化工学报 ›› 2023, Vol. 74 ›› Issue (3): 1260-1274.DOI: 10.11949/0438-1157.20221595
收稿日期:
2022-12-10
修回日期:
2023-01-04
出版日期:
2023-03-05
发布日期:
2023-04-19
通讯作者:
刘桂莲
作者简介:
张生安(1995—),男,博士研究生,shenganzhangi@stu.xjtu.edu.cn
基金资助:
Sheng’an ZHANG(), Guilian LIU(
)
Received:
2022-12-10
Revised:
2023-01-04
Online:
2023-03-05
Published:
2023-04-19
Contact:
Guilian LIU
摘要:
针对日益重要的清洁可持续绿氢生产技术需求,开发了一种基于太阳能,集发电和制氢于一体的高效系统。该系统由塔式太阳能发电和热能存储系统、质子交换膜(PEM)电解水系统和含有回热器的再热式蒸汽朗肯循环及含有回热器的有机朗肯循环余热回收子系统组成,可实现能量梯级利用。在Aspen Plus中建立了各子系统的模拟模型,并用Fortran语言编写太阳能定日镜场和PEM电解槽数学模型,基于非支配排序遗传算法-Ⅱ (NSGA-Ⅱ)和Aspen Plus与MATLAB软件的交互和多目标优化权衡最大㶲效率、最大日净输电量、最小氢气的平准化成本(LCOH),实现该系统的优化。所建立的模型可以高效准确地模拟、分析和优化该集成系统。帕累托前沿表明,该系统最优的㶲效率、日净输电量和LCOH分别为52.19%、247.352 MWh/d和6.05 USD/kg;优化后,最佳氢气产能为4.796 t/d,㶲效率提高3.00%,日净输电量增加31.14%,LCOH降低4.87%。该研究对于大规模太阳能耦合发电和制氢工艺的开发具有重要的指导意义。
中图分类号:
张生安, 刘桂莲. 高效太阳能电解水制氢系统及其性能的多目标优化[J]. 化工学报, 2023, 74(3): 1260-1274.
Sheng’an ZHANG, Guilian LIU. Multi-objective optimization of high-efficiency solar water electrolysis hydrogen production system and its performance[J]. CIESC Journal, 2023, 74(3): 1260-1274.
流程 | 参数 | 本模型 | 文献数据 | 相对误差/% |
---|---|---|---|---|
含有回热器再热式SRC[ | 最高温度/℃ | 500 | 500 | N/A |
冷凝温度/℃ | 60.18 | 60.06 | 0.20 | |
高压汽轮机出口温度/℃ | 345.3 | 345.2 | 0.03 | |
最高压力/bar | 80 | 80 | N/A | |
中间压力/bar | 30 | 30 | N/A | |
最低压力/bar | 0.2 | 0.2 | N/A | |
热效率/% | 38.03 | 39.80 | 4.44 | |
含有回热器的ORC[ | 介质质量流率/(kg/s) | 33.424 | 33.424 | N/A |
最高温度/℃ | 100.4 | 100.0 | 0.40 | |
冷凝温度/℃ | 30 | 30 | N/A | |
热流股回热输出温度/℃ | 40 | 40 | N/A | |
最高压力/bar | 12.67 | 12.67 | N/A | |
最低压力/bar | 1.801 | 1.801 | N/A | |
热效率/% | 13.70 | 13.07 | 4.82 |
表1 再热式SRC与含有回热器的ORC的模拟结果与文献数据比较
Table 1 Comparison of simulation results of reheat SRC and ORC with recuperator with literature data
流程 | 参数 | 本模型 | 文献数据 | 相对误差/% |
---|---|---|---|---|
含有回热器再热式SRC[ | 最高温度/℃ | 500 | 500 | N/A |
冷凝温度/℃ | 60.18 | 60.06 | 0.20 | |
高压汽轮机出口温度/℃ | 345.3 | 345.2 | 0.03 | |
最高压力/bar | 80 | 80 | N/A | |
中间压力/bar | 30 | 30 | N/A | |
最低压力/bar | 0.2 | 0.2 | N/A | |
热效率/% | 38.03 | 39.80 | 4.44 | |
含有回热器的ORC[ | 介质质量流率/(kg/s) | 33.424 | 33.424 | N/A |
最高温度/℃ | 100.4 | 100.0 | 0.40 | |
冷凝温度/℃ | 30 | 30 | N/A | |
热流股回热输出温度/℃ | 40 | 40 | N/A | |
最高压力/bar | 12.67 | 12.67 | N/A | |
最低压力/bar | 1.801 | 1.801 | N/A | |
热效率/% | 13.70 | 13.07 | 4.82 |
图4 PEM电解槽模拟和实验数据对比(a)及水分解所需热量与过电势产生热量对比(b)
Fig.4 Comparison of data predicated by the PEM electrolyzer model and experimental data (a) and comparison of heat demanded by water splitting and that generated by overpotentials (b)
参数 | 取值 | 参数 | 取值 |
---|---|---|---|
直射太阳光辐照量, DNI | 995.3 W/m2 | 高压蒸汽轮机进口温度 | 525℃ |
光学效率, | 0.75 | 高压蒸汽轮机进口压力 | 170 bar |
单个定日镜面积, | 121 m2 | 蒸汽的循环质量流量 | 15.29 kg/s |
中央接收塔发射率, | 0.88 | SRC泵的效率 | 0.80 |
中央接收塔面积, | 60 m2 | SRC汽轮机的效率 | 0.88 |
中央接收塔表面温度, | 1100℃ | ORC循环工质 | R245fa |
充热时间, | 8 h | ORC泵的效率 | 0.80 |
风速,Va | 3 m/s | ORC膨胀机的效率 | 0.85 |
PEM电流密度, | 2000 A/m2 | ORC膨胀机进口温度 | 110℃ |
热盐罐出口温度 | 565℃ | ORC膨胀机进口压力 | 10 bar |
冷盐罐出口温度 | 290℃ | ORC膨胀机出口压力 | 2.17 bar |
储罐数量 | 2 | ORC的质量流率 | 160 kg/s |
表2 流程的基本参数值[20-21,30]
Table 2 The basic parameters of the proposed process[20-21,30]
参数 | 取值 | 参数 | 取值 |
---|---|---|---|
直射太阳光辐照量, DNI | 995.3 W/m2 | 高压蒸汽轮机进口温度 | 525℃ |
光学效率, | 0.75 | 高压蒸汽轮机进口压力 | 170 bar |
单个定日镜面积, | 121 m2 | 蒸汽的循环质量流量 | 15.29 kg/s |
中央接收塔发射率, | 0.88 | SRC泵的效率 | 0.80 |
中央接收塔面积, | 60 m2 | SRC汽轮机的效率 | 0.88 |
中央接收塔表面温度, | 1100℃ | ORC循环工质 | R245fa |
充热时间, | 8 h | ORC泵的效率 | 0.80 |
风速,Va | 3 m/s | ORC膨胀机的效率 | 0.85 |
PEM电流密度, | 2000 A/m2 | ORC膨胀机进口温度 | 110℃ |
热盐罐出口温度 | 565℃ | ORC膨胀机进口压力 | 10 bar |
冷盐罐出口温度 | 290℃ | ORC膨胀机出口压力 | 2.17 bar |
储罐数量 | 2 | ORC的质量流率 | 160 kg/s |
参数 | 数值 |
---|---|
产品 | |
电能 | 188.618 MWh/d |
氢气 | 4.834 t/d |
氧气 | 36.366 t/d |
效率和技术经济性结果 | |
能量效率, | 20.52 % |
㶲效率, | 50.67 % |
发电效率, | 37.52 % |
定日镜面数 | 1769 |
中央接收塔高度 | 158 m |
年度化成本 (TAC) | 15.48 MUSD/a |
氢气的平准化成本 (LCOH) | 6.36 USD/kg |
表3 集成系统的模拟和分析结果
Table 3 Simulation and analysis results of the integrated system
参数 | 数值 |
---|---|
产品 | |
电能 | 188.618 MWh/d |
氢气 | 4.834 t/d |
氧气 | 36.366 t/d |
效率和技术经济性结果 | |
能量效率, | 20.52 % |
㶲效率, | 50.67 % |
发电效率, | 37.52 % |
定日镜面数 | 1769 |
中央接收塔高度 | 158 m |
年度化成本 (TAC) | 15.48 MUSD/a |
氢气的平准化成本 (LCOH) | 6.36 USD/kg |
变量与约束条件 | 取值范围 | 单位 |
---|---|---|
决策变量 | ||
电解水的进料质量流率 | 0.2~0.9 | kg/s |
HPT出口压力 | 30~45 | bar |
PEM电解温度 | 40~90 | ℃ |
PEM的电流密度 | 500~8000 | A/m2 |
ORC的膨胀压力 | 4~15 | bar |
ORC的循环质量流率 | 150~180 | kg/s |
熔盐泵P100出口压力 | 5~10 | bar |
蒸汽轮机等熵效率 | 75~95 | % |
流股8的温度T8 | 36~56 | ℃ |
约束条件 | ||
熔盐泵P100的压头HP100 | HP100>Ht | m |
熔盐流股MS4和MS6的温度 | TMS4≥290,TMS6≥290 | ℃ |
日净输电量 | MWh/d | |
氧气流股8的温度T8 | T8≥T2+10 | ℃ |
表4 多目标优化的决策变量和约束
Table 4 Decision variables and constraints for multi-objective optimization
变量与约束条件 | 取值范围 | 单位 |
---|---|---|
决策变量 | ||
电解水的进料质量流率 | 0.2~0.9 | kg/s |
HPT出口压力 | 30~45 | bar |
PEM电解温度 | 40~90 | ℃ |
PEM的电流密度 | 500~8000 | A/m2 |
ORC的膨胀压力 | 4~15 | bar |
ORC的循环质量流率 | 150~180 | kg/s |
熔盐泵P100出口压力 | 5~10 | bar |
蒸汽轮机等熵效率 | 75~95 | % |
流股8的温度T8 | 36~56 | ℃ |
约束条件 | ||
熔盐泵P100的压头HP100 | HP100>Ht | m |
熔盐流股MS4和MS6的温度 | TMS4≥290,TMS6≥290 | ℃ |
日净输电量 | MWh/d | |
氧气流股8的温度T8 | T8≥T2+10 | ℃ |
参数 | A | B | C | D | E | F |
---|---|---|---|---|---|---|
决策变量 | ||||||
电解水的进料质量流率/(kg/s) | 0.864 | 0.445 | 0.200 | 0.787 | 0.450 | 0.268 |
HPT出口压力/bar | 38.88 | 32.31 | 33.45 | 42.193 | 42.29 | 41.53 |
PEM电解温度/℃ | 66.55 | 56.03 | 40.50 | 69.46 | 69.27 | 54.67 |
PEM的电流密度/(A/m2) | 4044.50 | 2609.08 | 5953.25 | 4622.80 | 4622.82 | 5026.40 |
ORC的膨胀压力/bar | 7.488 | 13.019 | 10.178 | 14.247 | 14.261 | 14.677 |
ORC的循环质量流率/(kg/s) | 162.97 | 160.32 | 166.77 | 158.54 | 158.47 | 162.87 |
熔盐泵P100出口压力/bar | 8.657 | 9.655 | 8.577 | 8.889 | 8.72 | 8.457 |
HPT等熵效率/% | 92.91 | 92.52 | 91.22 | 95 | 95 | 95 |
LPT等熵效率/% | 95 | 95 | 95 | 90.48 | 95 | 82.54 |
流股8的温度T8/℃ | 51.84 | 48.11 | 38.64 | 47.29 | 47.31 | 48.97 |
目标函数 | ||||||
㶲效率/% | 48.38 | 52.39 | 54.57 | — | — | — |
日净输电量/(MWh/d) | — | — | — | 61.673 | 247.352 | 310.180 |
LCOH/(USD/kg) | 5.08 | 6.19 | 9.65 | 5.09 | 6.05 | 8.49 |
表5 点A、B、C、D、E和F对应目标函数和操作参数值
Table 5 The objective functions and operation parameters corresponding points A, B, C, D, E and F
参数 | A | B | C | D | E | F |
---|---|---|---|---|---|---|
决策变量 | ||||||
电解水的进料质量流率/(kg/s) | 0.864 | 0.445 | 0.200 | 0.787 | 0.450 | 0.268 |
HPT出口压力/bar | 38.88 | 32.31 | 33.45 | 42.193 | 42.29 | 41.53 |
PEM电解温度/℃ | 66.55 | 56.03 | 40.50 | 69.46 | 69.27 | 54.67 |
PEM的电流密度/(A/m2) | 4044.50 | 2609.08 | 5953.25 | 4622.80 | 4622.82 | 5026.40 |
ORC的膨胀压力/bar | 7.488 | 13.019 | 10.178 | 14.247 | 14.261 | 14.677 |
ORC的循环质量流率/(kg/s) | 162.97 | 160.32 | 166.77 | 158.54 | 158.47 | 162.87 |
熔盐泵P100出口压力/bar | 8.657 | 9.655 | 8.577 | 8.889 | 8.72 | 8.457 |
HPT等熵效率/% | 92.91 | 92.52 | 91.22 | 95 | 95 | 95 |
LPT等熵效率/% | 95 | 95 | 95 | 90.48 | 95 | 82.54 |
流股8的温度T8/℃ | 51.84 | 48.11 | 38.64 | 47.29 | 47.31 | 48.97 |
目标函数 | ||||||
㶲效率/% | 48.38 | 52.39 | 54.57 | — | — | — |
日净输电量/(MWh/d) | — | — | — | 61.673 | 247.352 | 310.180 |
LCOH/(USD/kg) | 5.08 | 6.19 | 9.65 | 5.09 | 6.05 | 8.49 |
系统 | LCOH/(USD/kg) | 下降(+)/上升(-)比例/% | 文献 |
---|---|---|---|
太阳能驱动超临界CO2布雷顿循环的高温SOEC制氢 | 9.28 | +82.32 | [ |
太阳能驱动氦闭式布雷顿循环发电的PEM制氢 | 7.00 | +37.52 | [ |
太阳能驱动超临界蒸汽朗肯循环发电的Cu-Cl循环制氢 | 7.58 | +48.92 | [ |
太阳能驱动的蒸汽朗肯循环发电的PEM制氢 | 6.00 | +17.88 | [ |
光伏和电池储能系统的碱性电解槽制氢 | 6.55 | +28.68 | [ |
太阳能-燃气轮机与蒸汽轮机混合发电的PEM制氢 | 5.72 | +12.38 | [ |
太阳能-风能-生物乙醇膜反应器耦合制氢 | 4.16 | -18.27 | [ |
光伏-风-蓄电池-蓄热多联产的PEM制氢 | 1.42 | -72.10 | [ |
太阳能-电-氢多联产 | 5.09 | — | 本文 |
表6 本研究与其他太阳能制氢方法的比较
Table 6 Comparison between this study and other solar-hydrogen methods
系统 | LCOH/(USD/kg) | 下降(+)/上升(-)比例/% | 文献 |
---|---|---|---|
太阳能驱动超临界CO2布雷顿循环的高温SOEC制氢 | 9.28 | +82.32 | [ |
太阳能驱动氦闭式布雷顿循环发电的PEM制氢 | 7.00 | +37.52 | [ |
太阳能驱动超临界蒸汽朗肯循环发电的Cu-Cl循环制氢 | 7.58 | +48.92 | [ |
太阳能驱动的蒸汽朗肯循环发电的PEM制氢 | 6.00 | +17.88 | [ |
光伏和电池储能系统的碱性电解槽制氢 | 6.55 | +28.68 | [ |
太阳能-燃气轮机与蒸汽轮机混合发电的PEM制氢 | 5.72 | +12.38 | [ |
太阳能-风能-生物乙醇膜反应器耦合制氢 | 4.16 | -18.27 | [ |
光伏-风-蓄电池-蓄热多联产的PEM制氢 | 1.42 | -72.10 | [ |
太阳能-电-氢多联产 | 5.09 | — | 本文 |
1 | 舒新前, 张蕾, 张磊. 煤催化热解制氢技术[M]. 北京: 科学出版社, 2011. |
Shu X Q, Zhang L, Zhang L. Hydrogen Production Technology by Catalytic Pyrolysis of Coal[M]. Beijing: Science Press, 2011. | |
2 | Takeda M, Nara H, Maekawa K, et al. Simulation of liquid level, temperature and pressure inside a 2000 liter liquid hydrogen tank during truck transportation[J]. Physics Procedia, 2015, 67: 208-214. |
3 | Hanley E S, Deane J, Gallachóir B Ó. The role of hydrogen in low carbon energy futures—a review of existing perspectives[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 3027-3045. |
4 | 李灿. 太阳能转化科学与技术[M]. 北京: 科学出版社, 2020. |
Li C. Solar Energy Conversion Science and Technology[M]. Beijing: Science Press, 2020. | |
5 | 曹军文, 张文强, 李一枫, 等. 中国制氢技术的发展现状[J]. 化学进展, 2021, 33(12): 2215-2244. |
Cao J W, Zhang W Q, Li Y F, et al. Current status of hydrogen production in China[J]. Progress in Chemistry, 2021, 33(12): 2215-2244. | |
6 | 邓成刚, 李伟科, 梁展鹏, 等. 太阳光热发电-超临界二氧化碳循环系统经济性分析与优化[J]. 热力发电, 2021, 50(5): 59-66. |
Deng C G, Li W K, Liang Z P, et al. Economic analysis and optimization for concentrated solar power-supercritical carbon dioxide Brayton cycle system[J]. Thermal Power Generation, 2021, 50(5): 59-66. | |
7 | Yang H L, Li J, Wang Q L, et al. Performance investigation of solar tower system using cascade supercritical carbon dioxide Brayton-steam Rankine cycle[J]. Energy Conversion and Management, 2020, 225: 113430. |
8 | Oyedepo S O, Fakeye B A, Mabinuori B, et al. Thermodynamics analysis and performance optimization of a reheat-regenerative steam turbine power plant with feed water heaters[J]. Fuel, 2020, 280: 118577. |
9 | Bauer T, Pfleger N, Breidenbach N, et al. Material aspects of solar salt for sensible heat storage[J]. Applied Energy, 2013, 111: 1114-1119. |
10 | 苗安康, 袁越, 吴涵, 等. “双碳”目标下绿色氢能技术发展现状与趋势研究[J]. 分布式能源, 2021, 6(4): 15-24. |
Miao A K, Yuan Y, Wu H, et al. Research on development status and trend of green hydrogen energy technologies under targets of carbon peak and carbon neutrality[J]. Distributed Energy, 2021, 6(4): 15-24. | |
11 | Nafchi F M, Baniasadi E, Afshari E, et al. Performance assessment of a direct steam solar power plant with hydrogen energy storage: an exergoeconomic study[J]. International Journal of Hydrogen Energy, 2022, 47(62): 26023-26037. |
12 | Ghorbani P, Smida K, Razzaghi M M, et al. Modeling and thermoeconomic analysis of a 60 MW combined heat and power cycle via feedwater heating compared to a solar power tower[J]. Sustainable Energy Technologies and Assessments, 2022, 54: 102861. |
13 | Alirahmi S M, Assareh E, Arabkoohsar A, et al. Development and multi-criteria optimization of a solar thermal power plant integrated with PEM electrolyzer and thermoelectric generator[J]. International Journal of Hydrogen Energy, 2022, 47(57): 23919-23934. |
14 | Nafchi F M, Baniasadi E, Afshari E, et al. Performance assessment of a solar hydrogen and electricity production plant using high temperature PEM electrolyzer and energy storage[J]. International Journal of Hydrogen Energy, 2018, 43(11): 5820-5831. |
15 | Nazerifard R, Khani L, Mohammadpourfard M, et al. Design and thermodynamic analysis of a novel methanol, hydrogen, and power trigeneration system based on renewable energy and flue gas carbon dioxide[J]. Energy Conversion and Management, 2021, 233: 113922. |
16 | Sadeghi S, Ghandehariun S. Thermodynamic analysis and optimization of an integrated solar thermochemical hydrogen production system[J]. International Journal of Hydrogen Energy, 2020, 45(53): 28426-28436. |
17 | Thanganadar D, Fornarelli F, Camporeale S, et al. Off-design and annual performance analysis of supercritical carbon dioxide cycle with thermal storage for CSP application[J]. Applied Energy, 2021, 282: 116200. |
18 | 刘鉴民. 太阳能热动力发电技术[M]. 北京: 化学工业出版社, 2012. |
Liu J M. Solar Thermal Power Generation Technology[M]. Beijing: Chemical Industry Press, 2012. | |
19 | Sadeghi S, Ghandehariun S, Rezaie B. Energy and exergy analyses of a solar-based multi-generation energy plant integrated with heat recovery and thermal energy storage systems[J]. Applied Thermal Engineering, 2021, 188: 116629. |
20 | Zhang S A, Li K Y, Zhu P F, et al. An efficient hydrogen production process using solar thermo-electrochemical water-splitting cycle and its techno-economic analyses and multi-objective optimization[J]. Energy Conversion and Management, 2022, 266: 115859. |
21 | Sadeghi S, Ghandehariun S, Naterer G F. Exergoeconomic and multi-objective optimization of a solar thermochemical hydrogen production plant with heat recovery[J]. Energy Conversion and Management, 2020, 225: 113441. |
22 | Ni M, Leung M K H, Leung D Y C. Energy and exergy analysis of hydrogen production by a proton exchange membrane (PEM) electrolyzer plant[J]. Energy Conversion and Management, 2008, 49(10): 2748-2756. |
23 | Vosough A, Keshavarzi S. Parametric study of an ideal Rankine cycle with a reheat[J]. Applied Mechanics and Materials, 2011, 110/111/112/113/114/115/116: 4166-4170. |
24 | Saleh B, Koglbauer G, Wendland M, et al. Working fluids for low-temperature organic Rankine cycles[J]. Energy, 2007, 32(7): 1210-1221. |
25 | Ioroi T, Yasuda K, Siroma Z, et al. Thin film electrocatalyst layer for unitized regenerative polymer electrolyte fuel cells[J]. Journal of Power Sources, 2002, 112(2): 583-587. |
26 | Tan Z M, Feng X, Yang M B, et al. Energy and economic performance comparison of heat pump and power cycle in low grade waste heat recovery[J]. Energy, 2022, 260: 125149. |
27 | Zhang D, Hang P, Liu G L. Recycle optimization of an ethylene oxide production process based on the integration of heat exchanger network and reactor[J]. Journal of Cleaner Production, 2020, 275: 122773. |
28 | Jiang N, Han W Q, Guo F Y, et al. A novel heat exchanger network retrofit approach based on performance reassessment[J]. Energy Conversion and Management, 2018, 177: 477-492. |
29 | Zhu P F, Wu Z, Guo L L, et al. Achieving high-efficiency conversion and poly-generation of cooling, heating, and power based on biomass-fueled SOFC hybrid system: performance assessment and multi-objective optimization[J]. Energy Conversion and Management, 2021, 240: 114245. |
30 | Badenhorst H. A novel heat exchanger concept for latent heat thermal energy storage in solar power towers: modelling and performance comparison[J]. Solar Energy, 2016, 137: 90-100. |
31 | Chen C, Xia Q, Feng S M, et al. A novel solar hydrogen production system integrating high temperature electrolysis with ammonia based thermochemical energy storage[J]. Energy Conversion and Management, 2021, 237: 114143. |
32 | Hai T, Dhahad H A, Attia E A, et al. Design, modeling and multi-objective techno-economic optimization of an integrated supercritical Brayton cycle with solar power tower for efficient hydrogen production[J]. Sustainable Energy Technologies and Assessments, 2022, 53: 102599. |
33 | Sadeghi S, Ghandehariun S. A standalone solar thermochemical water splitting hydrogen plant with high-temperature molten salt: thermodynamic and economic analyses and multi-objective optimization[J]. Energy, 2022, 240: 122723. |
34 | Seyyedi S M, Hashemi-Tilehnoee M, Sharifpur M. Thermoeconomic analysis of a solar-driven hydrogen production system with proton exchange membrane water electrolysis unit[J]. Thermal Science and Engineering Progress, 2022, 30: 101274. |
35 | Niaz H, Lakouraj M M, Liu J. Techno-economic feasibility evaluation of a standalone solar-powered alkaline water electrolyzer considering the influence of battery energy storage system: a Korean case study[J]. Korean Journal of Chemical Engineering, 2021, 38(8): 1617-1630. |
36 | Wang G, Wang S K, Cao Y, et al. Design and performance evaluation of a novel hybrid solar-gas power and ORC-based hydrogen-production system[J]. Energy, 2022, 251: 123945. |
37 | Wang B Z, Yu X L, Chang J W, et al. Techno-economic analysis and optimization of a novel hybrid solar-wind-bioethanol hydrogen production system via membrane reactor[J]. Energy Conversion and Management, 2022, 252: 115088. |
38 | Al-Ghussain L, Ahmad A D, Abubaker A M, et al. Techno-economic feasibility of hybrid PV/wind/battery/thermal storage trigeneration system: toward 100% energy independency and green hydrogen production[J]. Energy Reports, 2023, 9: 752-772. |
[1] | 黄琮琪, 吴一梅, 陈建业, 邵双全. 碱性电解水制氢装置热管理系统仿真研究[J]. 化工学报, 2023, 74(S1): 320-328. |
[2] | 胡超, 董玉明, 张伟, 张红玲, 周鹏, 徐红彬. 浓硫酸活化五氧化二钒制备高浓度全钒液流电池正极电解液[J]. 化工学报, 2023, 74(S1): 338-345. |
[3] | 康飞, 吕伟光, 巨锋, 孙峙. 废锂离子电池放电路径与评价研究[J]. 化工学报, 2023, 74(9): 3903-3911. |
[4] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[5] | 曹跃, 余冲, 李智, 杨明磊. 工业数据驱动的加氢裂化装置多工况切换过渡状态检测[J]. 化工学报, 2023, 74(9): 3841-3854. |
[6] | 诸程瑛, 王振雷. 基于改进深度强化学习的乙烯裂解炉操作优化[J]. 化工学报, 2023, 74(8): 3429-3437. |
[7] | 尹刚, 李伊惠, 何飞, 曹文琦, 王民, 颜非亚, 向禹, 卢剑, 罗斌, 卢润廷. 基于KPCA和SVM的铝电解槽漏槽事故预警方法[J]. 化工学报, 2023, 74(8): 3419-3428. |
[8] | 王光, 单发顺, 钱禹丞, 焦建芳. 基于集成学习传递熵的化工过程微小故障检测方法[J]. 化工学报, 2023, 74(7): 2967-2978. |
[9] | 张蒙蒙, 颜冬, 沈永峰, 李文翠. 电解液类型对双离子电池阴阳离子储存行为的影响[J]. 化工学报, 2023, 74(7): 3116-3126. |
[10] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[11] | 李贵贤, 曹阿波, 孟文亮, 王东亮, 杨勇, 周怀荣. 耦合固体氧化物电解槽的CO2制甲醇过程设计与评价研究[J]. 化工学报, 2023, 74(7): 2999-3009. |
[12] | 周小文, 杜杰, 张战国, 许光文. 基于甲烷脉冲法的Fe2O3-Al2O3载氧体还原特性研究[J]. 化工学报, 2023, 74(6): 2611-2623. |
[13] | 李勇, 高佳琦, 杜超, 赵亚丽, 李伯琼, 申倩倩, 贾虎生, 薛晋波. Ni@C@TiO2核壳双重异质结的构筑及光热催化分解水产氢[J]. 化工学报, 2023, 74(6): 2458-2467. |
[14] | 周继鹏, 何文军, 李涛. 异形催化剂上乙烯催化氧化失活动力学反应工程计算[J]. 化工学报, 2023, 74(6): 2416-2426. |
[15] | 高学金, 姚玉卓, 韩华云, 齐咏生. 基于注意力动态卷积自编码器的发酵过程故障监测[J]. 化工学报, 2023, 74(6): 2503-2521. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 1390
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1025
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||