化工学报 ›› 2022, Vol. 73 ›› Issue (8): 3369-3380.DOI: 10.11949/0438-1157.20220588
收稿日期:
2022-04-25
修回日期:
2022-05-31
出版日期:
2022-08-05
发布日期:
2022-09-06
通讯作者:
邱学青,张文礼
作者简介:
钟磊(1995—),男,博士研究生,zhongleilucky@126.com
基金资助:
Lei ZHONG1(), Xueqing QIU1,2(), Wenli ZHANG1,2,3()
Received:
2022-04-25
Revised:
2022-05-31
Online:
2022-08-05
Published:
2022-09-06
Contact:
Xueqing QIU, Wenli ZHANG
摘要:
碱金属离子在商品化石墨负极材料的嵌入/脱出过程中会发生较大的体积膨胀,导致容量衰减快、倍率性能差等问题。木质素衍生炭材料具有原料丰富、经济、制备工艺简单及结构可控等优点,作为碱金属离子电池负极表现出较高的容量、较好的倍率性能和循环稳定性。木质素衍生炭材料在过去十多年中取得了一些研究进展。基于此,简要介绍了碱金属离子电池碳材料负极的储能机理及特点,系统综述了木质素衍生炭材料在碱金属离子电池负极材料中的最新研究进展,重点总结了其合成策略、结构特征、储存机理以及其电化学性能等,指出了层间距调控、碳层排序和表面功能化与电化学性能之间的构效关系。此外,拓展概述了木质素衍生炭材料的发展前景和面临的挑战,为木质素衍生炭材料的下一步研究和开发提供参考。
中图分类号:
钟磊, 邱学青, 张文礼. 木质素衍生炭在碱金属离子电池负极中的研究进展[J]. 化工学报, 2022, 73(8): 3369-3380.
Lei ZHONG, Xueqing QIU, Wenli ZHANG. Advances in lignin-derived carbon anodes for alkali metal ion batteries[J]. CIESC Journal, 2022, 73(8): 3369-3380.
1 | 程晓琴, 李慧君, 赵振新, 等. 原位拉曼光谱在碱金属离子电池炭负极材料研究中的应用[J]. 新型炭材料, 2021, 36(1):93-105. |
Cheng X Q, Li H J, Zhao Z X, et al. The use of in situ Raman spectroscopy in investigating carbon materials as anodes of alkali metal-ion batteries[J]. New Carbon Materials, 2021, 36(1):93-105. | |
2 | 王帅, 甘林火, 吕丽. 木质素基介孔碳材料的制备及应用进展[J]. 化工进展, 2019, 38(8): 3720-3729. |
Wang S, Gan L H, Lyu L. Progress in preparation and application of lignin-derived mesoporous carbon materials[J]. Chemical Industry and Engineering Progress, 2019, 38(8): 3720-3729. | |
3 | Jian Z L, Luo W, Ji X L. Carbon electrodes for K-ion batteries[J]. Journal of the American Chemical Society, 2015, 137(36): 11566-11569. |
4 | Svinterikos E, Zuburtikudis I, Al-Marzouqi M. Electrospun lignin-derived carbon micro- and nanofibers: a review on precursors, properties, and applications[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(37): 13868-13893. |
5 | Moriwake H, Kuwabara A, Fisher C A J, et al. Why is sodium-intercalated graphite unstable? [J]. RSC Advances, 2017, 7(58): 36550-36554. |
6 | Khan R J, Lau C Y, Guan J Y, et al. Recent advances of lignin valorization techniques toward sustainable aromatics and potential benchmarks to fossil refinery products[J]. Bioresource Technology, 2022, 346: 126419. |
7 | 钟磊, 王超, 吕高金, 等. 低共熔溶剂在木质素分离方面的研究进展[J]. 林产化学与工业, 2020, 40(3): 12-22. |
Zhong L, Wang C, Lyu G J, et al. A review of deep eutectic solvents for lignin isolation[J]. Chemistry and Industry of Forest Products, 2020, 40(3): 12-22. | |
8 | 吴彩文, 黄丽菁, 邹春阳, 等. 木质素在储能领域中的应用研究进展[J]. 储能科学与技术, 2020, 9(6): 1737-1746. |
Wu C W, Huang L J, Zou C Y, et al. Research progress of the lignin in application energy storage[J]. Energy Storage Science and Technology, 2020, 9(6): 1737-1746. | |
9 | Wen F W, Zhang W L, Jian W B, et al. Sustainable production of lignin-derived porous carbons for high-voltage electrochemical capacitors[J]. Chemical Engineering Science, 2022, 255: 117672. |
10 | Lu L G, Han X B, Li J Q, et al. A review on the key issues for lithium-ion battery management in electric vehicles[J]. Journal of Power Sources, 2013, 226: 272-288. |
11 | Goodenough J B, Park K S. The Li-ion rechargeable battery: a perspective[J]. Journal of the American Chemical Society, 2013, 135(4): 1167-1176. |
12 | Liu H Y, Xu T, Liu K, et al. Lignin-based electrodes for energy storage application[J]. Industrial Crops and Products, 2021, 165: 113425. |
13 | Tenhaeff W E, Rios O, More K, et al. Highly robust lithium ion battery anodes from lignin: an abundant, renewable, and low-cost material[J]. Advanced Functional Materials, 2014, 24(1): 86-94. |
14 | Xie L J, Tang C, Bi Z H, et al. Hard carbon anodes for next-generation Li-ion batteries: review and perspective[J]. Advanced Energy Materials, 2021, 11(38): 2101650. |
15 | Dahn J R, Zheng T, Liu Y H, et al. Mechanisms for lithium insertion in carbonaceous materials[J]. Science, 1995, 270(5236): 590-593. |
16 | Stevens D A, Dahn J R. The mechanisms of lithium and sodium insertion in carbon materials[J]. Journal of the Electrochemical Society, 2001, 148(8): A803. |
17 | Stevens D A, Dahn J R. High capacity anode materials for rechargeable sodium-ion batteries[J]. Journal of the Electrochemical Society, 2000, 147(4): 1271. |
18 | Zhang L P, Wang W, Lu S F, et al. Carbon anode materials: a detailed comparison between Na-ion and K-ion batteries[J]. Advanced Energy Materials, 2021, 11(11): 2003640. |
19 | Hou H S, Qiu X Q, Wei W F, et al. Carbon anode materials for advanced sodium-ion batteries[J]. Advanced Energy Materials, 2017, 7(24): 1602898. |
20 | Alvin S, Cahyadi H S, Hwang J, et al. Revealing the intercalation mechanisms of lithium, sodium, and potassium in hard carbon[J]. Advanced Energy Materials, 2020, 10(20): 2000283. |
21 | Huang S F, Li Z P, Wang B, et al. N-doping and defective nanographitic domain coupled hard carbon nanoshells for high performance lithium/sodium storage[J]. Advanced Functional Materials, 2018, 28(10): 1706294. |
22 | Zhang W L, Yin J, Lin Z Q, et al. Facile preparation of 3D hierarchical porous carbon from lignin for the anode material in lithium ion battery with high rate performance[J]. Electrochimica Acta, 2015, 176: 1136-1142. |
23 | 王才威, 杨东杰, 邱学青, 等. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300. |
Wang C W, Yang D J, Qiu X Q, et al. Applications of lignin-derived porous carbons for electrochemical energy storage[J]. Progress in Chemistry, 2022, 34(2): 285-300. | |
24 | Jian W B, Zhang W L, Wu B C, et al. Enzymatic hydrolysis lignin-derived porous carbons through ammonia activation: activation mechanism and charge storage mechanism[J]. ACS Applied Materials & Interfaces, 2022, 14(4): 5425-5438. |
25 | Xi Y B, Yang D J, Qiu X Q, et al. Renewable lignin-based carbon with a remarkable electrochemical performance from potassium compound activation[J]. Industrial Crops and Products, 2018, 124: 747-754. |
26 | Xi Y B, Wang Y Y, Yang D J, et al. K2CO3 activation enhancing the graphitization of porous lignin carbon derived from enzymatic hydrolysis lignin for high performance lithium-ion storage[J]. Journal of Alloys and Compounds, 2019, 785: 706-714. |
27 | Xi Y B, Huang S, Yang D J, et al. Hierarchical porous carbon derived from the gas-exfoliation activation of lignin for high-energy lithium-ion batteries[J]. Green Chemistry, 2020, 22(13): 4321-4330. |
28 | Huang S, Yang D J, Zhang W L, et al. Dual-templated synthesis of mesoporous lignin-derived honeycomb-like porous carbon/SiO2 composites for high-performance Li-ion battery[J]. Microporous and Mesoporous Materials, 2021, 317: 111004. |
29 | Chen F, Wu L, Zhou Z P, et al. MoS2 decorated lignin-derived hierarchical mesoporous carbon hybrid nanospheres with exceptional Li-ion battery cycle stability[J]. Chinese Chemical Letters, 2019, 30(1): 197-202. |
30 | Du L L, Wu W, Luo C, et al. Lignin derived Si@C composite as a high performance anode material for lithium ion batteries[J]. Solid State Ionics, 2018, 319: 77-82. |
31 | Yi X L, He W, Zhang X D, et al. Graphene-like carbon sheet/Fe3O4 nanocomposites derived from soda papermaking black liquor for high performance lithium ion batteries[J]. Electrochimica Acta, 2017, 232: 550-560. |
32 | Zhou Z P, Chen F, Kuang T R, et al. Lignin-derived hierarchical mesoporous carbon and NiO hybrid nanospheres with exceptional Li-ion battery and pseudocapacitive properties[J]. Electrochimica Acta, 2018, 274: 288-297. |
33 | Chang Z Z, Yu B J, Wang C Y. Influence of H2 reduction on lignin-based hard carbon performance in lithium ion batteries[J]. Electrochimica Acta, 2015, 176: 1352-1357. |
34 | Cheng J Y, Yi Z L, Wang Z B, et al. Towards optimized Li-ion storage performance: insight on the oxygen species evolution of hard carbon by H2 reduction[J]. Electrochimica Acta, 2020, 337: 135736. |
35 | Du Y F, Sun G H, Li Y, et al. Pre-oxidation of lignin precursors for hard carbon anode with boosted lithium-ion storage capacity[J]. Carbon, 2021, 178: 243-255. |
36 | Wang S C, Bai J X, Innocent M T, et al. Lignin-based carbon fibers: formation, modification and potential applications[J]. Green Energy & Environment, 2022, 7(4): 578-605. |
37 | Choi D I, Lee J N, Song J, et al. Fabrication of polyacrylonitrile/lignin-based carbon nanofibers for high-power lithium ion battery anodes[J]. Journal of Solid State Electrochemistry, 2013, 17(9): 2471-2475. |
38 | Wang S X, Yang L P, Stubbs L P, et al. Lignin-derived fused electrospun carbon fibrous mats as high performance anode materials for lithium ion batteries[J]. ACS Applied Materials & Interfaces, 2013, 5(23): 12275-12282. |
39 | Stojanovska E, Pampal E S, Kilic A, et al. Developing and characterization of lignin-based fibrous nanocarbon electrodes for energy storage devices[J]. Composites Part B: Engineering, 2019, 158: 239-248. |
40 | Culebras M, Geaney H, Beaucamp A, et al. Bio-derived carbon nanofibres from lignin as high-performance Li-ion anode materials[J]. ChemSusChem, 2019, 12(19): 4516-4521. |
41 | Yu F Q, Li Y L, Jia M, et al. Elaborate construction and electrochemical properties of lignin-derived macro-/ micro-porous carbon-sulfur composites for rechargeable lithium-sulfur batteries: the effect of sulfur-loading time[J]. Journal of Alloys and Compounds, 2017, 709: 677-685. |
42 | Yeon J S, Park S H, Suk J, et al. Confinement of sulfur in the micropores of honeycomb-like carbon derived from lignin for lithium-sulfur battery cathode[J]. Chemical Engineering Journal, 2020, 382: 122946. |
43 | Liu Y Y, Merinov B V, Goddard W A. Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(14): 3735-3739. |
44 | 曹斌, 李喜飞. 钠离子电池炭基负极材料研究进展[J]. 物理化学学报, 2020, 36(5): 89-104. |
Cao B, Li X F. Recent progress on carbon-based anode materials for Na-ion batteries[J]. Acta Physico-Chimica Sinica, 2020, 36(5): 89-104. | |
45 | Qiu S, Xiao L F, Sushko M L, et al. Manipulating adsorption-insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage[J]. Advanced Energy Materials, 2017, 7(17): 1700403. |
46 | Bai P X, He Y W, Zou X X, et al. Elucidation of the sodium-storage mechanism in hard carbons[J]. Advanced Energy Materials, 2018, 8(15): 1703217. |
47 | Li C H, Sun Y, Wu Q J, et al. A novel design strategy of a practical carbon anode material from a single lignin-based surfactant source for sodium-ion batteries[J]. Chemical Communications, 2020, 56(45): 6078-6081. |
48 | Luo W, Schardt J, Bommier C, et al. Carbon nanofibers derived from cellulose nanofibers as a long-life anode material for rechargeable sodium-ion batteries[J]. Journal of Materials Chemistry A, 2013, 1(36): 10662. |
49 | Chen T Q, Liu Y, Pan L K, et al. Electrospun carbon nanofibers as anode materials for sodium ion batteries with excellent cycle performance[J]. Journal of Materials Chemistry A, 2014, 2(12): 4117. |
50 | Jia H, Sun N, Dirican M, et al. Electrospun kraft lignin/cellulose acetate-derived nanocarbon network as an anode for high-performance sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(51): 44368-44375. |
51 | 王华燕, 陈慧鑫, 张桥保, 等. 生物质碳材料作为钠/钾离子电池负极材料的研究进展[J]. 中国材料进展, 2021, 40(8): 596-606. |
Wang H Y, Chen H X, Zhang Q B, et al. Research progress of biomass carbon materials as anode materials for sodium/potassium ion batteries[J]. Materials China, 2021, 40(8): 596-606. | |
52 | Chen S L, Feng F, Ma Z F. Lignin-derived nitrogen-doped porous ultrathin layered carbon as a high-rate anode material for sodium-ion batteries[J]. Composites Communications, 2020, 22: 100447. |
53 | Huang X, Yu H, Chen J, et al. Ultrahigh rate capabilities of lithium-ion batteries from 3D ordered hierarchically porous electrodes with entrapped active nanoparticles configuration[J]. Advanced Materials, 2014, 26(8): 1296-1303. |
54 | Zhang X T, Zhou J S, Liu C C, et al. A universal strategy to prepare porous graphene films: binder-free anodes for high-rate lithium-ion and sodium-ion batteries[J]. Journal of Materials Chemistry A, 2016, 4(22): 8837-8843. |
55 | Jin J, Yu B J, Shi Z Q, et al. Lignin-based electrospun carbon nanofibrous webs as free-standing and binder-free electrodes for sodium ion batteries[J]. Journal of Power Sources, 2014, 272: 800-807. |
56 | Zhang H M, Zhang W F, Ming H, et al. Design advanced carbon materials from lignin-based interpenetrating polymer networks for high performance sodium-ion batteries[J]. Chemical Engineering Journal, 2018, 341: 280-288. |
57 | Matei Ghimbeu C, Zhang B, Martinez de Yuso A, et al. Valorizing low cost and renewable lignin as hard carbon for Na-ion batteries: impact of lignin grade[J]. Carbon, 2019, 153: 634-647. |
58 | Lin X Y, Liu Y Z, Tan H, et al. Advanced lignin-derived hard carbon for Na-ion batteries and a comparison with Li and K ion storage[J]. Carbon, 2020, 157: 316-323. |
59 | Navarro-Suárez A M, Saurel D, Sánchez-Fontecoba P, et al. Temperature effect on the synthesis of lignin-derived carbons for electrochemical energy storage applications[J]. Journal of Power Sources, 2018, 397: 296-306. |
60 | Peuvot K, Hosseinaei O, Tomani P, et al. Lignin based electrospun carbon fiber anode for sodium ion batteries[J]. Journal of the Electrochemical Society, 2019, 166(10): A1984-A1990. |
61 | 王学慧, 张文哲, 王焕磊, 等. 先进碳材料在钾离子电池中的应用[J]. 硅酸盐学报, 2021, 49(6): 1091-1104. |
Wang X H, Zhang W Z, Wang H L, et al. Application of advanced carbon materials for potassium-ion batteries[J]. Journal of the Chinese Ceramic Society, 2021, 49(6): 1091-1104. | |
62 | Komaba S, Hasegawa T, Dahbi M, et al. Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors[J]. Electrochemistry Communications, 2015, 60: 172-175. |
63 | Jian Z L, Xing Z Y, Bommier C, et al. Hard carbon microspheres: potassium-ion anode versus sodium-ion anode[J]. Advanced Energy Materials, 2016, 6(3): 1501874. |
64 | Wu X, Chen Y L, Xing Z, et al. Advanced carbon-based anodes for potassium-ion batteries[J]. Advanced Energy Materials, 2019, 9(21): 1900343. |
65 | Yang J L, Ju Z C, Jiang Y, et al. Enhanced capacity and rate capability of nitrogen/oxygen dual-doped hard carbon in capacitive potassium-ion storage[J]. Advanced Materials, 2018, 30(4): 1700104. |
66 | Zhang W L, Sun M L, Yin J, et al. Rational design of carbon anodes by catalytic pyrolysis of graphitic carbon nitride for efficient storage of Na and K mobile ions[J]. Nano Energy, 2021, 87: 106184. |
67 | Cui R C, Xu B, Dong H J, et al. N/O dual-doped environment-friendly hard carbon as advanced anode for potassium-ion batteries[J]. Advanced Science, 2020, 7(5): 1902547. |
68 | Liu X X, Ji T Y, Guo H, et al. Effects of crystallinity and defects of layered carbon materials on potassium storage: a review and prediction[J]. Electrochemical Energy Reviews, 2022, 5(2): 401-433. |
69 | Liu Y, Dai H D, Wu L, et al. A large scalable and low-cost sulfur/nitrogen dual-doped hard carbon as the negative electrode material for high-performance potassium-ion batteries[J]. Advanced Energy Materials, 2019, 9(34): 1901379. |
70 | Jiang K R, Tan X H, Zhai S L, et al. Carbon nanosheets derived from reconstructed lignin for potassium and sodium storage with low voltage hysteresis[J]. Nano Research, 2021, 14(12): 4664-4673. |
71 | Wu Z R, Zou J, Zhang Y, et al. Lignin-derived hard carbon anode for potassium-ion batteries: interplay among lignin molecular weight, material structures, and storage mechanisms[J]. Chemical Engineering Journal, 2022, 427: 131547. |
72 | Zhang W L, Sun M L, Yin J, et al. Accordion-like carbon with high nitrogen doping for fast and stable K ion storage[J]. Advanced Energy Materials, 2021, 11(41): 2101928. |
73 | Huang S F, Lv Y, Wen W, et al. Three-dimensional hierarchical porous hard carbon for excellent sodium/potassium storage and mechanism investigation[J]. Materials Today Energy, 2021, 20: 100673. |
74 | Jian Z L, Hwang S, Li Z F, et al. Hard-soft composite carbon as a long-cycling and high-rate anode for potassium-ion batteries[J]. Advanced Functional Materials, 2017, 27(26): 1700324. |
[1] | 杨绍旗, 赵淑蘅, 陈伦刚, 王晨光, 胡建军, 周清, 马隆龙. Raney镍-质子型离子液体体系催化木质素平台分子加氢脱氧制备烷烃[J]. 化工学报, 2023, 74(9): 3697-3707. |
[2] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[3] | 康飞, 吕伟光, 巨锋, 孙峙. 废锂离子电池放电路径与评价研究[J]. 化工学报, 2023, 74(9): 3903-3911. |
[4] | 胡兴枝, 张皓焱, 庄境坤, 范雨晴, 张开银, 向军. 嵌有超小CeO2纳米粒子的碳纳米纤维的制备及其吸波性能[J]. 化工学报, 2023, 74(8): 3584-3596. |
[5] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
[6] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[7] | 张蒙蒙, 颜冬, 沈永峰, 李文翠. 电解液类型对双离子电池阴阳离子储存行为的影响[J]. 化工学报, 2023, 74(7): 3116-3126. |
[8] | 吴文涛, 褚良永, 张玲洁, 谭伟民, 沈丽明, 暴宁钟. 腰果酚生物基自愈合微胶囊的高效制备工艺研究[J]. 化工学报, 2023, 74(7): 3103-3115. |
[9] | 王志龙, 杨烨, 赵真真, 田涛, 赵桐, 崔亚辉. 搅拌时间和混合顺序对锂离子电池正极浆料分散特性的影响[J]. 化工学报, 2023, 74(7): 3127-3138. |
[10] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[11] | 屈园浩, 邓文义, 谢晓丹, 苏亚欣. 活性炭/石墨辅助污泥电渗脱水研究[J]. 化工学报, 2023, 74(7): 3038-3050. |
[12] | 张澳, 罗英武. 低模量、高弹性、高剥离强度丙烯酸酯压敏胶[J]. 化工学报, 2023, 74(7): 3079-3092. |
[13] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[14] | 张谭, 刘光, 李晋平, 孙予罕. Ru基氮还原电催化剂性能调控策略[J]. 化工学报, 2023, 74(6): 2264-2280. |
[15] | 朱风, 陈凯琳, 黄小凤, 鲍银珠, 李文斌, 刘嘉鑫, 吴玮强, 高王伟. KOH改性电石渣脱除羰基硫的性能研究[J]. 化工学报, 2023, 74(6): 2668-2679. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||