化工学报 ›› 2022, Vol. 73 ›› Issue (12): 5414-5426.DOI: 10.11949/0438-1157.20221139
王保文1(), 张港1, 刘同庆1, 李炜光1, 王梦家1, 林德顺1, 马晶晶2
收稿日期:
2022-08-15
修回日期:
2022-11-07
出版日期:
2022-12-05
发布日期:
2023-01-17
通讯作者:
王保文
作者简介:
王保文(1975—),男,博士,副教授,david-wn@163.com
基金资助:
Baowen WANG1(), Gang ZHANG1, Tongqing LIU1, Weiguang LI1, Mengjia WANG1, Deshun LIN1, Jingjing MA2
Received:
2022-08-15
Revised:
2022-11-07
Online:
2022-12-05
Published:
2023-01-17
Contact:
Baowen WANG
摘要:
CH4化学链重整耦合CO2热催化还原,既能灵活调控所制备合成气的H2/CO比,又能实现两种温室气体的高值化利用,具有极大的应用前景。采用溶胶-凝胶燃烧合成法制备不同质量掺杂比的CeO2/CuFe2O4氧载体,在自制多功能固定床反应器中,系统考察了改性氧载体与CH4部分氧化以及还原氧载体对CO2的热催化还原性能,并通过连续氧化还原实验发现,与单一氧化物组分相比,CeO2掺杂强化的CuFe2O4复合氧载体对CH4和CO2具有更高的反应活性。其中30% CeO2掺杂量的混合氧载体具有最高的CH4转化率,且在多次氧化还原循环反应中保持较高且稳定的CO2转化率,表明其良好的反应性能和循环稳定性。
中图分类号:
王保文, 张港, 刘同庆, 李炜光, 王梦家, 林德顺, 马晶晶. CeO2/CuFe2O4氧载体CH4化学链重整耦合CO2热催化还原研究[J]. 化工学报, 2022, 73(12): 5414-5426.
Baowen WANG, Gang ZHANG, Tongqing LIU, Weiguang LI, Mengjia WANG, Deshun LIN, Jingjing MA. Research on chemical looping reforming of CH4 by CeO2 doped CuFe2O4 oxygen carrier coupled with CO2 thermocatalytic reduction[J]. CIESC Journal, 2022, 73(12): 5414-5426.
样品 | 比表面积/(m2/g) | 孔体积/(cm3/g) | 孔径/nm | 平均晶粒/nm | |
---|---|---|---|---|---|
CuFe2O4 | CeO2 | ||||
100CF | 1.166 | 0.004 | 13.845 | 54.33 | — |
10Ce90CF | 2.933 | 0.011 | 11.288 | 32.76 | 29.58 |
20Ce80CF | 4.328 | 0.012 | 12.397 | 32.28 | 43.22 |
30Ce70CF | 4.799 | 0.016 | 13.251 | 29.93 | 39.06 |
40Ce60CF | 5.820 | 0.020 | 13.882 | 24.41 | 49.80 |
100Ce | 2.262 | 0.016 | 27.987 | — | 51.15 |
表1 氧载体物理结构参数
Table 1 Physical structure parameters of oxygen carrier
样品 | 比表面积/(m2/g) | 孔体积/(cm3/g) | 孔径/nm | 平均晶粒/nm | |
---|---|---|---|---|---|
CuFe2O4 | CeO2 | ||||
100CF | 1.166 | 0.004 | 13.845 | 54.33 | — |
10Ce90CF | 2.933 | 0.011 | 11.288 | 32.76 | 29.58 |
20Ce80CF | 4.328 | 0.012 | 12.397 | 32.28 | 43.22 |
30Ce70CF | 4.799 | 0.016 | 13.251 | 29.93 | 39.06 |
40Ce60CF | 5.820 | 0.020 | 13.882 | 24.41 | 49.80 |
100Ce | 2.262 | 0.016 | 27.987 | — | 51.15 |
1 | Wang Z, Kong Y H, Li W. Review on the development of China's natural gas industry in the background of “carbon neutrality”[J]. Nat. Gas Ind. B, 2022, 9(2): 132-140. |
2 | 何映龙, 于敦喜, 雷体蔓, 等. 铁基氧载体化学链CO2重整CH4方法制备合成气[J]. 化工学报, 2016, 67(12): 5222-5228. |
He Y L, Yu D X, Lei T M, et al. Chemical looping CO2/CH4 reforming using Fe-based oxygen carrier for syngas production[J]. CIESC Journal, 2016, 67(12): 5222-5228. | |
3 | 段一菲, 陈存壮, 张军社, 等. 化学链小分子转化研究进展[J]. 中国科学: 化学, 2020, 50(3): 337-365. |
Duan Y F, Chen C Z, Zhang J S, et al. Progress in chemical looping-based transformations of small molecules[J]. Sci.Sinica Chim., 2020, 50(3): 337-365. | |
4 | 沈阳, 赵坤, 何方, 等. 三维有序大孔钙钛矿型氧化物LaFe0.7Co0.3O3的合成及甲烷化学链水蒸气重整性能[J]. 燃料化学学报, 2016, 44(10): 1168-1176. |
Shen Y, Zhao K, He F, et al. Synthesis of three-dimensionally ordered macroporous LaFe0.7Co0.3O3 perovskites and their performance for chemical-looping steam reforming of methane[J]. J. Fuel Chem. Technol., 2016, 44(10): 1168-1176. | |
5 | 朱珉, 陈时熠, 李蒙, 等. 化学链干重整联合制氢热力学分析及实验[J]. 化工学报, 2019, 70(6): 2244-2251. |
Zhu M, Chen S Y, Li M, et al. Thermodynamic and experimental analysis of chemical looping dry reforming with hydrogen production system[J]. CIESC Journal, 2019, 70(6): 2244-2251. | |
6 | Zhao K, He F, Huang Z, et al. La1- x Sr x FeO3 perovskites as oxygen carriers for the partial oxidation of methane to syngas[J]. Chin. J. Catal., 2014, 35(7): 1196-1205. |
7 | Najera M, Solunke R, Gardner T, et al. Carbon capture and utilization via chemical looping dry reforming[J]. Chem. Eng. Res. Des., 2011, 89(9): 1533-1543. |
8 | Alper E, Orhan Y O. CO2 utilization: developments in conversion processes[J]. Petrol., 2017, 3(1): 109-126. |
9 | Miller D D, Smith M, Shekhawat D. Interaction of manganese with aluminosilicate support during high temperature (1100℃) chemical looping combustion of the Fe-Mn-based oxygen carrier[J]. Fuel, 2020, 263: 116738. |
10 | Dai J, Whitty K J. Impact of fuel-derived chlorine on CuO-based oxygen carriers for chemical looping with oxygen uncoupling[J]. Fuel, 2020, 263: 116780. |
11 | Guerrero-Caballero J, Kane T, Haidar N, et al. Ni, Co, Fe supported on ceria and Zr doped ceria as oxygen carriers for chemical looping dry reforming of methane[J]. Catal. Today, 2019, 333: 251-258. |
12 | Cheng Z, Zhang L, Jin N N, et al. Effect of calcination temperature on the performance of hexaaluminate supported CeO2 for chemical looping dry reforming[J]. Fuel Process. Technol., 2021, 218: 106873. |
13 | Wang B W, Li J, Ding N, et al. Chemical looping combustion of a typical lignite with a CaSO4–CuO mixed oxygen carrier[J]. Energy Fuels, 2017, 31(12): 13942-13954. |
14 | 汪根宝, 胡骏, 陈时熠, 等. 铁基载氧体化学链CH4/CO2转化研究进展[J]. 中南大学学报(自然科学版), 2021, 52(1): 70-85. |
Wang G B, Hu J, Chen S Y, et al. Advances in Fe-based chemical looping technology for CH4/CO2 conversion[J]. J. Cent. South Univ.(Sci. Technol.), 2021, 52(1): 70-85. | |
15 | Galinsky N L, Shafiefarhood A, Chen Y G, et al. Effect of support on redox stability of iron oxide for chemical looping conversion of methane[J]. Appl. Catal., B, 2015, 164: 371-379. |
16 | Fan L S, Li F X. Chemical looping technology and its fossil energy conversion applications[J]. Ind. Eng. Chem. Res., 2010, 49(21): 10200-10211. |
17 | 袁聪, 蒲舸, 高杰, 等. 改性BaFe2O4载氧体生物质化学链气化特性[J]. 化工学报, 2022, 73(3): 1359-1368. |
Yuan C, Pu G, Gao J, et al. Biomass chemical-looping gasification characteristics of K-modified BaFe2O4 oxygen carrier[J]. CIESC Journal, 2022, 73(3): 1359-1368. | |
18 | Qin L, Guo M Q, Liu Y, et al. Enhanced methane conversion in chemical looping partial oxidation systems using a copper doping modification[J]. Appl. Catal., B, 2018, 235: 143-149. |
19 | Yüzbasi N S, Abdala P M, Imtiaz Q, et al. The effect of copper on the redox behaviour of iron oxide for chemical-looping hydrogen production probed by in situ X-ray absorption spectroscopy[J]. Physical Chemistry Chemical Physics, 2018, 20(18): 12736-12745. |
20 | Wu H C, Chen T C, Wu J H, et al. The effect of an Fe promoter on Cu/SiO2 catalysts for improving their catalytic activity and stability in the water-gas shift reaction[J]. Catalysis Science & Technology, 2016, 6(15): 687-696. |
21 | Wang B W, Wang W S, Ma Q, et al. In-depth investigation of chemical looping combustion of a Chinese bituminous coal with CuFe2O4 combined oxygen carrier[J]. Energy Fuels, 2016, 30(3): 2285-2294. |
22 | Wang B W, Yan R, Zhao H B, et al. Investigation of chemical looping combustion of coal with CuFe2O4 oxygen carrier[J]. Energy Fuels, 2011, 25(7): 3344-3354. |
23 | Kang K S, Kim C H, Cho W C, et al. Reduction characteristics of CuFe2O4 and Fe3O4 by methane; CuFe2O4 as an oxidant for two-step thermochemical methane reforming[J]. Int. J. Hydrogen Energy, 2008, 33(17): 4560-4568. |
24 | 赵林洲, 郑燕娥, 李孔斋, 等. Ce1- x Ni x O y 氧载体在化学链甲烷重整耦合CO2还原中的应用[J]. 化工学报, 2021, 72(8): 4371-4380. |
Zhao L Z, Zheng Y E, Li K Z, et al. Application of Ce1- x Ni x O y oxygen carriers in chemical-looping reforming of methane coupled with CO2 reduction[J]. CIESC Journal, 2021, 72(8): 4371-4380. | |
25 | Wei G Q, Zhou H, Huang Z, et al. Reaction performance of Ce-enhanced hematite oxygen carrier in chemical looping reforming of biomass pyrolyzed gas coupled with CO2 splitting[J]. Energy, 2021, 215: 119044. |
26 | 张军伟, 黄戒介, 房倚天, 等. 铈修饰铁基复合载氧体用于化学链甲烷部分氧化重整制合成气研究[J]. 燃料化学学报, 2014, 42(02): 158-165. |
Zhang J W, Huang J J, Fang Y T, et al. Partial oxidation reforming of methane to synthesis gas by chemical looping using CeO2- modified Fe2O3 as oxygen carrier[J]. J. Fuel Chem. Technol., 2014, 42(2): 158-165. | |
27 | Galvita V V, Poelman H, Bliznuk V, et al. CeO2-modified Fe2O3 for CO2 utilization via chemical looping[J]. Ind. Eng. Chem. Res., 2013, 52(25): 8416-8426. |
28 | Kang K S, Kim C H, Bae K W, et al. Redox cycling of CuFe2O4 supported on ZrO2 and CeO2 for two-step methane reforming/water splitting[J]. Int. J. Hydrogen Energy, 2010, 35(2): 568-576. |
29 | Selvan R K, Augustin C O, Šepelák V, et al. Synthesis and characterization of CuFe2O4/CeO2 nanocomposites[J]. Mater. Chem. Phys., 2008, 112(2): 373-380. |
30 | Chuayboon S, Abanades S, Rodat S. Syngas production via solar-driven chemical looping methane reforming from redox cycling of ceria porous foam in a volumetric solar reactor[J]. Chem. Eng. J., 2019, 356: 756-770. |
31 | Donohue M D, Aranovich G L. Adsorption hysteresis in porous solids[J]. J. Colloid Interface Sci., 1998, 205(1): 121-130. |
32 | Kim S M, Abdala P M, Margossian T, et al. Cooperativity and dynamics increase the performance of NiFe dry reforming catalysts[J]. J. Am. Chem. Soc., 2017, 139(5): 1937-1949. |
33 | Zhang F S, Song Z L, Zhu J Z, et al. Factors influencing CH4-CO2 reforming reaction over Fe catalyst supported on foam ceramics under microwave irradiation[J]. Int. J. Hydrogen Energy, 2018, 43(20): 9495-9502. |
34 | Liu Y X, Dai H X, Deng J G, et al. Au/3DOM La0.6Sr0.4MnO3: highly active nanocatalysts for the oxidation of carbon monoxide and toluene[J]. Journal of Catalysis, 2013, 305: 146-153. |
35 | Wei Y G, Wang H, Li K Z. Ce-Fe-O mixed oxide as oxygen carrier for the direct partial oxidation of methane to syngas[J]. J. Rare Earths, 2010, 28(4): 560-565. |
36 | Wei Y G, Wang H, He F, et al. CeO2 as the oxygen carrier for partial oxidation of methane to synthesis gas in molten salts: thermodynamic analysis and experimental investigation[J]. J. Nat. Gas Chem., 2007, 16(1): 6-11. |
37 | Wang J K, Li K Z, Wang H, et al. Sandwich Ni-phyllosilicate@doped-ceria for moderate-temperature chemical looping dry reforming of methane[J]. Fuel Process. Technol., 2022, 232: 107268. |
38 | Takalkar G, Bhosale R R, AlMomani F. Thermochemical splitting of CO2 using co-precipitation synthesized Ce0.75Zr0.2M0.05O2- δ (M=Cr, Mn, Fe, CO, Ni, Zn) materials[J]. Fuel, 2019, 256: 115834. |
39 | Lu C Q, Li K Z, Wang H, et al. Chemical looping reforming of methane using magnetite as oxygen carrier: structure evolution and reduction kinetics[J]. Appl. Energy, 2018, 211: 1-14. |
40 | Zhu X, Wei Y G, Wang H, et al. Ce-Fe oxygen carriers for chemical-looping steam methane reforming[J]. Int. J. Hydrogen Energy, 2013, 38(11): 4492-4501. |
41 | Zheng Y E, Li K Z, Wang H, et al. Designed oxygen carriers from macroporous LaFeO3 supported CeO2 for chemical-looping reforming of methane[J]. Appl. Catal., B, 2017, 202: 51-63. |
42 | Wang D C, Jin L J, Li Y, et al. Upgrading of vacuum residue with chemical looping partial oxidation over Ce doped Fe2O3 [J]. Energy, 2018, 162: 542-553. |
[1] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[2] | 宋瑞涛, 王派, 王云鹏, 李敏霞, 党超镔, 陈振国, 童欢, 周佳琦. 二氧化碳直接蒸发冰场排管内流动沸腾换热数值模拟分析[J]. 化工学报, 2023, 74(S1): 96-103. |
[3] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[4] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[5] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
[6] | 刘晓洋, 喻健良, 侯玉洁, 闫兴清, 张振华, 吕先舒. 螺旋微通道对掺氢甲烷爆轰传播的影响[J]. 化工学报, 2023, 74(7): 3139-3148. |
[7] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[8] | 牛超, 沈胜强, 杨艳, 潘泊年, 李熠桥. 甲烷BOG喷射器流动过程计算与性能分析[J]. 化工学报, 2023, 74(7): 2858-2868. |
[9] | 周小文, 杜杰, 张战国, 许光文. 基于甲烷脉冲法的Fe2O3-Al2O3载氧体还原特性研究[J]. 化工学报, 2023, 74(6): 2611-2623. |
[10] | 毛磊, 刘冠章, 袁航, 张光亚. 可捕集CO2的纳米碳酸酐酶粒子的高效制备及性能研究[J]. 化工学报, 2023, 74(6): 2589-2598. |
[11] | 蔺彩虹, 王丽, 吴瑜, 刘鹏, 杨江峰, 李晋平. 沸石中碱金属阳离子对CO2/N2O吸附分离性能的影响[J]. 化工学报, 2023, 74(5): 2013-2021. |
[12] | 李晨曦, 刘永峰, 张璐, 刘海峰, 宋金瓯, 何旭. O2/CO2氛围下正庚烷的燃烧机理研究[J]. 化工学报, 2023, 74(5): 2157-2169. |
[13] | 葛泽峰, 吴雨青, 曾名迅, 查振婷, 马宇娜, 侯增辉, 张会岩. 灰化学成分对生物质气化特性的影响规律[J]. 化工学报, 2023, 74(5): 2136-2146. |
[14] | 王皓, 唐思扬, 钟山, 梁斌. MEA吸收CO2富液解吸过程中固体颗粒表面的强化作用分析[J]. 化工学报, 2023, 74(4): 1539-1548. |
[15] | 胡晗, 杨亮, 李春晓, 刘道平. 天然烟浸滤液水合物法储甲烷动力学研究[J]. 化工学报, 2023, 74(3): 1313-1321. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 176
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 323
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||