化工学报 ›› 2023, Vol. 74 ›› Issue (2): 776-783.DOI: 10.11949/0438-1157.20221575
收稿日期:
2022-12-07
修回日期:
2023-02-01
出版日期:
2023-02-05
发布日期:
2023-03-21
通讯作者:
蒋新
作者简介:
付家崴(1998—),男,硕士研究生,22028127@zju.edu.cn
基金资助:
Jiawei FU(), Shuaishuai CHEN, Kailun FANG, Xin JIANG()
Received:
2022-12-07
Revised:
2023-02-01
Online:
2023-02-05
Published:
2023-03-21
Contact:
Xin JIANG
摘要:
在Caterpillar微反应器中采用共沉淀法制备了不同铜锰比的共沉淀物,直接焙烧得到铜锰复合氧化物催化剂。采用X射线衍射(XRD)、热重分析(TG)、拉曼光谱(Raman)和X射线光电子能谱(XPS)对沉淀物和催化剂进行了物相和结构分析。结果显示,随着Cu含量的增加,催化剂中Mn3+所占比例逐渐下降,表面晶格氧含量呈现先上升后下降的趋势,催化甲苯降解的活性呈现先上升后下降的规律。微反应器中的流动反应特性使得催化剂中的Cu、Mn保持良好分散性,有利于提高催化剂中Mn3+含量,此时表面晶格氧成为催化活性的制约因素。
中图分类号:
付家崴, 陈帅帅, 方凯伦, 蒋新. 微反应器共沉淀反应制备铜锰催化剂[J]. 化工学报, 2023, 74(2): 776-783.
Jiawei FU, Shuaishuai CHEN, Kailun FANG, Xin JIANG. Advantage of microreactor on the synthesis of high-activity Cu-Mn catalyst by co-precipitation[J]. CIESC Journal, 2023, 74(2): 776-783.
催化剂 | Olatt/Oads | Mn3+/Mn4+ | Cu+/Cu2+ |
---|---|---|---|
Cu0.1Mn0.9 | 1.36 | 2.25 | 0.20 |
Cu0.2Mn0.8 | 1.76 | 2.16 | 0.81 |
Cu0.3Mn0.7 | 1.96 | 1.94 | 0.08 |
Cu0.4Mn0.6 | 0.72 | 1.47 | 0 |
Cu0.5Mn0.5 | 0.65 | 1.14 | 0 |
表1 基于XPS谱图的催化剂表面物种含量
Table 1 Surface species content of catalyst based on XPS spectra
催化剂 | Olatt/Oads | Mn3+/Mn4+ | Cu+/Cu2+ |
---|---|---|---|
Cu0.1Mn0.9 | 1.36 | 2.25 | 0.20 |
Cu0.2Mn0.8 | 1.76 | 2.16 | 0.81 |
Cu0.3Mn0.7 | 1.96 | 1.94 | 0.08 |
Cu0.4Mn0.6 | 0.72 | 1.47 | 0 |
Cu0.5Mn0.5 | 0.65 | 1.14 | 0 |
1 | Lyu Y, Li C T, Du X Y, et al. Catalytic removal of toluene over manganese oxide-based catalysts: a review[J]. Environmental Science and Pollution Research, 2020, 27(3): 2482-2501. |
2 | Saqer S M, Kondarides D I, Verykios X E. Catalytic oxidation of toluene over binary mixtures of copper, manganese and cerium oxides supported on γ-Al2O3 [J]. Applied Catalysis B: Environmental, 2011, 103(3/4): 275-286. |
3 | Wang Y, Yang D Y, Li S Z, et al. Layered copper manganese oxide for the efficient catalytic CO and VOCs oxidation[J]. Chemical Engineering Journal, 2019, 357: 258-268. |
4 | Ye Z P, Wang G J, Giraudon J M, et al. Investigation of Cu-Mn catalytic ozonation of toluene: crystal phase, intermediates and mechanism[J]. Journal of Hazardous Materials, 2022, 424: 127321. |
5 | Li W B, Liu Z X, Liu R F, et al. Rod-like CuMnO x transformed from mixed oxide particles by alkaline hydrothermal treatment as a novel catalyst for catalytic combustion of toluene[J]. Physical Chemistry Chemical Physics: PCCP, 2016, 18(33): 22794-22798. |
6 | Wei G C, Zhang Q L, Zhang D H, et al. The influence of annealing temperature on copper-manganese catalyst towards the catalytic combustion of toluene: the mechanism study[J]. Applied Surface Science, 2019, 497: 143777. |
7 | Ye Z, Giraudon J M, Nuns N, et al. Influence of the preparation method on the activity of copper-manganese oxides for toluene total oxidation[J]. Applied Catalysis B: Environmental, 2018, 223: 154-166. |
8 | Einaga H, Kiya A, Yoshioka S, et al. Catalytic properties of copper-manganese mixed oxides prepared by coprecipitation using tetramethylammonium hydroxide[J]. Catalysis Science & Technology, 2014, 4(10): 3713-3722. |
9 | Xiao Z, Yang J S, Ren R, et al. Facile synthesis of homogeneous hollow microsphere Cu-Mn based catalysts for catalytic oxidation of toluene[J]. Chemosphere, 2020, 247: 125812. |
10 | Liu Y, Jia L, Lin Y, et al. Catalytic combustion of toluene over Cu-Mn mixed oxide catalyst[J]. Journal of Chemical Engineering of Japan, 2018, 51(9): 769-777. |
11 | 方凯伦, 陈帅帅, 付家崴, 等. 微反应器研究陈化过程对铜锰催化剂的影响[J]. 化工学报, 2022, 73(10): 4438-4447. |
Fang K L, Chen S S, Fu J W, et al. Effect of aging process on copper manganese composite catalyst[J]. CIESC Journal, 2022, 73(10): 4438-4447. | |
12 | Jiang X, Chen S S, Chen X C, et al. Effect of turbulence in micro-reactors on ultrafast competitive reactions in Cu-Zn co-precipitation[J]. AIChE Journal, 2021, 67(7): 17240. |
13 | Jiang X, Qin X F, Ling C, et al. The effect of mixing on co-precipitation and evolution of microstructure of Cu-ZnO catalyst[J]. AIChE Journal, 2018, 64(7): 2647-2654. |
14 | Xiong S C, Huang N, Peng Y, et al. Balance of activation and ring-breaking for toluene oxidation over CuO-MnO x bimetallic oxides[J]. Journal of Hazardous Materials, 2021, 415: 125637. |
15 | 顾欧昀, 廖永涛, 陈锐杰, 等. 铜锰复合氧化物催化剂上甲苯的催化燃烧[J]. 化工学报, 2016, 67(7): 2832-2840. |
Gu O Y, Liao Y T, Chen R J, et al. Catalytic combustion of toluene over Cu-Mn mixed oxide catalyst[J]. CIESC Journal, 2016, 67(7): 2832-2840. | |
16 | Clarke T J, Kondrat S A, Taylor S H. Total oxidation of naphthalene using copper manganese oxide catalysts[J]. Catalysis Today, 2015, 258: 610-615. |
17 | Hutchings G J, Mirzaei A A, Joyner R W, et al. Ambient temperature CO oxidation using copper manganese oxide catalysts prepared by coprecipitation: effect of ageing on catalyst performance[J]. Catalysis Letters, 1996, 42(1): 21-24. |
18 | Wang H P, Lu Y Y, Han Y X, et al. Enhanced catalytic toluene oxidation by interaction between copper oxide and manganese oxide in Cu-O-Mn/γ-Al2O3 catalysts[J]. Applied Surface Science, 2017, 420: 260-266. |
19 | Li D, Yu Q, Li S S, et al. The remarkable enhancement of CO-pretreated CuO-Mn2O3/γ-Al2O3 supported catalyst for the reduction of NO with CO: the formation of surface synergetic oxygen vacancy[J]. Chemistry, 2011, 17(20): 5668-5679. |
20 | Li J R, Zhang W P, Li C, et al. Efficient catalytic degradation of toluene at a readily prepared Mn-Cu catalyst: catalytic performance and reaction pathway[J]. Journal of Colloid and Interface Science, 2021, 591: 396-408. |
21 | Cao H Y, Li X S, Chen Y Q, et al. Effect of loading content of copper oxides on performance of Mn-Cu mixed oxide catalysts for catalytic combustion of benzene[J]. Journal of Rare Earths, 2012, 30(9): 871-877. |
22 | Lee H J, Yang J H, You J H, et al. Sea-urchin-like mesoporous copper-manganese oxide catalysts: influence of copper on benzene oxidation[J]. Journal of Industrial and Engineering Chemistry, 2020, 89: 156-165. |
23 | Ponce S, Peña M A, Fierro J L G. Surface properties and catalytic performance in methane combustion of Sr-substituted lanthanum manganites[J]. Applied Catalysis B: Environmental, 2000, 24(3/4): 193-205. |
24 | Chen S H, Li H, Hao Y, et al. Porous Mn-based oxides for complete ethanol and toluene catalytic oxidation: the relationship between structure and performance[J]. Catalysis Science & Technology, 2020, 10(6): 1941-1951. |
25 | Xu H M, Yan N Q, Qu Z, et al. Gaseous heterogeneous catalytic reactions over Mn-based oxides for environmental applications: a critical review[J]. Environmental Science & Technology, 2017, 51(16): 8879-8892. |
26 | Sun H, Liu Z G, Chen S, et al. The role of lattice oxygen on the activity and selectivity of the OMS-2 catalyst for the total oxidation of toluene[J]. Chemical Engineering Journal, 2015, 270: 58-65. |
27 | Li J R, Zhang W P, Li C, et al. Insight into the catalytic performance and reaction routes for toluene total oxidation over facilely prepared Mn-Cu bimetallic oxide catalysts[J]. Applied Surface Science, 2021, 550: 149179. |
28 | Xu Y, Qu Z P, Ren Y W, et al. Enhancement of toluene oxidation performance over Cu-Mn composite oxides by regulating oxygen vacancy[J]. Applied Surface Science, 2021, 560: 149983. |
29 | Luo M M, Cheng Y, Peng X Z, et al. Copper modified manganese oxide with tunnel structure as efficient catalyst for low-temperature catalytic combustion of toluene[J]. Chemical Engineering Journal, 2019, 369: 758-765. |
30 | Niu J R, Qian H L, Liu J, et al. Process and mechanism of toluene oxidation using Cu1- y Mn2Ce y O x /sepiolite prepared by the co-precipitation method[J]. Journal of Hazardous Materials, 2018, 357: 332-340. |
[1] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[2] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[3] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[4] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[5] | 李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352. |
[6] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[7] | 段重达, 姚小伟, 朱家华, 孙静, 胡南, 李广悦. 环境因素对克雷白氏杆菌诱导碳酸钙沉淀的影响[J]. 化工学报, 2023, 74(8): 3543-3553. |
[8] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[9] | 李盼, 马俊洋, 陈志豪, 王丽, 郭耘. Ru/α-MnO2催化剂形貌对NH3-SCO反应性能的影响[J]. 化工学报, 2023, 74(7): 2908-2918. |
[10] | 涂玉明, 邵高燕, 陈健杰, 刘凤, 田世超, 周智勇, 任钟旗. 钙基催化剂的设计合成及应用研究进展[J]. 化工学报, 2023, 74(7): 2717-2734. |
[11] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[12] | 张谭, 刘光, 李晋平, 孙予罕. Ru基氮还原电催化剂性能调控策略[J]. 化工学报, 2023, 74(6): 2264-2280. |
[13] | 王辰, 史秀锋, 武鲜凤, 魏方佳, 张昊虹, 车寅, 吴旭. 氧化还原法制备Mn3O4催化剂及其甲苯催化氧化性能与机理研究[J]. 化工学报, 2023, 74(6): 2447-2457. |
[14] | 李勇, 高佳琦, 杜超, 赵亚丽, 李伯琼, 申倩倩, 贾虎生, 薛晋波. Ni@C@TiO2核壳双重异质结的构筑及光热催化分解水产氢[J]. 化工学报, 2023, 74(6): 2458-2467. |
[15] | 张希庆, 王琰婷, 徐彦红, 常淑玲, 孙婷婷, 薛定, 张立红. Mg量影响的纳米片负载Pt-In催化异丁烷脱氢性能[J]. 化工学报, 2023, 74(6): 2427-2435. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||