化工学报 ›› 2023, Vol. 74 ›› Issue (1): 133-144.DOI: 10.11949/0438-1157.20220995
收稿日期:
2022-07-14
修回日期:
2022-08-29
出版日期:
2023-01-05
发布日期:
2023-03-20
通讯作者:
王如竹
作者简介:
董益秀(1997—),女,博士研究生,yixiudong@sjtu.edu.cn
基金资助:
Received:
2022-07-14
Revised:
2022-08-29
Online:
2023-01-05
Published:
2023-03-20
Contact:
Ruzhu WANG
摘要:
能源使用结构的不合理会造成资源短缺和环境破坏。在制造业大国中,工业是能源消耗最大的部门,其用能转型受到广泛关注。能满足工业用热需求的高温热泵是推动工业用能清洁化、电气化的重要一环。高温热泵的构建主要围绕循环和工质两方面展开。在循环结构方面,梳理了压缩式、吸收式、压缩-吸收混合式高温热泵,提炼出了每项研究中热泵能实现的工作温度范围,总结了不同循环结构下系统需要的热源温度及能实现的温升幅度,从热源品位和用热温度需求的角度为高温热泵循环结构的选择提供参考。在工质方面,梳理了它的演变和替代过程,根据工质特点分析了其适宜的工作温区,总结了工质的筛选原则。最后,对高温热泵的应用场景进行了展望,除用于工业过程外,还可以帮助构建卡诺电池,实现电能-热能-电能的存储与转化。
中图分类号:
董益秀, 王如竹. 高温热泵的循环、工质研究及应用展望[J]. 化工学报, 2023, 74(1): 133-144.
Yixiu DONG, Ruzhu WANG. High temperature heat pump: cycle configurations, working fluids and application potentials[J]. CIESC Journal, 2023, 74(1): 133-144.
传统工质 | 替代品 | 文献 |
---|---|---|
R114、R123、R142b、R124 | HCs(例如:R290、R600、R601) | [ |
R114 | R744/R600或R744/R600a | [ |
R134 | R1234yf、R1234ze | [ |
R245fa | R1224yd(Z)、R1234ze(E)、R1233zd(E)、R1336mzz(Z)、R600、R601 | [ |
表1 传统高温热泵工质及其替代品
Table 1 Traditional working fluids of high temperature heat pumps and their alternatives
传统工质 | 替代品 | 文献 |
---|---|---|
R114、R123、R142b、R124 | HCs(例如:R290、R600、R601) | [ |
R114 | R744/R600或R744/R600a | [ |
R134 | R1234yf、R1234ze | [ |
R245fa | R1224yd(Z)、R1234ze(E)、R1233zd(E)、R1336mzz(Z)、R600、R601 | [ |
1 | 国家统计局能源统计司. 中国能源统计年鉴2021[M]. 北京: 中国统计出版社, 2022. |
Department of Energy Statistics, National Bureau of Statistics. China Energy Statistical Yearbook 2021[M]. Beijing: China Statistics Press, 2022. | |
2 | Jia T, Huang J P, Li R, et al. Status and prospect of solar heat for industrial processes in China[J]. Renewable and Sustainable Energy Reviews, 2018, 90: 475-489. |
3 | Arpagaus C, Bless F, Uhlmann M, et al. High temperature heat pumps: market overview, state of the art, research status, refrigerants, and application potentials[J]. Energy, 2018, 152: 985-1010. |
4 | 王如竹, 王丽伟, 蔡军, 等. 工业余热热泵及余热网络化利用的研究现状与发展趋势[J]. 制冷学报, 2017, 38(2): 1-10. |
Wang R Z, Wang L W, Cai J, et al. Research status and trends on industrial heat pump and network utilization of waste heat[J]. Journal of Refrigeration, 2017, 38(2): 1-10. | |
5 | 赵远扬, 刘广彬, 李连生, 等. 机械蒸汽再压缩系统的性能分析[J]. 流体机械, 2017, 45(6): 16-20, 60. |
Zhao Y Y, Liu G B, Li L S, et al. Performance analysis on mechanical vapor recompression system[J]. Fluid Machinery, 2017, 45(6): 16-20, 60. | |
6 | 崔凤霞, 李荣, 陈玮娜. 高含盐废水零排放蒸发结晶技术进展[J]. 广州化工, 2017, 45(1): 21-23. |
Cui F X, Li R, Chen W N. Technology progresses of evaporation crystallization used in high salt wastewater zero discharge[J]. Guangzhou Chemical Industry, 2017, 45(1): 21-23. | |
7 | Qian X, Huang K J, Chen H S, et al. Intensifying Kaibel dividing-wall column via vapor recompression heat pump[J]. Chemical Engineering Research and Design, 2019, 142: 195-203. |
8 | Yang A, Sun S R, Eslamimanesh A, et al. Energy-saving investigation for diethyl carbonate synthesis through the reactive dividing wall column combining the vapor recompression heat pump or different pressure thermally coupled technique[J]. Energy, 2019, 172: 320-332. |
9 | Bamigbetan O, Nekså P, Bantle M, et al. Experimental investigation of a hydrocarbon piston compressor for high temperature heat pumps[C]//Proceedings of the International Compressor Engineering Conference. West Lafayette, 2018: 2634. |
10 | Bamigbetan O, Eikevik T M, Nekså P, et al. Experimental investigation of a prototype R-600 compressor for high temperature heat pump[J]. Energy, 2019, 169: 730-738. |
11 | Chen T, Bae K J, Kwon O K. Empirical correlation development of R245fa flow in electronic expansion valves[J]. International Journal of Refrigeration, 2018, 88: 284-290. |
12 | 刘和成, 赵建峰, 倪秒华, 等. 高温CO2热泵套管式气冷器的仿真与优化设计[J]. 制冷与空调(四川), 2017, 31(3): 249-254. |
Liu H C, Zhao J F, Ni M H, et al. Simulation and optimal design of tube-in-tube gas cooler for high-temperature CO2 heat pump[J]. Refrigeration & Air Conditioning, 2017, 31(3): 249-254. | |
13 | Bamigbetan O, Eikevik T M, Nekså P, et al. Review of vapour compression heat pumps for high temperature heating using natural working fluids[J]. International Journal of Refrigeration, 2017, 80: 197-211. |
14 | Ma Z W, Bao H S, Roskilly A P. Performance analysis of ultralow grade waste heat upgrade using absorption heat transformer[J]. Applied Thermal Engineering, 2016, 101: 350-361. |
15 | Xu Z Y, Gao J T, Hu B, et al. Multi-criterion comparison of compression and absorption heat pumps for ultra-low grade waste heat recovery[J]. Energy, 2022, 238: 121804. |
16 | Zhang Y, Zhang Y F, Yu X H, et al. Analysis of a high temperature heat pump using BY-5 as refrigerant[J]. Applied Thermal Engineering, 2017, 127: 1461-1468. |
17 | Huang M, Liang X, Zhuang R. Experimental investigate on the performance of high temperature heat pump using scroll compressor[C]//Proceedings of the 12th IEA Heat Pump Conference. Rotterdam, 2017: 14-17. |
18 | Wu D, Jiang J T, Hu B, et al. Experimental investigation on the performance of a very high temperature heat pump with water refrigerant[J]. Energy, 2020, 190: 116427. |
19 | He Y N, Cao F, Jin L, et al. Experimental study on the performance of a vapor injection high temperature heat pump[J]. International Journal of Refrigeration, 2015, 60: 1-8. |
20 | Mateu-Royo C, Navarro-Esbrí J, Mota-Babiloni A, et al. Theoretical evaluation of different high-temperature heat pump configurations for low-grade waste heat recovery[J]. International Journal of Refrigeration, 2018, 90: 229-237. |
21 | Hu B, Wu D, Wang L W, et al. Exergy analysis of R1234ze(Z) as high temperature heat pump working fluid with multi-stage compression[J]. Frontiers in Energy, 2017, 11(4): 493-502. |
22 | Hu B, Xu S Z, Wang R Z, et al. Investigation on advanced heat pump systems with improved energy efficiency[J]. Energy Conversion and Management, 2019, 192: 161-170. |
23 | Liu H, Zhao B Y, Zhang Z P, et al. Experimental validation of an advanced heat pump system with high-efficiency centrifugal compressor[J]. Energy, 2020, 213: 118968. |
24 | 王沣浩, 王志华, 郑煜鑫, 等. 低温环境下空气源热泵的研究现状及展望[J]. 制冷学报, 2013, 34(5): 47-54. |
Wang F H, Wang Z H, Zheng Y X, et al. Research progress and prospect of air source heat pump in low temperature environment[J]. Journal of Refrigeration, 2013, 34(5): 47-54. | |
25 | Zou H M, Li X, Tang M S, et al. Temperature stage matching and experimental investigation of high-temperature cascade heat pump with vapor injection[J]. Energy, 2020, 212: 118734. |
26 | Wu Z X, Wang X Y, Sha L, et al. Performance analysis and multi-objective optimization of the high-temperature cascade heat pump system[J]. Energy, 2021, 223: 120097. |
27 | Schlemminger C, Svendsen E S, Foslie S S, et al. Performance of high temperature heat pump for simultaneous and efficient production of ice water and process heat[C]//Proceedings of the 25th IIR International Congress of Refrigeration. Montréal, Canada, 2019: 1117. |
28 | Horuz I, Kurt B. Absorption heat transformers and an industrial application[J]. Renewable Energy, 2010, 35(10): 2175-2181. |
29 | Rivera W, Huicochea A, Romero R J, et al. Experimental assessment of double-absorption heat transformer operating with H2O/LiBr[J]. Applied Thermal Engineering, 2018, 132: 432-440. |
30 | Zhao Z C, Zhang X D, Ma X H. Thermodynamic performance of a double-effect absorption heat-transformer using TFE/E181 as the working fluid[J]. Applied Energy, 2005, 82(2): 107-116. |
31 | 冯慧敏, 包睿祺, 刘舫辰, 等. 新型第二类溴化锂吸收压缩复合式热泵系统研究[J]. 能源与节能, 2019(9): 45-47. |
Feng H M, Bao R Q, Liu F C, et al. Study on new type Ⅱ lithium bromide absorption compression composite heat pump system[J]. Energy and Energy Conservation, 2019(9): 45-47. | |
32 | Kim J, Park S R, Baik Y J, et al. Experimental study of operating characteristics of compression/absorption high-temperature hybrid heat pump using waste heat[J]. Renewable Energy, 2013, 54: 13-19. |
33 | Jensen J K, Ommen T, Markussen W B, et al. Technical and economic working domains of industrial heat pumps (part 2): Ammonia-water hybrid absorption-compression heat pumps[J]. International Journal of Refrigeration, 2015, 55: 183-200. |
34 | Ahrens M U, Loth M, Tolstorebrov I, et al. Identification of existing challenges and future trends for the utilization of ammonia-water absorption-compression heat pumps at high temperature operation[J]. Applied Sciences, 2021, 11(10): 4635. |
35 | Gao J T, Xu Z Y, Wang R Z. Enlarged temperature lift of hybrid compression-absorption heat transformer via deep thermal coupling[J]. Energy Conversion and Management, 2021, 234: 113954. |
36 | Kondou C, Koyama S. Thermodynamic assessment of high-temperature heat pumps using Low-GWP HFO refrigerants for heat recovery[J]. International Journal of Refrigeration, 2015, 53: 126-141. |
37 | Barragán R R M, Arellano G V M, Heard C L. Performance study of a double-absorption water/calcium chloride heat transformer[J]. International Journal of Energy Research, 1998, 22(9): 791-803. |
38 | Moisi H S, Verdnik M, Rieberer R, et al. Entwicklung einer R600-Hochtemperatur-Wärmepumpe-simulation und erste Messungen[C]//Proceedings of the Deutsche Kälte-Klima-Tagung 2017. Bremen, 2017: 1-22. |
39 | Garone S, Toppi T, Guerra M, et al. A water-ammonia heat transformer to upgrade low-temperature waste heat[J]. Applied Thermal Engineering, 2017, 127: 748-757. |
40 | Hu Y, Zhang L B, Zhang H T, et al. Thermodynamic analysis of a spectral-splitting hybrid PV-thermal system with LiBr/H2O absorption heat transformer[J]. Energy Conversion and Management, 2021, 249: 114868. |
41 | Cao F, Ye Z L, Wang Y K. Experimental investigation on the influence of internal heat exchanger in a transcritical CO2 heat pump water heater[J]. Applied Thermal Engineering, 2020, 168: 114855. |
42 | Bamigbetan O, Eikevik T, Neksa P, et al. Evaluation of natural working fluids for the development of high temperature heat pumps[C]//Proceedings of the 12th IIR Gustav Lorentzen Natural Working Fluids Conference. Edinburgh, 2016: 575-582. |
43 | Hultén M, Berntsson T. The compression/absorption heat pump cycle-conceptual design improvements and comparisons with the compression cycle[J]. International Journal of Refrigeration, 2002, 25(4): 487-497. |
44 | Yan H Z, Hu B, Wang R Z. Air-source heat pump for distributed steam generation: a new and sustainable solution to replace coal-fired boilers in China[J]. Advanced Sustainable Systems, 2020, 4(11): 2000118. |
45 | Farshi L G, Khalili S, Mosaffa A H. Thermodynamic analysis of a cascaded compression-absorption heat pump and comparison with three classes of conventional heat pumps for the waste heat recovery[J]. Applied Thermal Engineering, 2018, 128: 282-296. |
46 | Alhamid M I, Aisyah N, Nasruddin N, et al. Thermodynamic and environmental analysis of a high-temperature heat pump using HCFO-1224yd(Z) and HCFO-1233zd(E)[J]. International Journal of Technology, 2019, 10(8): 1585. |
47 | Uusitalo A, Turunen-Saaresti T, Honkatukia J, et al. Numerical analysis of working fluids for large scale centrifugal compressor driven cascade heat pumps upgrading waste heat[J]. Applied Energy, 2020, 269: 115056. |
48 | Liu C C, Wang Z F, Han W, et al. Working domains of a hybrid absorption-compression heat pump for industrial applications[J]. Energy Conversion and Management, 2019, 195: 226-235. |
49 | Bobelin D, Bourig A. Experimental results of a newly developed very high temperature industrial heat pump (140℃) equipped with scroll compressors and working with a new blend refrigerant[C]//Proceedings of the the International Refrigeration and Air Conditioning Conference 2012. Purdue, 2012: 1299. |
50 | Wang K, Cao F, Wang S G, et al. Investigation of the performance of a high-temperature heat pump using parallel cycles with serial heating on the water side[J]. International Journal of Refrigeration, 2010, 33(6): 1142-1151. |
51 | Gao J T, Xu Z Y, Wang R Z. An air-source hybrid absorption-compression heat pump with large temperature lift[J]. Applied Energy, 2021, 291: 116810. |
52 | 巨小平, 崔晓龙. 跨临界CO2热泵空气加热系统理论实验研究[J]. 电器, 2012(S1): 318-322. |
Ju X P, Cui X L. Theoretical and experimental study on transcritical CO2 heat pump air heating system[J]. China Appliance, 2012(S1): 318-322. | |
53 | Hu B, Wu D, Wang R Z. Water vapor compression and its various applications[J]. Renewable and Sustainable Energy Reviews, 2018, 98: 92-107. |
54 | van de Bor D M, Ferreira C A I. Quick selection of industrial heat pump types including the impact of thermodynamic losses[J]. Energy, 2013, 53: 312-322. |
55 | 张圣君, 王怀信, 郭涛. 两级压缩高温热泵系统工质的理论研究[J]. 工程热物理学报, 2010, 31(10): 1635-1638. |
Zhang S J, Wang H X, Guo T. Theoretical investigation on working fluids of two-stage vapor-compression high-temperature heat pump[J]. Journal of Engineering Thermophysics, 2010, 31(10): 1635-1638. | |
56 | Brunin O, Feidt M, Hivet B. Comparison of the working domains of some compression heat pumps and a compression-absorption heat pump[J]. International Journal of Refrigeration, 1997, 20(5): 308-318. |
57 | Mateu-Royo C, Mota-Babiloni A, Navarro-Esbrí J. Semi-empirical and environmental assessment of the low GWP refrigerant HCFO-1224yd(Z) to replace HFC-245fa in high temperature heat pumps[J]. International Journal of Refrigeration, 2021, 127: 120-127. |
58 | Mongey B, McMullan J T, McNerlin M G. An examination of hydrocarbon mixtures for use in high temperature heat pump applications[C]//Proceedings of the Applications for Natural Refrigerants. Aarbus, 1996: 487-495. |
59 | Sarkar J, Bhattacharyya S. Assessment of blends of CO2 with butane and isobutane as working fluids for heat pump applications[J]. International Journal of Thermal Sciences, 2009, 48(7): 1460-1465. |
60 | Molés F, Navarro-Esbrí J, Peris B, et al. R1234yf and R1234ze as alternatives to R134a in organic Rankine cycles for low temperature heat sources[J]. Energy Procedia, 2017, 142: 1192-1198. |
61 | 张迪, 杨刚, 刘冬鹏, 等. 新型低GWP高温热泵工质HFO-1234ze(Z)的研究进展[J]. 化工学报, 2020, 71(9): 3995-4005. |
Zhang D, Yang G, Liu D P, et al. Research progress of low GWP working fluid HFO-1234ze(Z) for high temperature heat pumps[J]. CIESC Journal, 2020, 71(9): 3995-4005. | |
62 | Mateu-Royo C, Mota-Babiloni A, Navarro-Esbrí J, et al. Multi-objective optimization of a novel reversible high-temperature heat pump-organic Rankine cycle (HTHP-ORC) for industrial low-grade waste heat recovery[J]. Energy Conversion and Management, 2019, 197: 111908. |
63 | Mikielewicz D, Wajs J. Performance of the very high-temperature heat pump with low GWP working fluids[J]. Energy, 2019, 182: 460-470. |
64 | Jiang J T, Hu B, Wang R Z, et al. Theoretical performance assessment of low-GWP refrigerant R1233zd(E) applied in high temperature heat pump system[J]. International Journal of Refrigeration, 2021, 131: 897-908. |
65 | Wu D, Hu B, Wang R Z. Performance simulation and exergy analysis of a hybrid source heat pump system with low GWP refrigerants[J]. Renewable Energy, 2018, 116: 775-785. |
66 | 仪桐辛. 第二类吸收式热泵循环的新型有机工质对设计[D]. 大连: 大连理工大学, 2021. |
Yi T X. New organic working pairs design for absorption heat pump cycle[D]. Dalian: Dalian University of Technology, 2021. | |
67 | 郭紫君, 孙晗, 党超镔, 等. 离子液体用于吸收式制冷系统的筛选[J]. 制冷与空调(四川), 2019, 33(2): 112-118. |
Guo Z J, Sun H, Dang C B, et al. Ionic liquid screening for absorption refrigeration systems[J]. Refrigeration & Air Conditioning, 2019, 33(2): 112-118. | |
68 | 赵宗昌, 周方伟, 李凇平. TFE-E181高温型第二类吸收式热泵热力过程分析[J]. 大连理工大学学报, 2004, 44(5): 651-656. |
Zhao Z C, Zhou F W, Li S P. Analyses of thermodynamic cycle of Type Ⅱ high temperature absorption heat pump using TFE-E181 as working fluids[J]. Journal of Dalian University of Technology, 2004, 44(5): 651-656. | |
69 | Kamali M, Parham K, Assadi M. Performance analysis of a single stage absorption heat transformer-based desalination system employing a new working pair of (EMIM) (DMP)/H2O[J]. International Journal of Energy Research, 2018, 42(15): 4790-4804. |
70 | Merkel N, Bücherl M, Zimmermann M, et al. Operation of an absorption heat transformer using water/ionic liquid as working fluid[J]. Applied Thermal Engineering, 2018, 131: 370-380. |
71 | Devotta S, Pendyala V R. Thermodynamic screening of some HFCs and HFEs for high-temperature heat pumps as alternatives to CFC114[J]. International Journal of Refrigeration, 1994, 17(5): 338-342. |
72 | Chen Y, Gu J J. The optimum high pressure for CO2 transcritical refrigeration systems with internal heat exchangers[J]. International Journal of Refrigeration, 2005, 28(8): 1238-1249. |
73 | Zhu Y H, Huang Y L, Li C H, et al. Experimental investigation on the performance of transcritical CO2 ejector-expansion heat pump water heater system[J]. Energy Conversion and Management, 2018, 167: 147-155. |
74 | Yang W W, Cao X Q, He Y L, et al. Theoretical study of a high-temperature heat pump system composed of a CO2 transcritical heat pump cycle and a R152a subcritical heat pump cycle[J]. Applied Thermal Engineering, 2017, 120: 228-238. |
75 | 范晓伟, 巨福军, 王凤坤, 等. 热泵系统用R744/HCs混合工质配比范围研究[J]. 热科学与技术, 2012, 11(4): 363-368. |
Fan X W, Ju F J, Wang F K, et al. Study on mass fraction limits of R744/HCs mixtures used as refrigerant for heat pump system[J]. Journal of Thermal Science and Technology, 2012, 11(4): 363-368. | |
76 | Bamigbetan O, Eikevik T, Nekså P, et al. Extending ammonia high temperature heat pump using butane in a cascade system [C]//Proceedings of the 7th Conference on Ammonia and CO2 Refrigeration Technology. Ohrid, Macedonia, 2017. |
77 | Wu D, Hu B, Wang R Z, et al. The performance comparison of high temperature heat pump among R718 and other refrigerants[J]. Renewable Energy, 2020, 154: 715-722. |
78 | 戴晓业, 姜朔, 史琳. R245fa作为有机朗肯循环工质的材料相容性研究[J]. 热科学与技术, 2019, 18(1): 1-6. |
Dai X Y, Jiang S, Shi L. Material compatibility of R245fa as organic Rankine cycle working fluids[J]. Journal of Thermal Science and Technology, 2019, 18(1): 1-6. | |
79 | Zhang X D, Xu H M. Experimental performance of moderately high temperature heat pump with working fluid R1234ze(Z)[J]. Journal of Thermal Analysis and Calorimetry, 2021, 144(4): 1535-1545. |
80 | Arpagaus C. From waste heat to cheese[J]. HPT Magazine, 2019, 37(2): 23-26. |
81 | Yan H Z, Wang R Z, Du S, et al. Analysis and perspective on heat pump for industrial steam generation[J]. Advanced Energy and Sustainability Research, 2021, 2(5): 2000108. |
82 | Jiang J T, Hu B, Wang R Z, et al. A review and perspective on industry high-temperature heat pumps[J]. Renewable and Sustainable Energy Reviews, 2022, 161: 112106. |
83 | Xu Z Y, Mao H C, Liu D S, et al. Waste heat recovery of power plant with large scale serial absorption heat pumps[J]. Energy, 2018, 165: 1097-1105. |
84 | Zauner C, Windholz B, Lauermann M, et al. Development of an energy efficient extrusion factory employing a latent heat storage and a high temperature heat pump[J]. Applied Energy, 2020, 259: 114114. |
85 | Ahrens M U, Foslie S S, Moen O M, et al. Integrated high temperature heat pumps and thermal storage tanks for combined heating and cooling in the industry[J]. Applied Thermal Engineering, 2021, 189: 116731. |
86 | Weitzer M, Müller D, Steger D, et al. Organic flash cycles in Rankine-based Carnot batteries with large storage temperature spreads[J]. Energy Conversion and Management, 2022, 255: 115323. |
87 | Benato A, Stoppato A. Pumped thermal electricity storage: a technology overview[J]. Thermal Science and Engineering Progress, 2018, 6: 301-315. |
88 | Steinmann W D, Jockenhöfer H, Bauer D. Thermodynamic analysis of high-temperature Carnot battery concepts[J]. Energy Technology, 2020, 8(3): 1900895. |
89 | Dumont O, Frate G F, Pillai A, et al. Carnot battery technology: a state-of-the-art review[J]. Journal of Energy Storage, 2020, 32: 101756. |
90 | Xue X J, Zhao Y, Zhao C Y. Multi-criteria thermodynamic analysis of pumped-thermal electricity storage with thermal integration and application in electric peak shaving of coal-fired power plant[J]. Energy Conversion and Management, 2022, 258: 115502. |
91 | Dumont O, Charalampidis A, Lemort V. Experimental investigation of a thermally integrated Carnot battery using a reversible heat pump/organic Rankine cycle[C]//Proceedings of the International Refrigeration and Air Conditioning Conference. West Lafayette, 2021: 2085. |
92 | Dumont O, Lemort V. Mapping of performance of pumped thermal energy storage (Carnot battery) using waste heat recovery[J]. Energy, 2020, 211: 118963. |
93 | Fan R X, Xi H. Exergoeconomic optimization and working fluid comparison of low-temperature Carnot battery systems for energy storage[J]. Journal of Energy Storage, 2022, 51: 104453. |
94 | Fan R X, Xi H. Energy, exergy, economic (3E) analysis, optimization and comparison of different Carnot battery systems for energy storage[J]. Energy Conversion and Management, 2022, 252: 115037. |
95 | Bellos E, Lykas P, Tzivanidis C. Pumped thermal energy storage system for trigeneration: the concept of power to XYZ[J]. Applied Sciences, 2022, 12(3): 970. |
96 | Eppinger B, Muradi M, Scharrer D, et al. Simulation of the part load behavior of combined heat pump-organic Rankine cycle systems[J]. Energies, 2021, 14(13): 3870. |
[1] | 代宝民, 王启龙, 刘圣春, 张佳宁, 李鑫海, 宗凡迪. 非共沸工质辅助过冷CO2冷热联供系统的热力学性能分析[J]. 化工学报, 2023, 74(S1): 64-73. |
[2] | 吴迪, 胡斌, 王如竹, 梁俊宇. 水蒸气准饱和压缩高温热泵循环性能分析[J]. 化工学报, 2023, 74(S1): 45-52. |
[3] | 谈莹莹, 刘晓庆, 王林, 黄鲤生, 李修真, 王占伟. R1150/R600a自复叠制冷循环开机动态特性实验研究[J]. 化工学报, 2023, 74(S1): 213-222. |
[4] | 张曼铮, 肖猛, 闫沛伟, 苗政, 徐进良, 纪献兵. 危废焚烧处理耦合有机朗肯循环系统工质筛选与热力学优化[J]. 化工学报, 2023, 74(8): 3502-3512. |
[5] | 党玉荣, 莫春兰, 史科锐, 方颖聪, 张子杨, 李作顺. 综合评价模型联合遗传算法的混合工质ORC系统性能研究[J]. 化工学报, 2023, 74(5): 1884-1895. |
[6] | 周培旭, 李亚伦, 叶恭然, 庄园, 吴曦蕾, 郭智恺, 韩晓红. 有限空间内工质物性对制冷剂泄漏扩散特性的影响[J]. 化工学报, 2023, 74(2): 953-967. |
[7] | 任嘉辉, 刘豫, 刘朝, 刘浪, 李莹. 基于分子指纹和拓扑指数的工质临界温度理论预测[J]. 化工学报, 2022, 73(4): 1493-1500. |
[8] | 吴子睿, 孙瑞, 石凌峰, 田华, 王轩, 舒歌群. CO2混合工质的气液相平衡的混合规则对比与预测研究[J]. 化工学报, 2022, 73(4): 1483-1492. |
[9] | 孙铭泽, 马宁, 李浩然, 姜海峰, 洪文鹏, 牛晓娟. 中低温超临界CO2及其混合工质布雷顿循环热力学分析[J]. 化工学报, 2022, 73(3): 1379-1388. |
[10] | 吴迪, 胡斌, 王如竹, 余京京, 林欣毅, 李子亮. 水工质热泵多种循环的理论研究与性能对比[J]. 化工学报, 2021, 72(S1): 236-243. |
[11] | 卢沛, 罗向龙, 陈健勇, 杨智, 梁颖宗, 陈颖. 板式换热器及其热力系统的运行特性和高级分析[J]. 化工学报, 2021, 72(S1): 512-519. |
[12] | 罗介霖, 杨凯寅, 赵朕, 王勤, 陈光明. 低GWP混合工质回热热泵采暖性能[J]. 化工学报, 2021, 72(S1): 84-90. |
[13] | 李子航, 王占博, 苗政, 纪献兵. 亚临界有机朗肯循环系统工质筛选及热经济性分析[J]. 化工学报, 2021, 72(9): 4487-4495. |
[14] | 曹健, 冯新, 吉晓燕, 陆小华. 基于混合工质的多级蒸发ORC理论极限性能研究[J]. 化工学报, 2021, 72(7): 3780-3787. |
[15] | 梁坤峰, 冯长振, 王莫然, 董彬, 王林, 刘瑞见. 非共沸工质换热匹配特性影响热泵性能的高级分析[J]. 化工学报, 2021, 72(4): 2038-2046. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 716
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1100
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||