化工学报 ›› 2021, Vol. 72 ›› Issue (7): 3562-3575.DOI: 10.11949/0438-1157.20210048
收稿日期:
2021-01-11
修回日期:
2021-03-15
出版日期:
2021-07-05
发布日期:
2021-07-05
通讯作者:
袁友珠
作者简介:
方辉煌(1991—),男,博士研究生,基金资助:
FANG Huihuang(),WU Lijie,CHEN Weikun,YUAN Youzhu()
Received:
2021-01-11
Revised:
2021-03-15
Online:
2021-07-05
Published:
2021-07-05
Contact:
YUAN Youzhu
摘要:
过渡金属碳化物由母体金属化合物经渗碳反应而形成,具有多变的结构组成和类贵金属的电子性质,是一类具有广泛应用前景的廉价催化材料,在催化加氢、加氢脱氧(hydrodeoxygenation,简写为HDO)和氢解等诸多重要催化反应中表现出优异的性能。近年来,对过渡金属碳化物的研究及其催化应用取得显著进展,但由于其固有的复杂性如相组成、表面缺陷与物种等导致构效关联等科学问题尚不清晰,仍有待进一步研究。本文综述了近年来过渡金属碳化物在生物质热解油中代表性含氧化合物HDO制备燃料和高附加值化学品中的研究进展,在分析了代表性含氧化合物反应路径的基础上,重点介绍了过渡金属碳化物的设计与合成策略及其结构与HDO催化性能关联,并展望了过渡金属碳化物作为生物质基含氧化合物HDO催化材料的研发方向与发展前景。
中图分类号:
方辉煌, 吴历洁, 陈伟坤, 袁友珠. 生物质基含氧化合物在过渡金属碳化物上加氢脱氧研究进展[J]. 化工学报, 2021, 72(7): 3562-3575.
FANG Huihuang, WU Lijie, CHEN Weikun, YUAN Youzhu. Recent progress on hydrodeoxygenation of biomass-derived oxygenates over transition metal carbides[J]. CIESC Journal, 2021, 72(7): 3562-3575.
组分 | 主要化合物 | 含量/%(质量) |
---|---|---|
不饱和醛和酮化合物 | 丙烯醛、苯甲醛、丁烯醛等 | 3.37 |
羟基酮醛化合物 | 羟基丙醛、乙醇醛、羟基丁酮等 | 9.27 |
醇和二醇类化合物 | 甲醇、乙醇、丁二醇等 | 3.50 |
饱和酮化合物 | 丙酮、丁酮、丁二酮、环己酮等 | 1.13 |
酸类和酯类化合物 | 甲酸、乙酸、丙烯酸、乙酸甲酯等 | 19.78 |
呋喃类和呋喃酮化合物 | 糠醛、(烷基)呋喃、呋喃酮等 | 8.50 |
氢化呋喃化合物 | (烷基)四氢呋喃等 | 3.18 |
苯酚和烷基酚 | 苯酚、甲酚、二甲酚等 | 10.27 |
愈创木基化合物 | 愈创木酚、二甲氧基苯酚等 | 26.40 |
烷基愈创木酚化合物 | 乙基愈创木酚、苯甲醚等 | 7.77 |
未知产物 | — | 6.83 |
表1 典型生物油的组成成分[29-31]
Table 1 Major components in typical pyrolysis bio-oil[29-31]
组分 | 主要化合物 | 含量/%(质量) |
---|---|---|
不饱和醛和酮化合物 | 丙烯醛、苯甲醛、丁烯醛等 | 3.37 |
羟基酮醛化合物 | 羟基丙醛、乙醇醛、羟基丁酮等 | 9.27 |
醇和二醇类化合物 | 甲醇、乙醇、丁二醇等 | 3.50 |
饱和酮化合物 | 丙酮、丁酮、丁二酮、环己酮等 | 1.13 |
酸类和酯类化合物 | 甲酸、乙酸、丙烯酸、乙酸甲酯等 | 19.78 |
呋喃类和呋喃酮化合物 | 糠醛、(烷基)呋喃、呋喃酮等 | 8.50 |
氢化呋喃化合物 | (烷基)四氢呋喃等 | 3.18 |
苯酚和烷基酚 | 苯酚、甲酚、二甲酚等 | 10.27 |
愈创木基化合物 | 愈创木酚、二甲氧基苯酚等 | 26.40 |
烷基愈创木酚化合物 | 乙基愈创木酚、苯甲醚等 | 7.77 |
未知产物 | — | 6.83 |
键型 | 解离能/(kJ·mol-1) |
---|---|
Ar—OR | 422 |
Ar—OH | 468 |
ArO—R | 247 |
R—OR | 339 |
R—OH | 385 |
R | 799 |
表2 典型的生物质基C—O键及其解离能[36]
Table 2 Typical biomass based C—O bonds and their dissociation energies[36]
键型 | 解离能/(kJ·mol-1) |
---|---|
Ar—OR | 422 |
Ar—OH | 468 |
ArO—R | 247 |
R—OR | 339 |
R—OH | 385 |
R | 799 |
反应物 | 催化剂 | 反应条件 | 产物和收率 | 文献 |
---|---|---|---|---|
愈创木酚 | W2C/CNF | 釜式反应器;350℃;4 h;5.5 MPa H2 | 苯酚,30.4% | [ |
愈创木酚 | Mo2C/CNF | 釜式反应器;350℃;4 h;5.5 MPa H2 | 苯酚,45% | [ |
愈创木酚 | Mo2C/CNF | 釜式反应器;350℃;2 h;3.0 MPa H2 | 酚基化合物,91.8% | [ |
愈创木酚 | Mo2C@C Mo2C core/shell | 釜式反应器;340℃;4 h;2.8 MPa H2 | 酚基化合物,71.3% | [ |
愈创木酚 | MoC1-x/CNF | 釜式反应器;350℃;4 h;4.0 MPa H2 | 苯酚,49% | [ |
愈创木酚 | α-MoC1-x/AC | 釜式反应器;340℃;4 h;0.1 MPa H2 | 苯酚和烷基酚,74% | [ |
愈创木酚 | WxC@CS | 固定床;300℃;3.0 MPa H2;WLHSV = 3.0 h-1 | 苯酚,92.5% | [ |
2-甲氧基苯酚 | Mo2C/AC | 釜式反应器;350℃;3.4 MPa H2;6 h | 苯酚,>90% | [ |
间甲酚 | Mo2C | 固定床;150℃;0.1 MPa;H2/间甲酚=2800 | 甲苯,选择性>90% | [ |
苯酚 | Mo2C/TiO2 | 固定床;350℃;2.5 MPa H2 | 苯,>90% | [ |
苯甲醚 | Mo2C | 固定床;247℃;H2/苯甲醚=713;0.1 MPa | 苯,选择性>90% | [ |
苯酚 | MoCx/HCS | 釜式反应器;350℃;3.0 MPa H2;2 h | 苯,57.8% | [ |
苯甲醚 | Mo2C | 固定床;150℃;约0.01到约0.1 MPa H2 | 苯,94% | [ |
苯甲醚 | MoCx/FAU | 固定床;250℃; | 酚类化合物,>70% | [ |
香豆酮 | W2C nanorod | 固定床;340℃;4.0 MPa H2 | 主要是乙苯 | [ |
香兰素 | Mo2C/AC | 釜式反应器;100℃;3 h;0.6 MPa H2 | 对甲酚,60%~70% | [ |
2-(2-甲氧基苯氧基)-1-苯基乙醇 | W2C/AC | 釜式反应器;280℃;2 h;0.69 MPa H2 | 乙苯,91.9% | [ |
表3 芳香醚和酚类化合物的加氢脱氧
Table 3 Hydrodeoxygenation of aromatic ethers and phenols
反应物 | 催化剂 | 反应条件 | 产物和收率 | 文献 |
---|---|---|---|---|
愈创木酚 | W2C/CNF | 釜式反应器;350℃;4 h;5.5 MPa H2 | 苯酚,30.4% | [ |
愈创木酚 | Mo2C/CNF | 釜式反应器;350℃;4 h;5.5 MPa H2 | 苯酚,45% | [ |
愈创木酚 | Mo2C/CNF | 釜式反应器;350℃;2 h;3.0 MPa H2 | 酚基化合物,91.8% | [ |
愈创木酚 | Mo2C@C Mo2C core/shell | 釜式反应器;340℃;4 h;2.8 MPa H2 | 酚基化合物,71.3% | [ |
愈创木酚 | MoC1-x/CNF | 釜式反应器;350℃;4 h;4.0 MPa H2 | 苯酚,49% | [ |
愈创木酚 | α-MoC1-x/AC | 釜式反应器;340℃;4 h;0.1 MPa H2 | 苯酚和烷基酚,74% | [ |
愈创木酚 | WxC@CS | 固定床;300℃;3.0 MPa H2;WLHSV = 3.0 h-1 | 苯酚,92.5% | [ |
2-甲氧基苯酚 | Mo2C/AC | 釜式反应器;350℃;3.4 MPa H2;6 h | 苯酚,>90% | [ |
间甲酚 | Mo2C | 固定床;150℃;0.1 MPa;H2/间甲酚=2800 | 甲苯,选择性>90% | [ |
苯酚 | Mo2C/TiO2 | 固定床;350℃;2.5 MPa H2 | 苯,>90% | [ |
苯甲醚 | Mo2C | 固定床;247℃;H2/苯甲醚=713;0.1 MPa | 苯,选择性>90% | [ |
苯酚 | MoCx/HCS | 釜式反应器;350℃;3.0 MPa H2;2 h | 苯,57.8% | [ |
苯甲醚 | Mo2C | 固定床;150℃;约0.01到约0.1 MPa H2 | 苯,94% | [ |
苯甲醚 | MoCx/FAU | 固定床;250℃; | 酚类化合物,>70% | [ |
香豆酮 | W2C nanorod | 固定床;340℃;4.0 MPa H2 | 主要是乙苯 | [ |
香兰素 | Mo2C/AC | 釜式反应器;100℃;3 h;0.6 MPa H2 | 对甲酚,60%~70% | [ |
2-(2-甲氧基苯氧基)-1-苯基乙醇 | W2C/AC | 釜式反应器;280℃;2 h;0.69 MPa H2 | 乙苯,91.9% | [ |
反应物 | 催化剂 | 反应条件 | 产物和收率 | 文献 |
---|---|---|---|---|
乙酸 | Mo2C | 程序升温反应,350℃;0.1 MPa;H2/反应物=4 | 乙醛和乙烯 | [ |
乙酸 | NP-MoC1-x/mSBA | 程序升温反应,350℃;0.1 MPa;H2/反应物=4 | 乙烯 | [ |
丙酮 | Mo2C | 流动反应器;96℃;81 kPa | 丙烷 | [ |
丙酮 | O*-Mo2C | 流动反应器;96℃;81 kPa | 丙烯 | [ |
丙酮 | Mo2C | 流动反应器;300℃;0.1 MPa;H2/反应物=10 | C3碳氢化合物(主要是丙烯),40%~50% | [ |
丙醛 | Mo2C | 流动反应器;300℃;0.1 MPa;H2/反应物=10 | C3碳氢化合物(丙烯),30%~40% | [ |
丙醛 | porous Mo2C | 流动反应器;常压;300℃ | 丙烯,>60% | [ |
丙醇 | WC | 流动反应器;380℃;0.1 MPa;H2/反应物=10 | 丙烯,>73% | [ |
糠醛 | Mo2C | 固定床;250℃;0.1 MPa H2;H2/反应物=80 | 甲基呋喃,80%~90% | [ |
糠醛 | NiMoC-SiO2 | 釜式反应器;150℃;40 min;6 MPa H2 | 甲基呋喃,约100% | [ |
糠醛 | β-Mo2C | 流动反应器;常压;150℃ | 2-甲基呋喃,50%~60% | [ |
1-辛醇 | Mo2C/ZrO2 | 固定床;380℃;10.0 MPa H2;WHSV= 4.0 h-1 | 辛烯,>90% | [ |
4-甲基-3-环己烯-1-羰基醛 | W2C/AC | 固定床;350℃;0.1 MPa H2;LHSV= 1 ml·g-1·h-1 | 对二甲苯,95% | [ |
表4 生物质基含氧小分子的加氢脱氧
Table 4 Hydrodeoxygenation of simple oxygenates
反应物 | 催化剂 | 反应条件 | 产物和收率 | 文献 |
---|---|---|---|---|
乙酸 | Mo2C | 程序升温反应,350℃;0.1 MPa;H2/反应物=4 | 乙醛和乙烯 | [ |
乙酸 | NP-MoC1-x/mSBA | 程序升温反应,350℃;0.1 MPa;H2/反应物=4 | 乙烯 | [ |
丙酮 | Mo2C | 流动反应器;96℃;81 kPa | 丙烷 | [ |
丙酮 | O*-Mo2C | 流动反应器;96℃;81 kPa | 丙烯 | [ |
丙酮 | Mo2C | 流动反应器;300℃;0.1 MPa;H2/反应物=10 | C3碳氢化合物(主要是丙烯),40%~50% | [ |
丙醛 | Mo2C | 流动反应器;300℃;0.1 MPa;H2/反应物=10 | C3碳氢化合物(丙烯),30%~40% | [ |
丙醛 | porous Mo2C | 流动反应器;常压;300℃ | 丙烯,>60% | [ |
丙醇 | WC | 流动反应器;380℃;0.1 MPa;H2/反应物=10 | 丙烯,>73% | [ |
糠醛 | Mo2C | 固定床;250℃;0.1 MPa H2;H2/反应物=80 | 甲基呋喃,80%~90% | [ |
糠醛 | NiMoC-SiO2 | 釜式反应器;150℃;40 min;6 MPa H2 | 甲基呋喃,约100% | [ |
糠醛 | β-Mo2C | 流动反应器;常压;150℃ | 2-甲基呋喃,50%~60% | [ |
1-辛醇 | Mo2C/ZrO2 | 固定床;380℃;10.0 MPa H2;WHSV= 4.0 h-1 | 辛烯,>90% | [ |
4-甲基-3-环己烯-1-羰基醛 | W2C/AC | 固定床;350℃;0.1 MPa H2;LHSV= 1 ml·g-1·h-1 | 对二甲苯,95% | [ |
1 | Corma A, Iborra S, Velty A. Chemical routes for the transformation of biomass into chemicals[J]. Chemical Reviews, 2007, 107(6): 2411-2502. |
2 | Schutyser W, Renders T, van den Bosch S, et al. Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading[J]. Chemical Society Reviews, 2018, 47(3): 852-908. |
3 | Zhang X H, Zhang Q, Wang T J, et al. Hydrodeoxygenation of lignin-derived phenolic compounds to hydrocarbons over Ni/SiO2-ZrO2 catalysts[J]. Bioresource Technology, 2013, 134: 73-80. |
4 | Serrano-Ruiz J C, Dumesic J A. Catalytic routes for the conversion of biomass into liquid hydrocarbon transportation fuels[J]. Energy Environ. Sci., 2011, 4(1): 83-99. |
5 | Ragauskas A J, Beckham G T, Biddy M J, et al. Lignin valorization: improving lignin processing in the biorefinery[J]. Science, 2014, 344(6185): 1246843. |
6 | Huber G W, Iborra S, Corma A. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering[J]. Chemical Reviews, 2006, 106(9): 4044-4098. |
7 | Venderbosch R H. A critical view on catalytic pyrolysis of biomass[J]. ChemSusChem, 2015, 8(8): 1306-1316. |
8 | 孔劼琛, 骆治成, 李愽龙, 等. 木质素解聚和加氢脱氧的进展[J]. 中国科学: 化学, 2015, 45(5): 510-525. |
Kong J C, Luo Z C, Li B L, et al. Advances in depolymerization and hydrodeoxygenation of lignin[J]. Scientia Sinica (Chimica), 2015, 45(5): 510-525. | |
9 | 朱晨杰, 杜风光, 应汉杰, 等. 木质纤维素基平台化合物催化转化制备液体燃料及燃料添加剂[J]. 化工学报, 2015, 66(8): 2784-2794. |
Zhu C J, Du F G, Ying H J, et al. Catalytic production of liquid hydrocarbon fuels and fuel additives from lignocellulosic platform molecules[J]. CIESC Journal, 2015, 66(8): 2784-2794. | |
10 | Saidi M, Samimi F, Karimipourfard D, et al. Upgrading of lignin-derived bio-oils by catalytic hydrodeoxygenation[J]. Energy Environ. Sci., 2014, 7(1): 103-129. |
11 | Yan N, Dyson P J. Transformation of biomass via the selective hydrogenolysis of C—O bonds by nanoscale metal catalysts[J]. Current Opinion in Chemical Engineering, 2013, 2(2): 178-183. |
12 | Alonso D M, Wettstein S G, Dumesic J A. Bimetallic catalysts for upgrading of biomass to fuels and chemicals[J]. Chemical Society Reviews, 2012, 41(24): 8075-8098. |
103 | Xiong K, Lee W S, Bhan A, et al. Molybdenum carbide as a highly selective deoxygenation catalyst for converting furfural to 2-methylfuran[J]. ChemSusChem, 2014, 7(8): 2146-2149. |
104 | Lin Z X, Chen R, Qu Z P, et al. Hydrodeoxygenation of biomass-derived oxygenates over metal carbides: from model surfaces to powder catalysts[J]. Green Chemistry, 2018, 20(12): 2679-2696. |
13 | Nimmanwudipong T, Aydin C, Lu J, et al. Selective hydrodeoxygenation of guaiacol catalyzed by platinum supported on magnesium oxide[J]. Catalysis Letters, 2012, 142(10): 1190-1196. |
14 | 王荀, 吕永康. 愈创木酚催化氢解制取苯酚研究进展[J]. 现代化工, 2019, 39(4): 36-39, 41. |
Wang X, Lyu Y K. Advances in phenol production through catalytic hydrogenolysis of guaiacol[J]. Modern Chemical Industry, 2019, 39(4): 36-39, 41. | |
15 | 王芸, 邵珊珊, 张会岩, 等. 生物质模化物催化热解制取烯烃和芳香烃[J]. 化工学报, 2015, 66(8): 3022-3028. |
Wang Y, Shao S S, Zhang H Y, et al. Catalytic pyrolysis of biomass model compounds to olefins and aromatic hydrocarbons[J]. CIESC Journal, 2015, 66(8): 3022-3028. | |
16 | Nimmanwudipong T, Runnebaum R C, Block D E, et al. Catalytic conversion of guaiacol catalyzed by platinum supported on alumina: reaction network including hydrodeoxygenation reactions[J]. Energy & Fuels, 2011, 25(8): 3417-3427. |
17 | Sankar M, Dimitratos N, Miedziak P J, et al. Designing bimetallic catalysts for a green and sustainable future[J]. Chemical Society Reviews, 2012, 41(24): 8099-8139. |
18 | Huang Y, Ariga H, Zheng X L, et al. Silver-modulated SiO2-supported copper catalysts for selective hydrogenation of dimethyl oxalate to ethylene glycol[J]. Journal of Catalysis, 2013, 307: 74-83. |
19 | Rameshan C, Stadlmayr W, Penner S, et al. Hydrogen production by methanol steam reforming on copper boosted by zinc-assisted water activation[J]. Angewandte Chemie International Edition, 2012, 51(12): 3002-3006. |
20 | Trasarti A F, Bertero N M, Apesteguía C R, et al. Liquid-phase hydrogenation of acetophenone over silica-supported Ni, Co and Cu catalysts: influence of metal and solvent[J]. Applied Catalysis A: General, 2014, 475: 282-291. |
21 | Olcese R, Bettahar M M, Malaman B, et al. Gas-phase hydrodeoxygenation of guaiacol over iron-based catalysts. Effect of gases composition, iron load and supports (silica and activated carbon)[J]. Applied Catalysis B: Environmental, 2013, 129: 528-538. |
22 | Olcese R N, Bettahar M, Petitjean D, et al. Gas-phase hydrodeoxygenation of guaiacol over Fe/SiO2 catalyst[J]. Applied Catalysis B: Environmental, 2012, 115/116: 63-73. |
23 | Song W J, Liu Y S, Baráth E, et al. Synergistic effects of Ni and acid sites for hydrogenation and C—O bond cleavage of substituted phenols[J]. Green Chemistry, 2015, 17(2): 1204-1218. |
24 | Wan W M, Tackett B M, Chen J G. Reactions of water and C1 molecules on carbide and metal-modified carbide surfaces[J]. Chemical Society Reviews, 2017, 46(7): 1807-1823. |
25 | Gosselink R W, Stellwagen D R, Bitter J H. Tungsten-based catalysts for selective deoxygenation[J]. Angewandte Chemie International Edition, 2013, 52(19): 5089-5092. |
26 | Stellwagen D R, Bitter J H. Structure-performance relations of molybdenum- and tungsten carbide catalysts for deoxygenation[J]. Green Chemistry, 2015, 17(1): 582-593. |
27 | Choi J S, Bugli G, Djéga-Mariadassou G. Influence of the degree of carburization on the density of sites and hydrogenating activity of molybdenum carbides[J]. Journal of Catalysis, 2000, 193(2): 238-247. |
28 | 朱全力, 杨建, 季生福, 等. 过渡金属碳化物的研究进展[J]. 化学进展, 2004, 16(3): 382-385. |
Zhu Q L, Yang J, Ji S F, et al. Progress of transition metal carbides in heterogenous catalysis[J]. Progress in Chemistry, 2004, 16(3): 382-385. | |
29 | Elliott D C, Hart T R, Neuenschwander G G, et al. Catalytic hydroprocessing of biomass fast pyrolysis bio-oil to produce hydrocarbon products[J]. Environmental Progress & Sustainable Energy, 2009, 28(3): 441-449. |
30 | Oasmaa A, Czernik S. Fuel oil quality of biomass pyrolysis oils—state of the art for the end users[J]. Energy & Fuels, 1999, 13(4): 914-921. |
31 | Czernik S, Bridgwater A V. Overview of applications of biomass fast pyrolysis oil[J]. Energy & Fuels, 2004, 18(2): 590-598. |
32 | Wang H M, Male J, Wang Y. Recent advances in hydrotreating of pyrolysis bio-oil and its oxygen-containing model compounds[J]. ACS Catalysis, 2013, 3(5): 1047-1070. |
33 | Wu S K, Lai P C, Lin Y C, et al. Atmospheric hydrodeoxygenation of guaiacol over alumina-, zirconia-, and silica-supported nickel phosphide catalysts[J]. ACS Sustainable Chemistry & Engineering, 2013, 1(3): 349-358. |
34 | Hong Y K, Lee D W, Eom H J, et al. The catalytic activity of Pd/WOx/γ-Al2O3 for hydrodeoxygenation of guaiacol[J]. Applied Catalysis B: Environmental, 2014, 150/151: 438-445. |
35 | 练彩霞, 李凝, 蒋武, 等. 生物质油催化加氢脱氧(HDO)反应机理及催化剂研究进展[J]. 化工进展, 2020, 39(S1): 153-162. |
Lian C X, Li N, Jiang W, et al. Research progress on reaction mechanism and catalysts for catalytic hydrodeoxygenation (HDO) of biomass oil[J]. Chemical Industry and Engineering Progress, 2020, 39(S1): 153-162. | |
36 | Furimsky E. Catalytic hydrodeoxygenation[J]. Applied Catalysis A: General, 2000, 199(2): 147-190. |
37 | 徐海升, 何丽娟, 黄国强. 碳化物类生物油加氢脱氧催化剂的研究进展[J]. 精细石油化工, 2020, 37(1): 71-76. |
Xu H S, He L J, Huan G Q. Research progress of carbide catalysts for hydrodeoxygenationofbio-oils[J]. Speciality Petrochemicals, 2020, 37(1): 71-76. | |
105 | Lu Q, Chen C J, Luc W, et al. Ordered mesoporous metal carbides with enhanced anisole hydrodeoxygenation selectivity[J]. ACS Catalysis, 2016, 6(6): 3506-3514. |
38 | Pang J F, Sun J M, Zheng M Y, et al. Transition metal carbide catalysts for biomass conversion: a review[J]. Applied Catalysis B: Environmental, 2019, 254: 510-522. |
39 | Zhong Y, Xia X, Shi F, et al. Transition metal carbides and nitrides in energy storage and conversion[J]. Advanced Science, 2016, 3(5): 1500286. |
40 | Wang Y, Zhang H, Yang X H, et al. Recent advances in transition-metal carbides: from controlled preparation to hydrogen evolution reaction application[J]. Chemistry - A European Journal, 2021, 27(1): 1-19. |
41 | 李玲, 王晓慧, 张雪, 等. 过渡金属碳化物催化材料研究进展[J]. 化工新型材料, 2018, 46(12): 56-62. |
Li L, Wang X H, Zhang X, et al. Research progress of transition metal carbide catalytic material[J]. New Chemical Materials, 2018, 46(12): 56-62. | |
42 | 陆强, 李文涛, 叶小宁, 等. W2C/AC催化快速热解松木磨木木质素[J]. 化工学报, 2016, 67(11): 4843-4850. |
Lu Q, Li W T, Ye X N, et al. Fast catalytic pyrolysis of pine milled wood lignin with W2C/AC[J]. CIESC Journal, 2016, 67(11): 4843-4850. | |
43 | Levy R B, Boudart M. Platinum-like behavior of tungsten carbide in surface catalysis[J]. Science, 1973, 181(4099): 547-549. |
44 | 甘赠国, 黄志宇, 庞纪峰. 过渡金属碳化物的催化研究进展[J]. 精细石油化工进展, 2007, 8(6): 37-41. |
Gan Z G, Huang Z Y, Pang J F. Research development on catalysis of transition metal carbides[J]. Advances in Fine Petrochemicals, 2007, 8(6): 37-41. | |
45 | Lee J S, Oyama S T, Boudart M. Molybdenum carbide catalysts (I): Synthesis of unsupported powders[J]. Journal of Catalysis, 1987, 106(1): 125-133. |
46 | Mo T, Xu J, Yang Y, et al. Effect of carburization protocols on molybdenum carbide synthesis and study on its performance in CO hydrogenation[J]. Catalysis Today, 2016, 261: 101-115. |
47 | Hanif A, Xiao T C, York A P E, et al. Study on the structure and formation mechanism of molybdenum carbides[J]. Chemistry of Materials, 2002, 14(3): 1009-1015. |
48 | Claridge J B, York A P E, Brungs A J, et al. Study of the temperature-programmed reaction synthesis of early transition metal carbide and nitride catalyst materials from oxide precursors[J]. Chemistry of Materials, 2000, 12(1): 132-142. |
49 | Xiao T C, York A P E, Coleman K S, et al. Effect of carburising agent on the structure of molybdenum carbides[J]. Journal of Materials Chemistry, 2001, 11(12): 3094-3098. |
50 | Hunt S T, Nimmanwudipong T, Román-Leshkov Y. Engineering non-sintered, metal-terminated tungsten carbide nanoparticles for catalysis[J]. Angewandte Chemie International Edition, 2014, 53(20): 5131-5136. |
51 | Gong Q, Wang Y, Hu Q, et al. Ultrasmall and phase-pure W2C nanoparticles for efficient electrocatalytic and photoelectrochemical hydrogen evolution[J]. Nature Communications, 2016, 7: 13216. |
52 | Li C Z, Zheng M Y, Wang A Q, et al. One-pot catalytic hydrocracking of raw woody biomass into chemicals over supported carbide catalysts: simultaneous conversion of cellulose, hemicellulose and lignin[J]. Energy Environ. Sci., 2012, 5(4): 6383-6390. |
53 | Liu R, Pang M, Chen X Z, et al. W2C nanorods with various amounts of vacancy defects: determination of catalytic active sites in the hydrodeoxygenation of benzofuran[J]. Catalysis Science & Technology, 2017, 7(6): 1333-1341. |
54 | Wang H Y, Liu S D, Liu B, et al. Carbon and Mo transformations during the synthesis of mesoporous Mo2C/carbon catalysts by carbothermal hydrogen reduction[J]. Journal of Solid State Chemistry, 2018, 258: 818-824. |
55 | Kim S K, Qiu Y, Zhang Y J, et al. Nanocomposites of transition-metal carbides on reduced graphite oxide as catalysts for the hydrogen evolution reaction[J]. Applied Catalysis B: Environmental, 2018, 235: 36-44. |
56 | Liang C H, Ying P L, Li C. Nanostructured β-Mo2C prepared by carbothermal hydrogen reduction on ultrahigh surface area carbon material[J]. Chemistry of Materials, 2002, 14(7): 3148-3151. |
57 | Han J X, Duan J Z, Chen P, et al. Nanostructured molybdenum carbides supported on carbon nanotubes as efficient catalysts for one-step hydrodeoxygenation and isomerization of vegetable oils[J]. Green Chemistry, 2011, 13(9): 2561-2568. |
58 | Jongerius A L, Gosselink R W, Dijkstra J, et al. Carbon nanofiber supported transition-metal carbide catalysts for the hydrodeoxygenation of guaiacol[J]. ChemCatChem, 2013, 5(10): 2964-2972. |
59 | Souza Macedo L, Stellwagen D R, Teixeira da Silva V, et al. Stability of transition-metal carbides in liquid phase reactions relevant for biomass-based conversion[J]. ChemCatChem, 2015, 7(18): 2816-2823. |
60 | Miao M, Pan J, He T, et al. Molybdenum carbide-based electrocatalysts for hydrogen evolution reaction[J]. Chemistry - A European Journal, 2017, 23(46): 10947-10961. |
61 | Wu H B, Xia B Y, Yu L, et al. Porous molybdenum carbide nano-octahedrons synthesized via confined carburization in metal-organic frameworks for efficient hydrogen production[J]. Nature Communications, 2015, 6: 6512. |
62 | Shi Z P, Wang Y X, Lin H L, et al. Porous nanoMoC@graphite shell derived from a MOFs-directed strategy: an efficient electrocatalyst for the hydrogen evolution reaction[J]. Journal of Materials Chemistry A, 2016, 4(16): 6006-6013. |
63 | Wan J, Wu J B, Gao X, et al. Structure confined porous Mo2C for efficient hydrogen evolution[J]. Advanced Functional Materials, 2017, 27(45): 1703933. |
64 | Yu H, Fan H S, Wang J, et al. 3D ordered porous MoxC (x = 1 or 2) for advanced hydrogen evolution and Li storage[J]. Nanoscale, 2017, 9(21): 7260-7267. |
65 | Fang H H, Du J M, Tian C C, et al. Regioselective hydrogenolysis of aryl ether C—O bonds by tungsten carbides with controlled phase compositions[J]. Chemical Communications, 2017, 53(74): 10295-10298. |
66 | Fang H H, Zheng J W, Luo X L, et al. Product tunable behavior of carbon nanotubes-supported Ni-Fe catalysts for guaiacol hydrodeoxygenation[J]. Applied Catalysis A: General, 2017, 529: 20-31. |
67 | Ardiyanti A R, Khromova S A, Venderbosch R H, et al. Catalytic hydrotreatment of fast-pyrolysis oil using non-sulfided bimetallic Ni-Cu catalysts on a δ-Al2O3 support[J]. Applied Catalysis B: Environmental, 2012, 117/118: 105-117. |
68 | Bredenberg J B S, Huuska M, Räty J, et al. Hydrogenolysis and hydrocracking of the carbon-oxygen bond(Ⅰ): Hydrocracking of some simple aromatic O-compounds[J]. Journal of Catalysis, 1982, 77(1): 242-247. |
69 | Zhao C, Kou Y, Lemonidou A, et al. Highly selective catalytic conversion of phenolic bio-oil to alkanes[J]. Angewandte Chemie International Edition, 2009, 121(22): 4047-4050. |
70 | Moreira R, Ochoa E, Pinilla J, et al. Liquid-phase hydrodeoxygenation of guaiacol over Mo2C supported on commercial CNF. Effects of operating conditions on conversion and product selectivity[J]. Catalysts, 2018, 8(4): 127. |
71 | Li R, Shahbazi A, Wang L J, et al. Graphite encapsulated molybdenum carbide core/shell nanocomposite for highly selective conversion of guaiacol to phenolic compounds in methanol[J]. Applied Catalysis A: General, 2016, 528: 123-130. |
72 | Santillan-Jimenez E, Perdu M, Pace R, et al. Activated carbon, carbon nanofiber and carbon nanotube supported molybdenum carbide catalysts for the hydrodeoxygenation of guaiacol[J]. Catalysts, 2015, 5(1): 424-441. |
73 | Ma R, Cui K, Yang L, et al. Selective catalytic conversion of guaiacol to phenols over a molybdenum carbide catalyst[J]. Chemical Communications, 2015, 51(51): 10299-10301. |
74 | Fang H H, Roldan A, Tian C C, et al. Structural tuning and catalysis of tungsten carbides for the regioselective cleavage of CO bonds[J]. Journal of Catalysis, 2019, 369: 283-295. |
75 | Guo H W, Zhang B, Qi Z J, et al. Valorization of lignin to simple phenolic compounds over tungsten carbide: impact of lignin structure[J]. ChemSusChem, 2017, 10(3): 523-532. |
76 | Guo H W, Zhang B, Li C Z, et al. Tungsten carbide: a remarkably efficient catalyst for the selective cleavage of lignin C—O bonds[J]. ChemSusChem, 2016, 9(22): 3220-3229. |
77 | Molavian M R, Abdolmaleki A, Gharibi H, et al. Safe and green modified ostrich eggshell membranes as dual functional fuel cell membranes[J]. Energy & Fuels, 2017, 31(2): 2017-2023. |
78 | Chen C J, Bhan A. Mo2C modification by CO2, H2O, and O2: effects of oxygen content and oxygen source on rates and selectivity of m-cresol hydrodeoxygenation[J]. ACS Catalysis, 2017, 7(2): 1113-1122. |
79 | Boullosa-Eiras S, Lødeng R, Bergem H, et al. Catalytic hydrodeoxygenation (HDO) of phenol over supported molybdenum carbide, nitride, phosphide and oxide catalysts[J]. Catalysis Today, 2014, 223: 44-53. |
80 | Engelhardt J, Lyu P B, Nachtigall P, et al. The influence of water on the performance of molybdenum carbide catalysts in hydrodeoxygenation reactions: a combined theoretical and experimental study[J]. ChemCatChem, 2017, 9(11): 1985-1991. |
81 | Lee W S, Wang Z S, Wu R J, et al. Selective vapor-phase hydrodeoxygenation of anisole to benzene on molybdenum carbide catalysts[J]. Journal of Catalysis, 2014, 319: 44-53. |
82 | Iida T, Shetty M, Murugappan K, et al. Encapsulation of molybdenum carbide nanoclusters inside zeolite micropores enables synergistic bifunctional catalysis for anisole hydrodeoxygenation[J]. ACS Catalysis, 2017, 7(12): 8147-8151. |
83 | He L L, Qin Y, Lou H, et al. Highly dispersed molybdenum carbide nanoparticles supported on activated carbon as an efficient catalyst for the hydrodeoxygenation of vanillin[J]. RSC Advances, 2015, 5(54): 43141-43147. |
84 | Schaidle J A, Blackburn J, Farberow C A, et al. Experimental and computational investigation of acetic acid deoxygenation over oxophilic molybdenum carbide: surface chemistry and active site identity[J]. ACS Catalysis, 2016, 6(2): 1181-1197. |
85 | Baddour F G, Nash C P, Schaidle J A, et al. Synthesis of α-MoC1–x nanoparticles with a surface-modified SBA-15 hard template: determination of structure-function relationships in acetic acid deoxygenation[J]. Angewandte Chemie International Edition, 2016, 128(31): 9172-9175. |
86 | Sullivan M M, Bhan A. Acetone hydrodeoxygenation over bifunctional metallic–acidic molybdenum carbide catalysts[J]. ACS Catalysis, 2016, 6(2): 1145-1152. |
87 | Ren H, Yu W T, Salciccioli M, et al. Selective hydrodeoxygenation of biomass-derived oxygenates to unsaturated hydrocarbons using molybdenum carbide catalysts[J]. ChemSusChem, 2013, 6(5): 798-801. |
88 | Ren H, Chen Y, Huang Y L, et al. Tungsten carbides as selective deoxygenation catalysts: experimental and computational studies of converting C3 oxygenates to propene[J]. Green Chemistry, 2014, 16(2): 761-769. |
89 | Lin Z X, Wan W M, Yao S Y, et al. Cobalt-modified molybdenum carbide as a selective catalyst for hydrodeoxygenation of furfural[J]. Applied Catalysis B: Environmental, 2018, 233: 160-166. |
90 | Shilov I, Smirnov A, Bulavchenko O, et al. Effect of Ni–Mo carbide catalyst formation on furfural hydrogenation[J]. Catalysts, 2018, 8(11): 560. |
91 | Lee W S, Wang Z S, Zheng W Q, et al. Vapor phase hydrodeoxygenation of furfural to 2-methylfuran on molybdenum carbide catalysts[J]. Catalysis Science & Technology, 2014, 4(8): 2340-2352. |
92 | Mortensen P M, de Carvalho H W P, Grunwaldt J D, et al. Activity and stability of Mo2C/ZrO2 as catalyst for hydrodeoxygenation of mixtures of phenol and 1-octanol[J]. Journal of Catalysis, 2015, 328: 208-215. |
93 | Dai T, Li C Z, Li L, et al. Selective production of renewable para-xylene by tungsten carbide catalyzed atom-economic cascade reactions[J]. Angewandte Chemie International Edition, 2018, 57(7): 1808-1812. |
94 | Chen C J, Lee W S, Bhan A. Mo2C catalyzed vapor phase hydrodeoxygenation of lignin-derived phenolic compound mixtures to aromatics under ambient pressure[J]. Applied Catalysis A: General, 2016, 510: 42-48. |
95 | Li Y H, Fu J, Chen B H. Highly selective hydrodeoxygenation of anisole, phenol and guaiacol to benzene over nickel phosphide[J]. RSC Advances, 2017, 7(25): 15272-15277. |
96 | Remón J, Casales M, Gracia J, et al. Sustainable production of liquid biofuels and value-added platform chemicals by hydrodeoxygenation of lignocellulosic bio-oil over a carbon-neutral Mo2C/CNF catalyst[J]. Chemical Engineering Journal, 2021, 405: 126705. |
97 | Fang H H, Chen W K, Li S, et al. Tandem hydrogenolysis-hydrogenation of lignin-derived oxygenates over integrated dual catalysts with optimized interoperations[J]. ChemSusChem, 2019, 12(23): 5199-5206. |
98 | Routray K, Barnett K J, Huber G W. Hydrodeoxygenation of pyrolysis oils[J]. Energy Technology, 2017, 5(1): 80-93. |
99 | Duan H, Dong J, Gu X, et al. Hydrodeoxygenation of water-insoluble bio-oil to alkanes using a highly dispersed Pd-Mo catalyst[J]. Nature Communications, 2017, 8(1): 591. |
100 | Li X S, Zhang Y J, Xin Q, et al. Irreversible hydrogen uptake on Mo2N catalyst[J]. Reaction Kinetics and Catalysis Letters, 1996, 57(1): 177-182. |
101 | He Y, Laursen S. Trends in the surface and catalytic chemistry of transition-metal ceramics in the deoxygenation of a woody biomass pyrolysis model compound[J]. ACS Catalysis, 2017, 7(5): 3169-3180. |
102 | Shi Y, Yang Y, Li Y W, et al. Mechanisms of Mo2C(101)-catalyzed furfural selective hydrodeoxygenation to 2-methylfuran from computation[J]. ACS Catalysis, 2016, 6(10): 6790-6803. |
[1] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[2] | 杨绍旗, 赵淑蘅, 陈伦刚, 王晨光, 胡建军, 周清, 马隆龙. Raney镍-质子型离子液体体系催化木质素平台分子加氢脱氧制备烷烃[J]. 化工学报, 2023, 74(9): 3697-3707. |
[3] | 陈佳起, 赵万玉, 姚睿充, 侯道林, 董社英. 开心果壳基碳点的合成及其对Q235碳钢的缓蚀行为研究[J]. 化工学报, 2023, 74(8): 3446-3456. |
[4] | 吴文涛, 褚良永, 张玲洁, 谭伟民, 沈丽明, 暴宁钟. 腰果酚生物基自愈合微胶囊的高效制备工艺研究[J]. 化工学报, 2023, 74(7): 3103-3115. |
[5] | 董茂林, 陈李栋, 黄六莲, 吴伟兵, 戴红旗, 卞辉洋. 酸性助水溶剂制备木质纳米纤维素及功能应用研究进展[J]. 化工学报, 2023, 74(6): 2281-2295. |
[6] | 杨峥豪, 何臻, 常玉龙, 靳紫恒, 江霞. 生物质快速热解下行式流化床反应器研究进展[J]. 化工学报, 2023, 74(6): 2249-2263. |
[7] | 葛泽峰, 吴雨青, 曾名迅, 查振婷, 马宇娜, 侯增辉, 张会岩. 灰化学成分对生物质气化特性的影响规律[J]. 化工学报, 2023, 74(5): 2136-2146. |
[8] | 祖凌鑫, 胡荣庭, 李鑫, 陈余道, 陈广林. 木质生物质化学组分的碳释放产物特征和反硝化利用程度[J]. 化工学报, 2023, 74(3): 1332-1342. |
[9] | 刘海芹, 李博文, 凌喆, 刘亮, 俞娟, 范一民, 勇强. 羟基-炔点击化学改性半乳甘露聚糖薄膜的制备及性能研究[J]. 化工学报, 2023, 74(3): 1370-1378. |
[10] | 郑杰元, 张先伟, 万金涛, 范宏. 丁香酚环氧有机硅树脂的制备及其固化动力学研究[J]. 化工学报, 2023, 74(2): 924-932. |
[11] | 陈健鑫, 朱瑞杰, 盛楠, 朱春宇, 饶中浩. 纤维素基生物质多孔炭的制备及其超级电容器性能研究[J]. 化工学报, 2022, 73(9): 4194-4206. |
[12] | 郝泽光, 张乾, 高增林, 张宏文, 彭泽宇, 杨凯, 梁丽彤, 黄伟. 生物质与催化裂化油浆共热解协同作用研究[J]. 化工学报, 2022, 73(9): 4070-4078. |
[13] | 张东旺, 杨海瑞, 周托, 黄中, 李诗媛, 张缦. 生物质锅炉对流受热面积灰冷态模拟实验研究[J]. 化工学报, 2022, 73(8): 3731-3738. |
[14] | 刘新华, 韩振南, 韩健, 梁斌, 张楠, 胡善伟, 白丁荣, 许光文. 基于热解与燃烧反应重构的低NO x 解耦燃烧原理与技术[J]. 化工学报, 2022, 73(8): 3355-3368. |
[15] | 黄丽菁, 黄继娇, 李鹏辉, 刘芷诺, 蒋康杰, 吴文娟. 木质素羟丙基磺甲基化改性及其对纤维素酶水解的影响[J]. 化工学报, 2022, 73(7): 3232-3239. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||