化工学报 ›› 2022, Vol. 73 ›› Issue (6): 2415-2426.doi: 10.11949/0438-1157.20220259

• 综述与专论 • 上一篇    下一篇

湍流系统的能量最小多尺度模型研究进展

王利民1,2(),郭舒宇1,2,向星1,2,付少童1,2   

  1. 1.中国科学院过程工程研究所多相复杂系统国家重点实验室,北京 100190
    2.中国科学院大学化工学院,北京 100049
  • 收稿日期:2022-03-01 修回日期:2022-05-30 出版日期:2022-06-05 发布日期:2022-06-30
  • 通讯作者: 王利民 E-mail:lmwang@ipe.ac.cn
  • 作者简介:王利民(1979—),男,博士,研究员,lmwang@ipe.ac.cn
  • 基金资助:
    国家自然科学基金项目(51776212);国家重点研发计划项目(2018YFB1500902);国家数值风洞工程项目(NNW2020ZT1-A20);中国科学院前沿科学重点研究计划项目(QYZDB SSW SYS029)

Research progress of energy-minimization multi-scale method for turbulent system

Limin WANG1,2(),Shuyu GUO1,2,Xing XIANG1,2,Shaotong FU1,2   

  1. 1.State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
    2.School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2022-03-01 Revised:2022-05-30 Published:2022-06-05 Online:2022-06-30
  • Contact: Limin WANG E-mail:lmwang@ipe.ac.cn

摘要:

湍流一直被视为经典物理中百年未解的难题,也被认为是检验新理论和新方法的试金石。新兴的介科学,由气固流态化中能量最小多尺度(energy-minimization multi-scale,EMMS)模型发展而来,基于各主导因素在竞争中协调的观点,致力于分析挑战性的介尺度现象。基于介科学框架,介绍了湍流系统中介尺度行为的共性原理和最新的介尺度观点,包括黏性机制和惯性机制的竞争中协调、湍流稳定性条件。在此基础上发展了EMMS湍流模型并实现与计算流体力学(computational fluid dynamics, CFD)的耦合,贡献于层湍转捩预测和全球气候模型的改进。EMMS湍流模型复现了介区域内黏性控制机制与惯性控制机制的竞争中协调,为介科学理论作为复杂系统的普适理论提供依据。

关键词: 湍流, 介科学, 竞争中协调, 介尺度, 复杂流体, 计算流体力学

Abstract:

Turbulence has always been viewed as a century lasting difficult problem in classic physics, and it was also viewed as a touchstone for verifying new theories and methods. The emerging mesoscience, developed from the energy-minimization multi-scale (EMMS) model in gas-solid fluidization, is devoted to the analysis of challenging mesoscale phenomena based on the view that the dominant factors are coordinated in competition. This article investigates the common principle for mesoscale behavior and recent viewpoints in turbulence through a mesoscience framework, including the compromise-in-competition between viscosity and inertia, as well as the turbulence stability condition. On this basis, EMMS-based turbulence model is developed and coupled with computational fluid dynamics (CFD), making a significant contribution to laminar-turbulent transition prediction and the improvement of global climate models. EMMS-based turbulence model successfully reproduces the compromise-in-competition between viscous and inertial dominant mechanisms in mesoregime, providing important proof that the mesoscience can be universal theory for complex system.

Key words: turbulence, mesoscience, compromise-in-competition, mesoscale, complex fluids, computational fluid dynamics

中图分类号: 

  • O 357.5
1 White F M, Majdalani J. Viscous Fluid Flow[M]. 3rd ed. New York: McGraw-Hill, 2006.
2 Moin P, Kim J. Tackling turbulence with supercomputers[J]. Scientific American, 1997, 276(1): 62-68.
3 Bradshaw P. Turbulence modeling with application to turbomachinery[J]. Progress in Aerospace Sciences, 1996, 32(6): 575-624.
4 Pope S B. Turbulent Flows[M]. Cambridge: Cambridge University Press, 2000.
5 Baldwin B, Lomax H. Thin-layer approximation and algebraic model for separated turbulent flows[C]//16th Aerospace Sciences Meeting. Reston, Virginia: AIAA, 1978: 257.
6 Spalart P, Allmaras S. A one-equation turbulence model for aerodynamic flows[C]//30th Aerospace Sciences Meeting and Exhibit. Reston, Virginia: AIAA, 1992: 439.
7 Jones W P, Launder B E. The prediction of laminarization with a two-equation model of turbulence[J]. International Journal of Heat and Mass Transfer, 1972, 15(2): 301-314.
8 Wilcox D C. Turbulence Modeling for CFD[M]. 3rd ed. La Canada: DCW Industries, 2006.
9 Menter F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605.
10 Oertel H. Prandtl-Essentials of Fluid Mechanics[M]. 2nd ed. New York: Springer, 2010.
11 Sreenivasan K R. Fluid turbulence[J]. Reviews of Modern Physics, 1999, 71(2): S383-S395.
12 Hanjalić K, Launder B E. A Reynolds stress model of turbulence and its application to thin shear flows[J]. Journal of Fluid Mechanics, 1972, 52(4): 609-638.
13 Chou P Y. On velocity correlations and the solutions of the equations of turbulent fluctuation[J]. Quarterly of Applied Mathematics, 1945, 3(1): 38-54.
14 Rotta J. Statistische theorie nichthomogener turbulenz[J]. Zeitschrift Für Physik, 1951, 129(6): 547-572.
15 Speziale C G. Analytical methods for the development of Reynolds-stress closures in turbulence[J]. Annual Review of Fluid Mechanics, 1991, 23: 107-157.
16 Moin P, Mahesh K. Direct numerical simulation: a tool in turbulence research[J]. Annual Review of Fluid Mechanics, 1998, 30: 539-578.
17 Meneveau C, Katz J. Scale-invariance and turbulence models for large-eddy simulation[J]. Annual Review of Fluid Mechanics, 2000, 32: 1-32.
18 Spalart P R. Strategies for turbulence modelling and simulations[J]. International Journal of Heat and Fluid Flow, 2000, 21(3): 252-263.
19 Li J H, Reh L, Kwauk M. Application of the principle of energy minimization to fluid dynamics of circulating fluidized bed[C]//Circulating Fluidized Bed Technology Ⅲ (CFB Ⅲ). 1991: 105-110.
20 Li J H, Kwauk M. Particle-fluid Two-phase Flow—the Energy-Minimization Multi-scale Method[M]. Beijing: Metallurgical Industry Press, 1994: 1-200.
21 李静海. 两相流多尺度作用模型和能量最小方法[D]. 北京: 中国科学院化工冶金研究所, 1987.
Li J H. Multi-scale modeling and method of energy minimization for particle-fluid two-phase flow[D]. Beijing: Institute of Chemical Metallurgy, Academia Sinica, 1987.
22 Yang N, Wang W, Ge W, et al. CFD simulation of concurrent-up gas-solid flow in circulating fluidized beds with structure-dependent drag coefficient[J]. Chemical Engineering Journal, 2003, 96(1/2/3): 71-80.
23 Wang W, Li J H. Simulation of gas-solid two-phase flow by a multi-scale CFD approach—extension of the EMMS model to the sub-grid level[J]. Chemical Engineering Science, 2007, 62(1/2): 208-231.
24 邱小平, 王利民, 杨宁. 耦合EMMS曳力与简化双流体模型的气固流动模拟[J]. 化工学报, 2018, 69(5): 1867-1872.
Qiu X P, Wang L M, Yang N. Simplified two-fluid model coupled with EMMS drag for simulating gas-solid flow[J]. CIESC Journal, 2018, 69(5): 1867-1872.
25 陈恺成, 田于杰, 李飞, 等. 基于EMMS的循环流化床流域研究[J]. 化工学报, 2020, 71(7): 3018-3030.
Chen K C, Tian Y J, Li F, et al. EMMS-based flow regime study of circulating fluidized beds[J]. CIESC Journal, 2020, 71(7): 3018-3030.
26 佟颖, Nouman Ahmad, 鲁波娜, 等. 基于EMMS介尺度模型的双分散鼓泡流化床的模拟[J]. 化工学报, 2019, 70(5): 1682-1692.
Tong Y, Nouman A, Lu B N, et al. Numerical investigation of bubbling fluidized bed with binary particle mixture using EMMS mesoscale drag model[J]. CIESC Journal, 2019, 70(5): 1682-1692.
27 Li J H, Zhang Z D, Ge W, et al. A simple variational criterion for turbulent flow in pipe[J]. Chemical Engineering Science, 1999, 54(8): 1151-1154.
28 Ge W, Chen F G, Gao J, et al. Analytical multi-scale method for multi-phase complex systems in process engineering—bridging reductionism and holism[J]. Chemical Engineering Science, 2007, 62(13): 3346-3377.
29 赵辉. 气液(浆)反应器的多尺度模拟[D]. 北京: 中国科学院过程工程研究所, 2006.
Zhao H. Multi-scale modeling of gas-liquid (slurry) reactors[D]. Beijing:Institute of Process Engineering, Chinese Academy of Sciences, 2006.
30 Yang N, Chen J H, Zhao H, et al. Explorations on the multi-scale flow structure and stability condition in bubble columns[J]. Chemical Engineering Science, 2007, 62(24): 6978-6991.
31 Han C, Chen J H. Mesoregime-oriented investigation of flow regime transition in bubble columns[J]. Industrial & Engineering Chemistry Research, 2019, 58(31): 14424-14435.
32 陈卫, 任瑛. 流态化与物质相变的相似性[J]. 化工学报, 2019, 70(1): 1-9.
Chen W, Ren Y. Similarity between fluidization and phase transition[J]. CIESC Journal, 2019, 70(1): 1-9.
33 马永丽, 刘明言, 胡宗定. 气液固流化床流动介尺度模型进展[J]. 化工学报, 2022, 73(6): 2440 - 2453.
Ma Y L, Liu M Y, Hu Z D. A review on studies of flow mesoscale modeling of the gas-liquid-solid fluidized beds[J]. CIESC Journal, 2022, 73(6): 2440 - 2453.
34 汪帆, 刘岩博, 李康丽, 等. 溶液结晶中 的介尺度成核过程研究进展[J]. 化工学报, 2022, 73(6): 2320 - 2335.
Wang F, Liu Y B, Li K L, et al. Research progress on mesoscale nucleation process in solution crystallization [J]. CIESC Journal, 2022, 73(6): 2320 - 2335.
35 杨宁, 李静海. 化学工程中的介尺度科学与虚拟过程工程: 分析与展望[J]. 化工学报, 2014, 65(7): 2403-2409.
Yang N, Li J H. Mesoscience in chemical engineering and virtual process engineering: analysis and perspective[J]. CIESC Journal, 2014, 65(7): 2403-2409.
36 Li J H, Ge W, Wang W, et al. Focusing on the meso-scales of multi-scale phenomena—in search for a new paradigm in chemical engineering[J]. Particuology, 2010, 8(6): 634-639.
37 Li J H, Huang W L, Ge W. Multilevel and multiscale PSE: challenges and opportunities at mesoscales[C]//Eden M R, Ierapetritou M G, Towler G P. Computer Aided Chemical Engineering. Amsterdam: Elsevier, 2018: 11-19.
38 Li J H, Ge W, Wang W, et al. Focusing on mesoscales: from the energy-minimization multiscale model to mesoscience[J]. Current Opinion in Chemical Engineering, 2016, 13: 10-23.
39 Li J H, Kwauk M. Multiscale nature of complex fluid-particle systems[J]. Industrial & Engineering Chemistry Research, 2001, 40(20): 4227-4237.
40 Li J H, Ge W, Wang W, et al. From Multiscale Modeling to Meso-Science[M]. Berlin: Springer, 2013.
41 Heisenberg W. On the stability of laminar flow[M]//Blum W, Dürr H P, Rechenberg H. Scientific Review Papers, Talks, and Books. Berlin: Springer, 1984: 471-475.
42 Schlichting H, Gersten K. Boundary-Layer Theory[M]. 9th ed. Berlin: Springer, 2017.
43 Lorenz E N. Deterministic nonperiodic flow[J]. Journal of the Atmospheric Sciences, 1963, 20(2): 130-141.
44 Helmholtz H V. Zur theorie der stationären ströme in reibenden flüssigkeiten[J]. Verhandlungen des Naturhistorisch-Medizinischen Vereins zu Heidelberg, 1871, 5: 1-7.
45 Korteweg D J. On a general theorem of the stability of the motion of a viscous fluid[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1883, 16(98): 112-118.
46 Rayleigh L. On the motion of a viscous fluid[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1913, 26(154): 776-786.
47 Bejan A. Entropy Generation Through Heat and Fluid Flow[M]. New York: Wiley, 1982.
48 Malkus W V R. Outline of a theory of turbulent shear flow[J]. Journal of Fluid Mechanics, 1956, 1(5): 521-539.
49 Malkus W V R, Smith L M. Upper bounds on functions of the dissipation rate in turbulent shear flow[J]. Journal of Fluid Mechanics, 1989, 208: 479-507.
50 Bertram J. Maximum kinetic energy dissipation and the stability of turbulent Poiseuille flow[J]. Journal of Fluid Mechanics, 2015, 767: 342-363.
51 王利民. 单相复杂流动的离散模拟[D]. 北京: 中国科学院过程工程研究所, 2008.
Wang L M. Discrete simulation for single-phase complex flows[D]. Beijing: Institute of Process Engineering, Chinese Academy of Sciences, 2008.
52 Wang L M, Qiu X P, Zhang L, et al. Turbulence originating from the compromise-in-competition between viscosity and inertia[J]. Chemical Engineering Journal, 2016, 300: 83-97.
53 He G W, Jin G D, Yang Y. Space-time correlations and dynamic coupling in turbulent flows[J]. Annual Review of Fluid Mechanics, 2017, 49: 51-70.
54 Zhang L, Qiu X P, Wang L M, et al. A stability condition for turbulence model: from EMMS model to EMMS-based turbulence model[J]. Particuology, 2014, 16: 142-154.
55 Guo S Y, Wang L M. A dual-eddy EMMS-based turbulence model for laminar-turbulent transition prediction[J]. Particuology, 2021, 58: 285-298.
56 王利民. 湍流基于EMMS原理的介尺度建模[J]. 中国科学: 物理学 力学 天文学, 2017, 47(7): 070008.
Wang L M. Mesoscale modeling for turbulence based on EMMS principle[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2017, 47(7): 070008.
57 Lee C B, Chen S Y. Recent progress in the study of transition in the hypersonic boundary layer[J]. National Science Review, 2018, 6(1): 155-170.
58 Fu S, Wang L. RANS modeling of high-speed aerodynamic flow transition with consideration of stability theory[J]. Progress in Aerospace Sciences, 2013, 58: 36-59.
59 Wang L, Fu S. Development of an intermittency equation for the modeling of the supersonic/hypersonic boundary layer flow transition[J]. Flow, Turbulence and Combustion, 2011, 87(1): 165-187.
60 Suzen Y B, Huang P G. Modeling of flow transition using an intermittency transport equation[J]. Journal of Fluids Engineering, 2000, 122(2): 273-284.
61 Menter F R, Langtry R B, Likki S R, et al. A correlation-based transition model using local variables (I): Model formulation[J]. Journal of Turbomachinery, 2006, 128(3): 413.
62 Savill A M. One point closures applied to transition[M]//Hallbäck M, Henningson D S, Johansson A V, et al. Turbulence and Transition Modelling. Boston: Kluwer, 1996: 233-268.
63 Johansen J, Sørensen J N. Prediction of laminar/turbulent transition in airfoil flows[J]. Journal of Aircraft, 1999, 36(4): 731-734.
64 Lim K S S, Hong S Y. Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models[J]. Monthly Weather Review, 2010, 138(5): 1587-1612.
65 Li J H, Huang W L. From multiscale to mesoscience: addressing mesoscales in mesoregimes of different levels[J]. Annual Review of Chemical and Biomolecular Engineering, 2018, 9: 41-60.
66 Li J H. Exploring the logic and landscape of the knowledge system: multilevel structures, each multiscaled with complexity at the mesoscale[J]. Engineering, 2016, 2(3): 276-285.
67 Huang W L, Li J H, Edwards P P. Mesoscience: exploring the common principle at mesoscales[J]. National Science Review, 2017, 5(3): 321-326.
[1] 董鑫, 单永瑞, 刘易诺, 冯颖, 张建伟. 非牛顿流体气泡羽流涡特性数值模拟研究[J]. 化工学报, 2023, 74(5): 1950-1964.
[2] 丁俊华, 俞树荣, 王世鹏, 洪先志, 包鑫, 丁雪兴. 多重效应下超高速干气密封流场模拟及密封性能试验[J]. 化工学报, 2023, 74(5): 2088-2099.
[3] 周必茂, 许世森, 王肖肖, 刘刚, 李小宇, 任永强, 谭厚章. 烧嘴偏转角度对气化炉渣层分布特性的影响[J]. 化工学报, 2023, 74(5): 1939-1949.
[4] 李正涛, 袁志杰, 贺高红, 姜晓滨. 疏水界面上的NaCl液滴蒸发过程内环流调控机制研究[J]. 化工学报, 2023, 74(5): 1904-1913.
[5] 李晨曦, 刘永峰, 张璐, 刘海峰, 宋金瓯, 何旭. O2/CO2氛围下正庚烷的燃烧机理研究[J]. 化工学报, 2023, 74(5): 2157-2169.
[6] 周艾然, 陆平, 夏建辉, 李冬勤, 郭杰, 杜明, 董立春. 氯化钛白氧化反应器结疤问题分析及数值模拟[J]. 化工学报, 2023, 74(4): 1499-1508.
[7] 朱兵国, 何吉祥, 徐进良, 彭斌. 冷却条件下渐扩/渐缩管内超临界压力二氧化碳的传热特性[J]. 化工学报, 2023, 74(3): 1062-1072.
[8] 张伟政, 赵吉军, 马学忠, 张琦璇, 庞益祥, 张俊涛. 湍流效应对高速机械密封端面型槽冷却性能影响分析[J]. 化工学报, 2023, 74(3): 1228-1238.
[9] 王永倩, 王平, 程康, 毛晨林, 刘文锋, 尹智成, Ferrante Antonio. 氨气/甲烷贫预混旋转湍流火焰稳定性及NO生成[J]. 化工学报, 2022, 73(9): 4087-4094.
[10] 张建伟, 高伟峰, 董鑫, 冯颖. 浸没式撞击流反应器流场涡特性的数值研究[J]. 化工学报, 2022, 73(8): 3553-3564.
[11] 李亚飞, 邓建强, 何阳. 跨临界CO2快速膨胀过程中非平衡冷凝和闪蒸机理的数值研究[J]. 化工学报, 2022, 73(7): 2912-2923.
[12] 周晨阳, 贾颖, 赵跃民, 张勇, 付芝杰, 冯昱清, 段晨龙. 介尺度视角下干法重介流态化分选过程强化[J]. 化工学报, 2022, 73(6): 2452-2467.
[13] 马永丽, 刘明言, 胡宗定. 气液固流化床流动介尺度模型研究进展[J]. 化工学报, 2022, 73(6): 2438-2451.
[14] 万景, 张霖, 樊亚超, 刘勰民, 骆培成, 张锋, 张志炳. 基于介尺度PBM模型的生物反应器放大模拟及实验研究[J]. 化工学报, 2022, 73(6): 2698-2707.
[15] 郑涛, 刘海燕, 张睿, 孟祥海, 岳源源, 刘植昌. 基于分子筛绿色合成的天然硅铝矿物介尺度活化研究进展[J]. 化工学报, 2022, 73(6): 2334-2351.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!