化工学报 ›› 2023, Vol. 74 ›› Issue (2): 766-775.DOI: 10.11949/0438-1157.20221307
梁梦欣1(), 郭艳1, 王世栋1, 张宏伟1, 袁珮1,2(
), 鲍晓军1,2
收稿日期:
2022-09-29
修回日期:
2023-01-31
出版日期:
2023-02-05
发布日期:
2023-03-21
通讯作者:
袁珮
作者简介:
梁梦欣(1997—),女,硕士研究生,2524355119@qq.com
基金资助:
Mengxin LIANG1(), Yan GUO1, Shidong WANG1, Hongwei ZHANG1, Pei YUAN1,2(
), Xiaojun BAO1,2
Received:
2022-09-29
Revised:
2023-01-31
Online:
2023-02-05
Published:
2023-03-21
Contact:
Pei YUAN
摘要:
苯乙烯-丁二烯-苯乙烯嵌段共聚物(SBS)选择性催化加氢是保留链段中苯环不被加氢而CC双键选择性加氢,从而得到具有更优异性能的高附加值氢化产物SEBS。为了消除反应物大分子孔内扩散限制问题,采用胶体SiO2亚微米球为模板,通过氰胺热缩合成功合成了三维有序超大孔氮化碳(3DOM g-C3N4),以其为载体采用化学还原负载法得到了具有超大孔结构的Pd/3DOM g-C3N4催化剂,并将其用于SBS的选择性催化加氢反应。结果表明,Pd/3DOM g-C3N4催化剂具有超大孔-大孔-介孔多级孔三维贯穿结构且Pd颗粒尺寸小、分散均匀,该催化剂在较为温和的反应条件下,即表现出极为优异的加氢活性和选择性。根据红外表征计算得到其对SBS的 1,2-C
C和1,4-C
C总加氢度达到98%,而对苯环没有加氢,选择性为100%。其优异的催化性能主要归功于载体独特的超大孔-大孔-介孔多级孔三维贯穿结构可以有效消除大分子在孔隙中的扩散限制,从而提高了对活性位点的可接近性;Pd和载体氮化碳中的吡啶N之间存在强相互作用,有利于Pd的锚定,进而获得颗粒尺寸小且分散度和稳定性高的Pd纳米颗粒。
中图分类号:
梁梦欣, 郭艳, 王世栋, 张宏伟, 袁珮, 鲍晓军. 氮化碳负载钯催化剂的制备及对SBS选择性催化加氢性能的研究[J]. 化工学报, 2023, 74(2): 766-775.
Mengxin LIANG, Yan GUO, Shidong WANG, Hongwei ZHANG, Pei YUAN, Xiaojun BAO. Study on preparation of Pd catalyst supported on carbon nitride for the selective hydrogenation of SBS[J]. CIESC Journal, 2023, 74(2): 766-775.
图3 SiO2、3DOM g-C3N4和Pd/3DOM g-C3N4的形貌以及Pd/3DOM g-C3N4的Pd颗粒粒径分布
Fig.3 The morphology of SiO2, 3DOM g-C3N4 and Pd/3DOM g-C3N4 and the Pd particle size distribution of Pd/3DOM g-C3N4
Samples | BET surface area/(m2/g) | Pore volume/(cm3/g) | Pore size/nm |
---|---|---|---|
3DOM g-C3N4 | 21 | 0.03 | 3.7/30 |
Pd/3DOM g-C3N4 | 24 | 0.05 | 3.9/32 |
表1 3DOM g-C3N4载体及Pd/3DOM g-C3N4催化剂的结构参数
Table 1 Physiochemical parameters of 3DOM g-C3N4 support and Pd/3DOM g-C3N4 catalyst
Samples | BET surface area/(m2/g) | Pore volume/(cm3/g) | Pore size/nm |
---|---|---|---|
3DOM g-C3N4 | 21 | 0.03 | 3.7/30 |
Pd/3DOM g-C3N4 | 24 | 0.05 | 3.9/32 |
Samples | N/% | C/% | O/% | Pd/% | Binding energy/eV | Graphitic N/% | Pyrrolic N/% | Pyridinic N/% | ||
---|---|---|---|---|---|---|---|---|---|---|
Graphitic N | Pyrrolic N | Pyridinic N | ||||||||
3DOM g-C3N4 | 48.45 | 46.36 | 5.19 | — | 400.80 | 399.71 | 398.26 | 7.19 | 17.95 | 74.85 |
Pd/3DOM g-C3N4 | 48.20 | 44.23 | 7.02 | 0.54 | 400.85 | 399.70 | 398.47 | 8.13 | 19.39 | 72.84 |
表2 3DOM g-C3N4载体和Pd/3DOM g-C3N4催化剂的XPS数据
Table 2 XPS data for 3DOM g-C3N4 and Pd/3DOM g-C3N4 catalyst
Samples | N/% | C/% | O/% | Pd/% | Binding energy/eV | Graphitic N/% | Pyrrolic N/% | Pyridinic N/% | ||
---|---|---|---|---|---|---|---|---|---|---|
Graphitic N | Pyrrolic N | Pyridinic N | ||||||||
3DOM g-C3N4 | 48.45 | 46.36 | 5.19 | — | 400.80 | 399.71 | 398.26 | 7.19 | 17.95 | 74.85 |
Pd/3DOM g-C3N4 | 48.20 | 44.23 | 7.02 | 0.54 | 400.85 | 399.70 | 398.47 | 8.13 | 19.39 | 72.84 |
图9 单氰胺前体的热重图、热缩聚过程及氮化碳负载Pd催化剂示意图
Fig.9 TG curve, thermal condensation process of the cyanamide precursor and schematic illustration of the carbon nitride-supported Pd catalyst
1 | Wang H, Rempel G L. Aqueous-phase catalytic hydrogenation of unsaturated polymers[J]. Catalysis Today, 2015, 247: 117-123. |
2 | Han K Y, Cao G P, Zuo H R, et al. Hydrogenation of commercial polystyrene on Pd/TiO2 monolithic ceramic foam catalysts: catalytic performance and enhanced internal mass transfer[J]. Reaction Kinetics, Mechanisms and Catalysis, 2015, 114(2): 501-517. |
3 | 阴义轩, 成婷婷, 袁珮, 等. 丁腈橡胶非均相加氢催化剂失活原因及再生性能研究[J]. 化工学报, 2019, 70(7): 2528-2539. |
Yin Y X, Cheng T T, Yuan P, et al. Deactivation and regeneration of heterogeneous catalysts for hydrogenation of nitrile butadiene rubber[J]. CIESC Journal. 2019, 70(7): 2528-2539. | |
4 | Wang S H, Ge B Q, Yin Y X, et al. Solvent effect in heterogeneous catalytic selective hydrogenation of nitrile butadiene rubber: relationship between reaction activity and solvents with density functional theory analysis[J]. ChemCatChem, 2020, 12(2): 663-672. |
5 | Zhang P, Zhang H W, Wang S H, et al. Effect of support morphology on the activity and reusability of Pd/SiO2 for NBR hydrogenation[J]. Journal of Materials Science, 2020, 55(27): 12876-12883. |
6 | Zhu J Q, Birgisson B, Kringos N. Polymer modification of bitumen: advances and challenges[J]. European Polymer Journal, 2014, 54: 18-38. |
7 | 葛冰青, 阴义轩, 王亚溪, 等. 溶剂对丁腈橡胶溶解、尺寸、结构和催化加氢的影响研究[J]. 化工学报, 2021, 72(1): 543-554. |
Ge B Q, Yin Y X, Wang Y X, et al. Study of solvent effect on the dissolution, size, structure and catalytic hydrogenation of nitrile butadiene rubber[J]. CIESC Journal. 2021, 72(1): 543-554. | |
8 | Sun H M, Yang J T, Zhang H W, et al. Hierarchical flower-like NiCu/SiO2 bimetallic catalysts with enhanced catalytic activity and stability for petroleum resin hydrogenation[J]. Industrial & Engineering Chemistry Research, 2021, 60(15): 5432-5442. |
9 | Falk J C. Lithium based coordination catalysts for the hydrogenation of diene and vinylaromatic polymers[J]. Macromolecular Chemistry and Physics, 1972, 160(1): 291-299. |
10 | Wei L, Jiang J Y, Wang Y H, et al. Selective hydrogenation of SBS catalyzed by Ru/TPPTS complex in polyether modified ammonium salt ionic liquid[J]. Journal of Molecular Catalysis A: Chemical, 2004, 221(1/2): 47-50. |
11 | 贺小进, 李伟, 陈建军. 氢化SBS国内外现状及发展趋势[J]. 化工新型材料, 2008, 36(9): 10-15. |
He X J, Li W, Chen J J. The status and development trend of hydrogenated SBS at home and abroad[J]. New Chemical Materials, 2008, 36(9): 10-15. | |
12 | 于付江, 陈建军, 贺小进, 等. 苯甲酸甲酯促进茂金属催化剂催化SBS加氢反应研究[J]. 高分子学报, 2010(11): 1306-1312. |
Yu F J, Chen J J, He X J, et al. Selective catalytic hydrogenation of sbs block copolymer with metallocene catalyst accelerated by methyl benzoate[J]. Acta Polymerica Sinica, 2010(11): 1306-1312. | |
13 | 曾伟, 刘甲, 张德谨, 等. Pd-Au/1cTiO2/SiO2催化剂的制备及其烯烃的环氧化性能[J]. 化工学报, 2020, 71(11): 4999-5006. |
Zeng W, Liu J, Zhang D J, et al. Preparation of catalyst Pd-Au/1cTiO2/SiO2 and epoxidation of olefins[J]. CIESC Journal. 2020, 71(11): 4999-5006. | |
14 | Singha N K, Sivaram S. Homogeneous catalytic hydrogenation of poly(styrene-co-butadiene) using a ruthenium based Wilkinson catalyst[J]. Polymer Bulletin, 1995, 35(1): 121-128. |
15 | 李宇辉. 二氯二茂钛用于丁苯共聚物SBS加氢的研究[J]. 化工管理, 2021(27): 144-145. |
Li Y H. Study on titanocene dichloride used in hydrogenation of SBS copolymer[J]. Chemical Enterprise Management, 2021(27): 144-145. | |
16 | Chen J, Ma L, Cheng T T, et al. Stable and recyclable Pd catalyst supported on modified silica hollow microspheres with macroporous shells for enhanced catalytic hydrogenation of NBR[J]. Journal of Materials Science, 2018, 53(21): 15064-15080. |
17 | Ai C J, Gong G B, Zhao X T, et al. Macroporous hollow silica microspheres-supported palladium catalyst for selective hydrogenation of nitrile butadiene rubber[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 77: 250-256. |
18 | Zou R, Li C, Zhang L Q, et al. Selective hydrogenation of nitrile butadiene rubber (NBR) with rhodium nanoparticles supported on carbon nanotubes at room temperature[J]. Catalysis Communications, 2016, 81: 4-9. |
19 | Luo Z H, Feng M, Lu H, et al. Nitrile butadiene rubber hydrogenation over a monolithic Pd/CNTs@Nickel foam catalysts: tunable CNTs morphology effect on catalytic performance[J]. Industrial & Engineering Chemistry Research, 2019, 58(5): 1812-1822. |
20 | Feng M, Luo Z H, Chen R Q, et al. Palladium supported on carbon nanotube modified nickel foam as a structured catalyst for polystyrene hydrogenation[J]. Applied Catalysis A: General, 2019, 570: 329-338. |
21 | Liu Q H, Yang J T, Zhang H W, et al. Tuning the properties of Ni-based catalyst via La incorporation for efficient hydrogenation of petroleum resin[J]. Chinese Journal of Chemical Engineering, 2022, 45: 41-50. |
22 | Wang R, Sun H M, Liang M X. Flower-like nickel phosphide catalyst for petroleum resin hydrogenation with enhanced catalytic activity, hydrodesulfurization ability and stability[J]. Chemical Engineering Science, 2022, 264(12): 118180. |
23 | Ge B Q, Hu Y D, Zhang H W, et al. Zirconium promoter effect on catalytic activity of Pd based catalysts for heterogeneous hydrogenation of nitrile butadiene rubber[J]. Applied Surface Science, 2021, 539(2): 148212. |
24 | Chang J R, Huang S M. Pd/Al2O3 catalysts for selective hydrogenation of polystyrene-block-polybutadiene-block-polystyrene thermoplastic elastomers[J]. Industrial & Engineering Chemistry Research, 1998, 37(4): 1220-1227. |
25 | Pan D, Shi G, Zhang T, et al. New understanding and controllable synthesis of silica hollow microspheres with size-tunable penetrating macroporous shells as a superior support for polystyrene hydrogenation catalysts[J]. Journal of Materials Chemistry A, 2013, 1(34): 9597-9602. |
26 | Chen J, Hu Y D, Cai A F, et al. The mesopore-elimination treatment and silanol-groups recovery for macroporous silica microspheres and its application as an efficient support for polystyrene hydrogenation[J]. Catalysis Communications, 2018, 111: 75-79. |
27 | Lin B, Li J L, Xu B R, et al. Spatial positioning effect of dual cocatalysts accelerating charge transfer in three dimensionally ordered macroporous g-C3N4 for photocatalytic hydrogen evolution[J]. Applied Catalysis B: Environmental, 2019, 243: 94-105. |
28 | Lin B, Yang G D, Yang B L, et al. Construction of novel three dimensionally ordered macroporous carbon nitride for highly efficient photocatalytic activity[J]. Applied Catalysis B: Environmental, 2016, 198: 276-285. |
29 | Guo Y, Yang J T, Zhuang J Y, et al. Selectively catalytic hydrogenation of styrene-butadiene rubber over Pd/g-C3N4 catalyst[J]. Applied Catalysis A: General, 2020, 589: 117312. |
30 | Sun J W, Fu Y S, He G Y, et al. Green Suzuki-Miyaura coupling reaction catalyzed by palladium nanoparticles supported on graphitic carbon nitride[J]. Applied Catalysis B: Environmental, 2015, 165: 661-667. |
31 | Zhao R Y, Sun X X, Jin Y R, et al. Au/Pd/g-C3N4 nanocomposites for photocatalytic degradation of tetracycline hydrochloride[J]. Journal of Materials Science, 2019, 54(7): 5445-5456. |
32 | Xu X L, Luo J J, Li L P, et al. Unprecedented catalytic performance in amine syntheses via Pd/g-C3N4 catalyst-assisted transfer hydrogenation[J]. Green Chemistry, 2018, 20(9): 2038-2046. |
33 | Cheng T T, Chen J, Cai A F, et al. Synthesis of Pd/SiO2 catalysts in various HCl concentrations for selective NBR hydrogenation: effects of H+ and Cl- concentrations and electrostatic interactions[J]. ACS Omega, 2018, 3(6): 6651-6659. |
34 | 王悦, 蒋权, 尚介坤, 等. 介孔氮化碳材料合成的研究进展[J]. 物理化学学报, 2016, 32(8): 1913-1928. |
Wang Y, Jiang Q, Shang J K, et al. Advances in the synthesis of mesoporous carbon nitride materials[J]. Acta Physico-Chimica Sinica, 2016, 32(8): 1913-1928. |
[1] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[2] | 曹跃, 余冲, 李智, 杨明磊. 工业数据驱动的加氢裂化装置多工况切换过渡状态检测[J]. 化工学报, 2023, 74(9): 3841-3854. |
[3] | 杨绍旗, 赵淑蘅, 陈伦刚, 王晨光, 胡建军, 周清, 马隆龙. Raney镍-质子型离子液体体系催化木质素平台分子加氢脱氧制备烷烃[J]. 化工学报, 2023, 74(9): 3697-3707. |
[4] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[5] | 张江淮, 赵众. 碳三加氢装置鲁棒最小协方差约束控制及应用[J]. 化工学报, 2023, 74(3): 1216-1227. |
[6] | 黄宽, 马永德, 蔡镇平, 曹彦宁, 江莉龙. 油脂催化加氢转化制备第二代生物柴油研究进展[J]. 化工学报, 2023, 74(1): 380-396. |
[7] | 沈辰阳, 孙楷航, 张月萍, 刘昌俊. 二氧化碳加氢合成甲醇氧化铟及其负载金属催化剂研究进展[J]. 化工学报, 2023, 74(1): 145-156. |
[8] | 张军, 胡升, 顾菁, 袁浩然, 陈勇. 甲醇体系电镀污泥衍生磁性多金属材料催化糠醛加氢转化[J]. 化工学报, 2022, 73(7): 2996-3006. |
[9] | 金科, 王晨光, 马隆龙, 张琦. 核壳纳米材料制备及其在CO/CO2热催化加氢中的应用[J]. 化工学报, 2022, 73(3): 990-1007. |
[10] | 王吴玉, 史玉竹, 严龙, 张兴华, 马隆龙, 张琦. 负载型Co基双功能催化剂上戊酸酯生物燃料的制备[J]. 化工学报, 2022, 73(2): 689-698. |
[11] | 王峥, 许锋, 罗雄麟. 乙炔加氢串联反应器全周期乙炔转化率最优分配研究[J]. 化工学报, 2022, 73(10): 4551-4564. |
[12] | 尤红运, 林景骏, 黄凯越, 舒日洋, 田志鹏, 王超, 陈颖. 溶剂效应对木质素酚类化合物加氢反应的影响机理[J]. 化工学报, 2022, 73(10): 4498-4506. |
[13] | 董桂霖, 罗祖伟, 曹约强, 周静红, 李伟, 周兴贵. 液相还原温度对草酸酯加氢制乙醇酸甲酯银硅催化剂性能的影响[J]. 化工学报, 2022, 73(1): 232-240. |
[14] | 方辉煌, 吴历洁, 陈伟坤, 袁友珠. 生物质基含氧化合物在过渡金属碳化物上加氢脱氧研究进展[J]. 化工学报, 2021, 72(7): 3562-3575. |
[15] | 蔡中杰, 田盼, 黄忠亮, 黄猛, 黄加乐, 詹国武, 李清彪. 基于生物模板制备二氧化碳加氢反应的Cu/ZnO催化剂[J]. 化工学报, 2021, 72(7): 3668-3679. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 328
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 403
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||