dynamic covalent chemistry[J]. Chemical Society Reviews, 2013, 42(16):6634-6654. |
51 | Zhang Y, Barboiu M. Constitutional dynamic materials—toward natural selection of function[J]. Chemical Reviews, 2016, 116(3): 809-834. |
52 | Zhang Y, Li T, Xie Z, et al. Synthesis and properties of biobased multiblock polyesters containing poly(2,5-furandimethylene succinate) and poly(butylene succinate) blocks[J]. Industrial & Engineering Chemistry Research, 2017, 56(14):3937-3946. |
53 | Zhang Y, Dai Z, Han J, Li T, Xu J, Guo B. Interplay between crystallization and Diels -Alder reaction in biobased multiblock copolyesters possessing dynamic covalent bond[J]. Polymer Chemistry, 2017, 8, 4280-4289. |
54 | Chen T, Tian S N, Xie Z N, et al. Two new approaches based on dynamic carboxyl-hydroxyl or hydroxyl-carboxyl transformation for high molecular weight poly (butylene maleate)[J]. Polymer Chemistry, 2020, 11(36): 5884-5892. |
55 | Chen T, Geng K, Gao Y, et al. Highly stretchable and strong poly(butylene maleate) elastomers via metal-ligand interactions[J]. Polymer Chemistry, 2021, 12(6): 893-902 |
56 | Zheng L C, Wang Z D, Li C C, et al. Synthesis, characterization and properties of novel linear poly(butylene fumarate) bearing reactive double bonds[J]. Polymer, 2013, 54(2):631-638. |
57 | Wu S H, Zheng L C, Li C C, et al. A facile and versatile strategy to efficiently synthesize sulfonated poly(butylene succinate), self-assembly behavior and biocompatibility[J]. Polymer Chemistry, 2015, 6(9):1495-1501. |
58 | Qi J F, Wu J, Chen J Y, et al. An investigation of the thermal and (bio)degradability of PBS copolyesters based on isosorbide[J]. Polymer Degradation and Stability, 2019(160): 229-241. |
59 | Hu X R, Li Y, Gao Y, et al. Renewable and super-toughened poly (butylene succinate) with bio-based elastomers: preparation, compatibility and performances[J]. European Polymer Journal, 2019, 116: 438-444. |
60 | Tachibana Y, Yamahata M, Kimura S, et al. Synthesis, physical properties, and biodegradability of biobased poly(butylene succinate-co-butylene oxabicyclate)[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(8): 10806-10814. |
61 | Zhang X W, Nakagawa R, Chan K H K, et al. Mechanical property enhancement of polylactide nanofibers through optimization of molecular weight, electrospinning conditions, and stereocomplexation[J]. Macromolecules, 2012, 45(13):5494-5500. |
62 | Jariyasakoolroj P, Rojanaton N, Jarupan L. Crystallization behavior of plasticized poly(Lactide) film by poly( L-lactic acid)-poly(ethylene glycol)-poly( L-lactic acid) triblock copolymer[J]. Polymer Bulletin, 2020, 77(5):2309-2323. |
63 | Tsuji H, Iguchi K, Tashiro K, et al. Crystallization behavior, structure, morphology, and thermal properties of crystalline and amorphous stereo diblock copolymers, poly (L-lactide)-b-poly (DL-lactide)[J]. Polymer Chemistry, 2020, 11(36): 5711-5724. |
64 | Lee S, Jin Y, Lim K T, et al. Synthesis and properties of block copolymers of enantiomeric polylactide and biopolyester[J]. Molecular Crystals and Liquid Crystals, 2019,688(1): 14-21. |
65 | Fan T T, Ye W Y, Du B B, et al. Effect of segment structures on the hydrolytic degradation behaviors of totally degradable poly(L‐lactic acid)-based copolymers[J]. Journal of Applied Polymer Science, 2019, 136(33): 47887. |
66 | Zaaba N F, Jaafar M. A review on degradation mechanisms of polylactic acid: hydrolytic, photodegradative, microbial, and enzymatic degradation[J]. Polymer Engineering & Science, 2020, 60(9): 2061-2075. |
67 | Lodge T P. Celebrating 50 years of macromolecules[J]. Macromolecules, 2017, 50(24):9525-9527. |
68 | Hu W B. The physics of polymer chain-folding[J]. Physics Reports, 2018, 747: 1-50. |
69 | Jiang N, Zhao L F, Gan Z H. Influence of nucleating agent on the formation and enzymatic degradation of poly(butylene adipate) polymorphic crystals[J]. Polymer Degradation and Stability, 2010, 95(6): 1045-1053. |
70 | Luo F, Geng C Z, Wang K, et al. New understanding in tuning toughness of β-polypropylene: the role of β-nucleated crystalline morphology[J]. Macromolecules, 2009, 42(23): 9325-9331. |
71 | Zhang S J, Han J R, Gao Y, et al. Determination of the critical size of secondary nuclei on the lateral growth front of lamellar polymer crystals[J]. Macromolecules, 2019, 52(19): 7439-7447. |
72 | Lauritzen J I, Hoffman J D. Theory of formation of polymer crystals with folded chains in dilute solution[J]. Journal of Research of the National Bureau of Standards Section A Physics and Chemistry, 1960, 64A(1):73-102. |
73 | Hoffman J D, Lauritzen J I. Crystallization of bulk polymers with chain folding: theory of growth of lamellar spherulites[J]. Journal of Research of the National Bureau of Standards Section A Physics and Chemistry, 1961, 65A(4):297. |
74 | Zhang S J, Guo B H, Reiter G, et al. Estimation of the size of critical secondary nuclei of melt-grown poly(L-lactide) lamellar crystals[J]. Macromolecules, 2020, 53(9). 3482-3492. |
75 | Zhao C, He X, Zou G, et al. Biodegradable poly(butylene succinate-co-butylene dimerized fatty acid)s: synthesis, crystallization, mechanical properties, and rheology[J]. Polymer Science Series B, 2016, 58(2):183-193. |
76 | Tan B, Bi S, Emery K, et al. Bio-based poly(butylene succinate-co-hexamethylene succinate) copolyesters with tunable thermal and mechanical properties[J]. European Polymer Journal, 2017, 86:162-172. |
77 | Allegra G, Bassi I W. Isomorphism in synthetic macromolecular systems[J]. Advances in Polymer Science, 1969, 6(4):549-574. |
78 | Ichikawa Y, Kondo H, Igarashi Y, et al. Crystal structures of α and β forms of poly(tetramethylene succinate)[J]. Polymer, 2000, 41(12): 4719-4727. |
79 | Jiang J, Zhuravlev E, Hu W B, et al. The effect of self-nucleation on isothermal crystallization kinetics of poly(butylene succinate) (PBS) investigated by differential fast scanning calorimetry[J]. Chinese Journal of Polymer Science, 2017, 35(8):1009-1019. |
80 | Ye H M, Yao S F. Supernucleating role of poly(ω-pentadecalactone) during the crystallization of poly(ε-caprolactone) composites[J]. Industrial & Engineering Chemistry Research, 2017, 56(46):13725-13733. |
81 | Ye H M, Liu P, Wang C X, et al. Polymorphism regulation in poly(hexamethylene succinate-co-hexamethylene fumarate): altering the hydrogen bonds in crystalline lattice[J]. Polymer, 2017, 108:272-280. |
82 | Ye H M, Wang J, Wang C S, et al. Unique isodimorphism of poly(decamethylene succinate-ran-decamethylene fumarate): large pseudoeutectic region and fantastic crystallization/melting behavior[J]. Macromolecules, 2019, 52(4): 1447-1457. |
83 | Wei X W, Huang G Y, Wang J, et al. Tailoring crystallization of random terpolyester: combination of isodimorphism and isomorphism[J]. Macromolecules, 2020, 53(20): 8918-8927. |
[1] | 于宏鑫, 邵双全. 水结晶过程的分子动力学模拟分析[J]. 化工学报, 2023, 74(S1): 250-258. |
[2] | 傅予, 刘兴翀, 王瀚雨, 李海敏, 倪亚飞, 邹文静, 雷月, 彭永姗. F3EACl修饰层对钙钛矿太阳能电池性能提升的研究[J]. 化工学报, 2023, 74(8): 3554-3563. |
[3] | 张澳, 罗英武. 低模量、高弹性、高剥离强度丙烯酸酯压敏胶[J]. 化工学报, 2023, 74(7): 3079-3092. |
[4] | 苏晓丹, 朱干宇, 李会泉, 郑光明, 孟子衡, 李防, 杨云瑞, 习本军, 崔玉. 湿法磷酸半水工艺考察与石膏结晶过程研究[J]. 化工学报, 2023, 74(4): 1805-1817. |
[5] | 靳志远, 单国荣, 潘鹏举. AM/AMPS/SSS三元共聚物的制备及耐温耐盐性能[J]. 化工学报, 2023, 74(2): 916-923. |
[6] | 苏伟怡, 丁佳慧, 李春利, 王洪海, 姜艳军. 酶促反应结晶研究进展[J]. 化工学报, 2023, 74(2): 617-629. |
[7] | 周璇, 李孟亚, 孙杰, 岑振凯, 吕强三, 周立山, 王海涛, 韩丹丹, 龚俊波. 添加剂对氨基酸晶体生长的影响[J]. 化工学报, 2023, 74(2): 500-510. |
[8] | 陈毓明, 历伟, 严翔, 王靖岱, 阳永荣. 初生态聚乙烯聚集态结构调控研究进展[J]. 化工学报, 2023, 74(2): 487-499. |
[9] | 孙国鑫, 苟萌萱, 周诚, 常佩, 贺高红, 姜晓滨. 高浓度Na+//NO |
[10] | 乃学瑛, 吴鹏, 程远, 肖剑飞, 刘鑫, 董亚萍. 水热生长碱式硫酸镁纳米线结晶动力学研究[J]. 化工学报, 2022, 73(7): 3038-3044. |
[11] | 殷海青, 马祎明, 万旭兴, 董伟兵, 张玉龙, 吴送姑. 碳酸锂气液固三相反应结晶过程研究[J]. 化工学报, 2022, 73(3): 1207-1220. |
[12] | 陈雪梅, 王彤, 高玉箔, 彭鼎程, 罗雨婷. 利用激光诱导石墨烯实现高效太阳能界面蒸发[J]. 化工学报, 2022, 73(12): 5648-5659. |
[13] | 敬鹏程, 陈立涛, 闫传梁, 姜传祥, 夏煜翔, 于常宏, 王昊天. 超声波悬浮TBAB溶液液滴表面半笼型水合物生长过程研究[J]. 化工学报, 2022, 73(11): 4893-4902. |
[14] | 贺冲, 白进, 郭晶, 孔令学, 鲁浩, 李怀柱, 秦育红, 李文. 气氛和化学组成对高铁煤灰熔融特性的影响机理[J]. 化工学报, 2022, 73(10): 4648-4658. |
[15] | 郑海峰, 贾晟哲, 王崧成, 韩瑞, 韩丹丹, 高振国, 龚俊波. 超细晶体的研究进展[J]. 化工学报, 2022, 73(10): 4285-4297. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||