化工学报 ›› 2022, Vol. 73 ›› Issue (2): 622-633.DOI: 10.11949/0438-1157.20211135
收稿日期:
2021-08-11
修回日期:
2021-12-06
出版日期:
2022-02-05
发布日期:
2022-02-18
通讯作者:
董鑫
作者简介:
张建伟(1964—),男,博士,教授,基金资助:
Jianwei ZHANG(),Fengyuan AN,Xin DONG(),Ying FENG
Received:
2021-08-11
Revised:
2021-12-06
Online:
2022-02-05
Published:
2022-02-18
Contact:
Xin DONG
摘要:
利用实验与数值模拟方法对动态阶跃型撞击流反应器流场特性进行研究,分析不同入口速度条件下流体流动规律、湍流特性以及能量水平。结果表明,动态阶跃型入口条件下,撞击面在两喷嘴之间周期性移动,流动参数也会发生周期性变化。随着入口平均速率的增大,驻点速度逐渐增大;随着两喷嘴入口速率差的增加,撞击面移动速度加快,撞击区流体湍流强度逐渐增加;随着入口平均速率与入口速率差的增大,XOZ平面在一个周期内的平均湍动能逐渐减小。对比动态撞击流反应器与稳态撞击流反应器内流场特性,探究动态入口条件对撞击流反应器流场特性的影响。结果表明,动态阶跃撞击流反应器湍流黏度、湍流强度和湍动能等参数均明显高于稳态撞击流反应器,撞击轴线上的湍动能梯度分布大于稳态撞击流反应器。动态入口条件下撞击流反应器流体湍动更剧烈,能量水平更高,有利于增加流场内流体扰动与促进混合。
中图分类号:
张建伟, 安丰元, 董鑫, 冯颖. 基于阶跃射流的撞击流反应器流场动态特性分析[J]. 化工学报, 2022, 73(2): 622-633.
Jianwei ZHANG, Fengyuan AN, Xin DONG, Ying FENG. Analysis of dynamic characteristics of flow field in impinging stream reactor based on step jet[J]. CIESC Journal, 2022, 73(2): 622-633.
速率差/(m/s) | 平均速率/(m/s) | |||||||
---|---|---|---|---|---|---|---|---|
1.5 | 1.75 | 2 | 2.25 | |||||
vmax/(m/s) | vmin/(m/s) | vmax/(m/s) | vmin/(m/s) | vmax/(m/s) | vmin/(m/s) | vmax/(m/s) | vmin/(m/s) | |
0.5 | 1.75 | 1.25 | 2 | 1.5 | 2.25 | 1.75 | 2.5 | 2 |
0.75 | 1.875 | 1.125 | 2.125 | 1.375 | 2.375 | 1.625 | 2.625 | 1.875 |
1 | 2 | 1 | 2.25 | 1.25 | 2.5 | 1.5 | 2.75 | 1.75 |
表1 入口工况条件
Table 1 Inlet condition
速率差/(m/s) | 平均速率/(m/s) | |||||||
---|---|---|---|---|---|---|---|---|
1.5 | 1.75 | 2 | 2.25 | |||||
vmax/(m/s) | vmin/(m/s) | vmax/(m/s) | vmin/(m/s) | vmax/(m/s) | vmin/(m/s) | vmax/(m/s) | vmin/(m/s) | |
0.5 | 1.75 | 1.25 | 2 | 1.5 | 2.25 | 1.75 | 2.5 | 2 |
0.75 | 1.875 | 1.125 | 2.125 | 1.375 | 2.375 | 1.625 | 2.625 | 1.875 |
1 | 2 | 1 | 2.25 | 1.25 | 2.5 | 1.5 | 2.75 | 1.75 |
图5 实验系统示意图1—水箱;2—离心泵;3—截止阀;4—涡轮流量计;5—小型容器;6—蠕动泵;7—撞击流反应器;8—CCD相机;9—计算机;10—同步器;11—激光控制器;12—激光发射器;13—变频器
Fig.5 The schematic diagram of experimental system
1 | 伍沅. 撞击流——原理·性质·应用[M]. 北京: 化学工业出版社, 2006: 3-12. |
Wu Y. Impinging Streams: Fundamental, Properties and Applications[M]. Beijing: Chemical Industry Press, 2006: 3-12. | |
2 | Hu H, Chen Z M, Jiao Z. Characterization of micro-mixing in a novel impinging streams reactor[J]. Frontiers of Chemical Engineering in China, 2009, 3(1): 58-64. |
3 | Wu Y, Zhou Y X, Guo J, et al. Features of impinging streams intensifying processes and their applications[J]. International Journal of Chemical Engineering, 2010, 2010: 1-16. |
4 | 张建伟, 闫宇航, 沙新力, 等. 撞击流强化混合特性及用于制备超细粉体研究进展[J]. 化工进展, 2020, 39(3): 824-833. |
Zhang J W, Yan Y H, Sha X L, et al. Advances on impinging stream intensification mixing mechanism for preparing ultrafine powders[J]. Chemical Industry and Engineering Progress, 2020, 39(3): 824-833. | |
5 | Yue S, Liu X Q. Study of the drying characteristics in an asymmetric impinging stream reactor[J]. Chemical Papers, 2021, 75(8): 4355-4370. |
6 | 方书起, 张欣悦, 李思齐, 等. 撞击流式反应器内水合物法分离沼气中CO2研究[J]. 化工学报, 2020, 71(5): 2099-2108. |
Fang S Q, Zhang X Y, Li S Q, et al. Investigation on separation of CO2 from biogas by hydrate method in impinging stream reactor [J]. CIESC Journal, 2020, 71(5): 2099-2108. | |
7 | Liu Z W, Zhang Q C, Wen L X, et al. Preparation of ultrafine manganese dioxide by micro-impinging stream reactors and its electrochemical properties[J]. The Canadian Journal of Chemical Engineering, 2016, 94(3): 461-468. |
8 | Chen Z Y, Liu Y, Zhang Y Z, et al. Ultrafine layered graphite as an anode material for lithium ion batteries[J]. Materials Letters, 2018, 229: 134-137. |
9 | 许鑫磊. 撞击流反应器内吞噬流机理实验研究与数值模拟[D]. 上海: 华东理工大学, 2019. |
Xu X L. Experimental and numerical study on engulfment regime of impinging jets reactors[D]. Shanghai: East China University of Science and Technology, 2019. | |
10 | 聂傲, 王智邈, 韩敬, 等. 不等径撞击流反应器流动与微观混合特性的研究[J]. 中国科学: 化学, 2018, 48(6): 648-657. |
Nie A, Wang Z M, Han J, et al. Experimental investigation of flow and reacting characteristics in asymmetric confined impinging jets reactor[J]. Scientia Sinica (Chimica), 2018, 48(6): 648-657. | |
11 | 张建伟, 张学良, 冯颖, 等. 浸没对置撞击流的液相混合行为研究[J]. 高校化学工程学报, 2016, 30(2): 311-317. |
Zhang J W, Zhang X L, Feng Y, et al. Study on liquid mixing behavior within a submerged impinging stream mixer[J]. Journal of Chemical Engineering of Chinese Universities, 2016, 30(2): 311-317. | |
12 | Parham K, Esmaeilzadeh E, Atikol U, et al. A numerical study of turbulent opposed impinging jets issuing from triangular nozzles with different geometries[J]. Heat and Mass Transfer, 2011, 47(4): 427-437. |
13 | 屠功毅, 李伟锋, 黄国峰, 等. 平面撞击流偏斜振荡的实验研究与大涡模拟[J]. 物理学报, 2013, 62(8): 084704. |
Tu G Y, Li W F, Huang G F, et al. Large-eddy simulation and experimental study of deflecting oscillation of planar opposed jets[J]. Acta Physica Sinica, 2013, 62(8): 084704. | |
14 | 杜敏, 黄彬, 卢麒丞, 等. 撞击流内液滴碰撞后续发展行为[J]. 化工学报, 2018, 69(5): 2023-2031. |
Du M, Huang B, Lu Q C, et al. Subsequent development of collided droplets in impinging streams[J]. CIESC Journal, 2018, 69(5): 2023-2031. | |
15 | 屠功毅, 李伟锋, 黄国峰, 等. 平面撞击流偏斜振荡影响因素的大涡模拟[J]. 化工学报, 2013, 64(7): 2353-2359. |
Tu G Y, Li W F, Huang G F, et al. Large-eddy simulation of influencing factors of deflecting oscillation of planar opposed jets[J]. CIESC Journal, 2013, 64(7): 2353-2359. | |
16 | Zhang J, Liu Y Z, Luo Y. The turbulent behavior of novel free triple-impinging jets with large jet spacing by means of particle image velocimetry[J]. Chinese Journal of Chemical Engineering, 2016, 24(6): 757-766. |
17 | Tsaoulidis D, Angeli P. Liquid-liquid dispersions in intensified impinging-jets cells[J]. Chemical Engineering Science, 2017, 171: 149-159. |
18 | 张建伟, 王诺成, 冯颖, 等. 基于PLIF的水平三向撞击流径向流型的研究[J]. 高校化学工程学报, 2016, 30(3): 723-729. |
Zhang J W, Wang N C, Feng Y, et al. Study on radial stream patterns in three-jet impinging stream mixers using planar laser induced fluorescence[J]. Journal of Chemical Engineering of Chinese Universities, 2016, 30(3): 723-729. | |
19 | Zhang J W, Ding C W, Dong X, et al. Experimental study on the flow field characteristics of the two-layer impinging stream mixer[J]. The Canadian Journal of Chemical Engineering, 2021, 99(12): 2748-2759. |
20 | 刘雪晴, 王奎, 鲁录义. 改进型撞击流反应器流动特性研究[J]. 现代机械, 2017(5): 1-6. |
Liu X Q, Wang K, Lu L Y. Research on flow characteristics of an improved impinging stream reactor[J]. Modern Machinery, 2017(5): 1-6. | |
21 | Liu X Q, Yue S, Lu L Y, et al. Experimental and numerical studies on flow and turbulence characteristics of impinging stream reactors with dynamic inlet velocity variation[J]. Energies, 2018, 11(7): 1717. |
22 | 刘雪晴. 动态非对称撞击流反应器流动特性研究[D]. 武汉: 华中科技大学, 2019. |
Liu X Q. Study on flow characteristics of dynamic asymmetric impinging stream reactor[D]. Wuhan: Huazhong University of Science and Technology, 2019. | |
23 | Liu X Q, Yue S, Lu L Y, et al. Flow simulation and experimental study of a dynamic asymmetric impinging stream[J]. Numerical Heat Transfer, Part A: Applications, 2018, 73(12): 863-880. |
24 | 刘娇. 动态混合器混合性能的理论及实验研究[D]. 北京: 北京化工大学, 2016. |
Liu J. Theoretical and experimental studies on mixing performance of the dynamic mixer[D]. Beijing: Beijing University of Chemical Technology, 2016. | |
25 | 张建伟, 马繁荣, 张志刚, 等. 双组水平喷嘴撞击流反应器流场POD分析[J]. 化工学报, 2018, 69(7): 2916-2925. |
Zhang J W, Ma F R, Zhang Z G, et al. POD analysis of flow field in horizontal two-group nozzle impinging stream reactor[J]. CIESC Journal, 2018, 69(7): 2916-2925. | |
26 | 杨秀娜, 姜阳, 阮宗琳, 等. 生物柴油生产过程撞击反应器的停留时间分布研究[J]. 化学工程, 2017, 45(2): 50-55. |
Yang X N, Jiang Y, Ruan Z L, et al. Residence time distribution of impinging reactor for biodiesel production[J]. Chemical Engineering (China), 2017, 45(2): 50-55. | |
27 | 张建伟, 尚盼龙, 闫俊杰, 等. 水平对置双向撞击流混合器的混合效果[J]. 过程工程学报, 2017, 17(5): 959-964. |
Zhang J W, Shang P L, Yan J J, et al. Mixing effect in two horizontal opposed impinging stream mixer[J]. The Chinese Journal of Process Engineering, 2017, 17(5): 959-964. | |
28 | 张建伟, 施博文, 冯颖, 等. 浸没状态下液-液两相水平对撞浓度场的数值模拟[J]. 过程工程学报, 2018, 18(1): 57-62. |
Zhang J W, Shi B W, Feng Y, et al. Numerical simulation of concentration field of liquid-liquid two-phase impinging streams in submerged condition[J]. The Chinese Journal of Process Engineering, 2018, 18(1): 57-62. | |
29 | Moffatt H K, Tsinober A, 程屏芬. 层流和湍流中的螺旋度[J]. 力学进展, 1993, 23(1): 69-85. |
Moffatt H K, Tsinober A, Cheng P F. Helicity in laminar and turbulent flow [J]. Advances in Mechanics, 1993, 23(1): 69-85. | |
30 | Zhang J W, Yan J J, Dong X, et al. Experimental study on turbulence properties in the dual nozzle opposed impinging stream mixer[J]. The Canadian Journal of Chemical Engineering, 2017, 95(3): 550-558. |
31 | 沙新力. 双组分层式撞击流混合器浓度场的Hilbert-Huang变换分析[D]. 沈阳: 沈阳化工大学, 2020. |
Sha X L. Hilbert-Huang transform analysis of concentration field of two-component layered impinging stream mixer[D]. Shenyang: Shenyang University of Chemical Technology, 2020. |
[1] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[2] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[3] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[4] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[5] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[6] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[7] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[8] | 韩晨, 司徒友珉, 朱斌, 许建良, 郭晓镭, 刘海峰. 协同处理废液的多喷嘴粉煤气化炉内反应流动研究[J]. 化工学报, 2023, 74(8): 3266-3278. |
[9] | 程小松, 殷勇高, 车春文. 不同工质在溶液除湿真空再生系统中的性能对比[J]. 化工学报, 2023, 74(8): 3494-3501. |
[10] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341. |
[11] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
[12] | 岳林静, 廖艺涵, 薛源, 李雪洁, 李玉星, 刘翠伟. 凹坑缺陷对厚孔板喉部空化流动特性影响研究[J]. 化工学报, 2023, 74(8): 3292-3308. |
[13] | 闫琳琦, 王振雷. 基于STA-BiLSTM-LightGBM组合模型的多步预测软测量建模[J]. 化工学报, 2023, 74(8): 3407-3418. |
[14] | 黄可欣, 李彤, 李桉琦, 林梅. 加装旋转叶轮T型通道流场的模态分解[J]. 化工学报, 2023, 74(7): 2848-2857. |
[15] | 史方哲, 甘云华. 超薄热管启动特性和传热性能数值模拟[J]. 化工学报, 2023, 74(7): 2814-2823. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||