化工学报 ›› 2023, Vol. 74 ›› Issue (6): 2599-2610.DOI: 10.11949/0438-1157.20230157
张艳梅1,2(), 袁涛1,2, 李江1,3(), 刘亚洁1,2, 孙占学1,2
收稿日期:
2023-02-23
修回日期:
2023-05-25
出版日期:
2023-06-05
发布日期:
2023-07-27
通讯作者:
李江
作者简介:
张艳梅(1989—),女,博士,讲师,450826464@qq.com
基金资助:
Yanmei ZHANG1,2(), Tao YUAN1,2, Jiang LI1,3(), Yajie LIU1,2, Zhanxue SUN1,2
Received:
2023-02-23
Revised:
2023-05-25
Online:
2023-06-05
Published:
2023-07-27
Contact:
Jiang LI
摘要:
从不同的自然生境中采样,经富集驯化-分离筛选出6株具有高效去除SO
中图分类号:
张艳梅, 袁涛, 李江, 刘亚洁, 孙占学. 高效SRB混合菌群构建及其在酸胁迫条件下的性能研究[J]. 化工学报, 2023, 74(6): 2599-2610.
Yanmei ZHANG, Tao YUAN, Jiang LI, Yajie LIU, Zhanxue SUN. Study on the construction of high-efficient SRB mixed microflora and its performance under acid stress[J]. CIESC Journal, 2023, 74(6): 2599-2610.
序号 | 样品来源 | 采样点坐标 | pH | Eh/mV | T/℃ |
---|---|---|---|---|---|
1 | 黄家湖底层沉积物 | 北纬28°43'24.89″ 东经115°49'15.53″ 东北51° | 5.99 | 20.2 | 15.3 |
2 | 范家村某臭水沟淤泥 | 北纬28°43'24.89″ 东经115°49'15.53″ 东82° | 6.46 | 17.8 | 16 |
3 | 某黑臭水塘底泥 | 北纬28°43'17.75″ 东经115°49'31.19″ 东94° | 6.30 | 17.9 | 15.7 |
4 | 某菜地土壤 | 北纬28°43'18.01″ 东经115°49'32.71″ 东92° | 6.50 | 11.3 | 15.8 |
5 | 学校荷花池底泥 | 北纬28°43'18.01″ 东经115°49'32.71″ 东北58° | 6.69 | 3.7 | 17.1 |
6 | 乌砂河底层沉积物 | 北纬28°42'25″ 东经115°51'16″ | 6.13 | 16.4 | 16.3 |
7 | 新疆地浸采铀退役采区某地层水 | 9541地层 | 4.40 | 162.3 | 11.4 |
8 | 新疆地浸采铀退役采区某管井水 | AW-1 | 2.35 | 373.1 | 9.7 |
表1 采样点
Table 1 Sampling points
序号 | 样品来源 | 采样点坐标 | pH | Eh/mV | T/℃ |
---|---|---|---|---|---|
1 | 黄家湖底层沉积物 | 北纬28°43'24.89″ 东经115°49'15.53″ 东北51° | 5.99 | 20.2 | 15.3 |
2 | 范家村某臭水沟淤泥 | 北纬28°43'24.89″ 东经115°49'15.53″ 东82° | 6.46 | 17.8 | 16 |
3 | 某黑臭水塘底泥 | 北纬28°43'17.75″ 东经115°49'31.19″ 东94° | 6.30 | 17.9 | 15.7 |
4 | 某菜地土壤 | 北纬28°43'18.01″ 东经115°49'32.71″ 东92° | 6.50 | 11.3 | 15.8 |
5 | 学校荷花池底泥 | 北纬28°43'18.01″ 东经115°49'32.71″ 东北58° | 6.69 | 3.7 | 17.1 |
6 | 乌砂河底层沉积物 | 北纬28°42'25″ 东经115°51'16″ | 6.13 | 16.4 | 16.3 |
7 | 新疆地浸采铀退役采区某地层水 | 9541地层 | 4.40 | 162.3 | 11.4 |
8 | 新疆地浸采铀退役采区某管井水 | AW-1 | 2.35 | 373.1 | 9.7 |
菌株编号 | 菌株来源 | 培养驯化条件 | 72 h硫酸盐还原效果 | |
---|---|---|---|---|
培养液pH | SO | |||
SRB-T3 | 某黑臭水塘底泥(3#采样点) | 中性条件pH 7.0 | 8.39 | 68.67 |
SRB-X7 | 新疆退役采区某地层水(7#采样点) | 中性条件pH 7.0 | 8.55 | 68.00 |
SRB-W6 | 乌砂河底层沉积物(6#采样点) | 中性条件pH 7.0 | 8.20 | 67.09 |
SRB-G2 | 范家村某臭水沟淤泥(2#采样点) | 弱酸条件pH 6.5 | 7.44 | 63.92 |
SRB-H1 | 黄家湖底层沉积物(1#采样点) | 弱酸条件pH 5.5 | 6.23 | 49.54 |
SRB-X8 | 新疆退役采区某管井水(8#采样点) | 弱酸条件pH 5.5 | 6.90 | 50.64 |
表2 筛选菌株
Table 2 Screening strains
菌株编号 | 菌株来源 | 培养驯化条件 | 72 h硫酸盐还原效果 | |
---|---|---|---|---|
培养液pH | SO | |||
SRB-T3 | 某黑臭水塘底泥(3#采样点) | 中性条件pH 7.0 | 8.39 | 68.67 |
SRB-X7 | 新疆退役采区某地层水(7#采样点) | 中性条件pH 7.0 | 8.55 | 68.00 |
SRB-W6 | 乌砂河底层沉积物(6#采样点) | 中性条件pH 7.0 | 8.20 | 67.09 |
SRB-G2 | 范家村某臭水沟淤泥(2#采样点) | 弱酸条件pH 6.5 | 7.44 | 63.92 |
SRB-H1 | 黄家湖底层沉积物(1#采样点) | 弱酸条件pH 5.5 | 6.23 | 49.54 |
SRB-X8 | 新疆退役采区某管井水(8#采样点) | 弱酸条件pH 5.5 | 6.90 | 50.64 |
菌株编号 | 对数期细菌数量/(cells/ml) | 最大生长 速率/h-1 | 硫酸盐还原能力/(kg/(m3·d)) |
---|---|---|---|
SRB-T3 | 1.10×105 | 0.021 | 0.214 |
SRB-X7 | 1.10×105 | 0.024 | 0.214 |
SRB-W6 | 0.20×105 | 0.017 | 0.212 |
SRB-G2 | 0.11×105 | 0.021 | 0.157 |
SRB-H1 | 0.14×104 | 0.011 | 0.150 |
SRB-X8 | 0.11×104 | 0.009 | 0.147 |
表3 菌株生长及还原特性
Table 3 Growth and reduction characteristics of the strains
菌株编号 | 对数期细菌数量/(cells/ml) | 最大生长 速率/h-1 | 硫酸盐还原能力/(kg/(m3·d)) |
---|---|---|---|
SRB-T3 | 1.10×105 | 0.021 | 0.214 |
SRB-X7 | 1.10×105 | 0.024 | 0.214 |
SRB-W6 | 0.20×105 | 0.017 | 0.212 |
SRB-G2 | 0.11×105 | 0.021 | 0.157 |
SRB-H1 | 0.14×104 | 0.011 | 0.150 |
SRB-X8 | 0.11×104 | 0.009 | 0.147 |
1 | 徐明, 徐绮, 熊桂慧, 等. 工业硫酸盐废水处理技术研究现状[J]. 工业用水与废水, 2017, 48(4): 7-10. |
Xu M, Xu Q, Xiong G H, et al. Research status of industrial sulfate wastewater treatment technology[J]. Industrial Water & Wastewater, 2017, 48(4): 7-10. | |
2 | 刘力源, 沈旭, 王璐, 等. 硫酸盐还原菌在废水处理领域发展态势分析[J]. 工业水处理, 2022, 42(7): 33-43. |
Liu L Y, Shen X, Wang L, et al. Situation analyses of wastewater treatment by sulfate-reducing bacteria[J]. Industrial Water Treatment, 2022, 42(7): 33-43. | |
3 | Shi K, Jiang Q, Qiao Y L, et al. Interaction of the concentration of S2-, SO 4 2 - and microbial community by controlling nitrogen stripping during sulfate-rich wastewater treatment[J]. Environmental Pollutants and Bioavailability, 2022, 34(1): 154-161. |
4 | Xue J L, Yao Y H, Li W S, et al. Insights into the effects of operating parameters on sulfate reduction performance and microbial pathways in the anaerobic sequencing batch reactor[J]. Chemosphere, 2023, 311: 137134. |
5 | 王晓青, 冯启言, 宫敏, 等. 高硫酸盐矿山废水的处理方法研究进展[J]. 应用化工, 2022, 51(8): 2355-2361. |
Wang X Q, Feng Q Y, Gong M, et al. Research progress on treatment methods of wastewater with high sulfate mines[J]. Applied Chemical Industry, 2022, 51(8): 2355-2361. | |
6 | Chai G D, Wang D Q, Zhang Y T, et al. Effects of organic substrates on sulfate-reducing microcosms treating acid mine drainage: performance dynamics and microbial community comparison[J]. Journal of Environmental Management, 2023, 330: 117148. |
7 | Moreno-Perlin T, Alpuche-Solís Á G, Badano E I, et al. Toward a solution for acid mine drainage treatment: role of electron donors in sulfate reduction at low pH[J]. Geomicrobiology Journal, 2019, 36(9): 837-846. |
8 | Sen A M, Johnson B. Acidophilic sulphate-reducing bacteria: candidates for bioremediation of acid mine drainage[J]. Process Metallurgy, 1999, 9: 709-718. |
9 | Koschorreck M, Wendt-Potthoff K, Geller W. Microbial sulfate reduction at low pH in sediments of an acidic lake in Argentina[J]. Environmental Science & Technology, 2003, 37(6): 1159-1162. |
10 | Alazard D, Joseph M, Battaglia-Brunet F, et al. Desulfosporosinus acidiphilus sp. nov.: a moderately acidophilic sulfate-reducing bacterium isolated from acid mining drainage sediments[J]. Extremophiles, 2010, 14(3): 305-312. |
11 | Bijmans M F M, de Vries E, Yang C H, et al. Sulfate reduction at pH 4.0 for treatment of process and wastewaters[J]. Biotechnology Progress, 2010, 26(4) : 1029-1037. |
12 | Ňancucheo I, Johnson D B. Selective removal of transition metals from acidic mine waters by novel consortia of acidophilic sulfidogenic bacteria[J]. Microbial Biotechnology, 2012, 5(1): 34-44. |
13 | Sánchez-Andrea I, Sanz J L, Bijmans M F M, et al. Sulfate reduction at low pH to remediate acid mine drainage[J]. Journal of Hazardous Materials, 2014, 269: 98-109. |
14 | Kieu H T Q, Müller E, Horn H. Heavy metal removal in anaerobic semi-continuous stirred tank reactors by a consortium of sulfate-reducing bacteria[J]. Water Research, 2011, 45(13): 3863-3870. |
15 | Torbaghan M E, Torghabeh G H K. Biological removal of iron and sulfate from synthetic wastewater of cotton delinting factory by using halophilic sulfate-reducing bacteria[J]. Heliyon, 2019, 5(12): e02948. |
16 | Rambabu K, Banat F, Pham Q M, et al. Biological remediation of acid mine drainage: review of past trends and current outlook[J]. Environmental Science and Ecotechnology, 2020, 2: 100024. |
17 | 李周园, 叶小洲, 王少鹏. 生态系统稳定性及其与生物多样性的关系[J]. 植物生态学报, 2021, 45(10): 1127-1139. |
Li Z Y, Ye X Z, Wang S P. Ecosystem stability and its relationship with biodiversity[J]. Chinese Journal of Plant Ecology, 2021, 45(10): 1127-1139. | |
18 | Zhao C R, Chen N, Liu T, et al. Effects of adding different carbon sources on the microbial behavior of sulfate-reducing bacteria in sulfate-containing wastewater[J]. Journal of Cleaner Production, 2023, 392: 136332. |
19 | Zhou S Q, Wang J, Peng S C, et al. Anaerobic co-digestion of landfill leachate and acid mine drainage using up-flow anaerobic sludge blanket reactor[J]. Environmental Science and Pollution Research, 2021, 28(7): 8498-8506. |
20 | Cao Z B, Yan W L, Ding M Z, et al. Construction of microbial consortia for microbial degradation of complex compounds[J]. Frontiers in Bioengineering and Biotechnology, 2022, 10: 1051233. |
21 | von Canstein H, Kelly S, Li Y, et al. Species diversity improves the efficiency of mercury-reducing biofilms under changing environmental conditions[J]. Applied and Environmental Microbiology, 2002, 68(6): 2829-2837. |
22 | Cibis E, Krzywonos M, Miśkiewicz T. Aerobic biodegradation of potato slops under moderate thermophilic conditions: effect of pollution load[J]. Bioresource Technology, 2006, 97(4): 679-685. |
23 | Liu X F, Qi Y N, Lian J, et al. Construction of actinomycetes complex flora in degrading corn straw and an evaluation of their degradative effects[J]. Biotechnology Letters, 2022, 44(12): 1477-1493. |
24 | 张惠, 杨英, 杨晨, 等. 高效石油降解菌群的构建及对芳香烃化合物萘的协同降解性能[J]. 微生物学通报, 2020, 47(5): 1366-1376. |
Zhang H, Yang Y, Yang C, et al. Construction of highly efficient crude oil degrading bacteria and synergistic degradation performance on aromatic hydrocarbon compound naphthalene[J]. Microbiology China, 2020, 47(5): 1366-1376. | |
25 | Poddar K, Sarkar D, Sarkar A. Construction of bacterial consortium for efficient degradation of mixed pharmaceutical dyes[J]. Environmental Science and Pollution Research, 2023, 30(10): 25226-25238. |
26 | 汪润民, 张晓东, 徐成华, 等. 高效重质石油降解菌群构建及降解性能评价[J]. 化工进展, 2022, 41(10): 5653-5660. |
Wang R M, Zhang X D, Xu C H, et al. Construction and performance evaluation of high efficiency heavy oil degradation consortium[J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5653-5660. | |
27 | 凌文华, 郑江玲, 李云飞, 等. 甲苯、邻二甲苯和二氯甲烷混合气体降解菌群构建及其 性能研究[J]. 环境科学学报, 2022, 42(10): 193-201. |
Ling W H, Zheng J L, Li Y F, et al. Performance of enhanced composite strains for the treatment of mixed organic waste gas containing toluene, o-xylene and dichloromethane[J]. Acta Scientiae Circumstantiae, 2022, 42(10): 193-201. | |
28 | Changman K, Cho R, Young E,et al. Construction of synthetic microbial consortium for bioenergy production[J]. Conference of The Korean Society of Biological Engineers, 2018. |
29 | 黄婷. 镇江香醋酿造微生物功能解析及酿醋人工菌群构建[D]. 无锡: 江南大学, 2022. |
Huang T. Functional analysis of microbes in Zhenjiang aromatic vinegar brewing and construction of artificial flora for vinegar brewing[D].Wuxi: Jiangnan University, 2022. | |
30 | Irene S, Graaf C, Hornung B, et al. Acetate degradation at low pH by the moderately acidophilic sulfate reducer[J]. Frontiers in microbiology, 2022, 13: 1-18. |
31 | Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry, 1976, 72(1/2): 248-254. |
32 | Ma Q L, Du H, Liu Y, et al. Sulfate-reducing prokaryotes in mangrove wetlands: diversity and role in driving element coupling[J]. Acta Microbiologica Sinica, 2022, 62(12): 4606-4627. |
33 | Finster K W, Kjeldsen K U. Desulfovibrio oceani subsp. oceani sp. nov., subsp. nov. and Desulfovibrio oceani subsp. galateae subsp. nov., novel sulfate-reducing bacteria isolated from the oxygen minimum zone off the coast of Peru[J]. Antonie Van Leeuwenhoek, 2010, 97(3): 221-229. |
34 | Patel D, Bapodra S L, Madamwar D, et al. Electroactive bacterial community augmentation enhances the performance of a pilot scale constructed wetland microbial fuel cell for treatment of textile dye wastewater[J]. Bioresource Technology, 2021, 332: 125088. |
35 | Xiao W D, Zhang Q, Zhao S P, et al. Citric acid secretion from rice roots contributes to reduction and immobilization of Cr(Ⅵ) by driving microbial sulfur and iron cycle in paddy soil[J]. Science of the Total Environment, 2023, 854: 158832. |
36 | Ouyang W Y, Birkigt J, Richnow H H, et al. Anaerobic transformation and detoxification of sulfamethoxazole by sulfate-reducing enrichments and Desulfovibrio vulgaris [J]. Environmental Science & Technology, 2021, 55(1): 271-282. |
37 | Zhang Z, Zhang C H, Yang Y, et al. A review of sulfate-reducing bacteria: metabolism, influencing factors and application in wastewater treatment[J]. Journal of Cleaner Production, 2022, 376: 134109. |
38 | Qian Y F, Xu M Y, Deng T C, et al. Synergistic interactions of Desulfovibrio and Petrimonas for sulfate-reduction coupling polycyclic aromatic hydrocarbon degradation[J]. Journal of Hazardous Materials, 2021, 407: 124385. |
39 | Xi G F. Synergistic effect between sulfate-reducing bacteria and pseudomonas aeruginosa on corrosion behavior of Q235 steel[J]. International Journal of Electrochemical Science, 2020: 361-370. |
[1] | 杨百玉, 寇悦, 姜峻韬, 詹亚力, 王庆宏, 陈春茂. 炼化碱渣湿式氧化预处理过程DOM的化学转化特征[J]. 化工学报, 2023, 74(9): 3912-3920. |
[2] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[3] | 朱理想, 罗默也, 张晓东, 龙涛, 余冉. 醌指纹法指示三氯乙烯污染土功能微生物活性应用研究[J]. 化工学报, 2023, 74(6): 2647-2654. |
[4] | 胡南, 陶德敏, 杨照岚, 王学兵, 张向旭, 刘玉龙, 丁德馨. 铁炭微电解与硫酸盐还原菌耦合修复铀尾矿库渗滤水的研究[J]. 化工学报, 2023, 74(6): 2655-2667. |
[5] | 张兰河, 赖青燚, 王铁铮, 关潇卓, 张明爽, 程欣, 徐小惠, 贾艳萍. H2O2对SBR脱氮效率和污泥性能的影响[J]. 化工学报, 2023, 74(5): 2186-2196. |
[6] | 闫新龙, 黄志刚, 胡清勋, 张新, 胡晓燕. Cu/Co掺杂多孔炭活化过硫酸盐降解水中硝基酚研究[J]. 化工学报, 2023, 74(3): 1102-1112. |
[7] | 李承威, 骆华勇, 张铭轩, 廖鹏, 方茜, 荣宏伟, 王竞茵. 氢氧化镧交联壳聚糖微球的微流控制备及其除磷性能[J]. 化工学报, 2022, 73(9): 3929-3939. |
[8] | 贾艳萍, 丁雪, 刚健, 佟泽为, 张海丰, 张兰河. Mn强化Fe/C微电解工艺条件优化及降解油墨废水机理[J]. 化工学报, 2022, 73(5): 2183-2193. |
[9] | 赵希强, 张健, 孙爽, 王文龙, 毛岩鹏, 孙静, 刘景龙, 宋占龙. 生物质炭改性微球去除化工废水中无机磷的性能研究[J]. 化工学报, 2022, 73(5): 2158-2173. |
[10] | 毛恒, 王月, 王森, 刘伟民, 吕静, 陈甫雪, 赵之平. APTES改性ZIF-L/PEBA混合基质膜强化渗透汽化分离苯酚研究[J]. 化工学报, 2022, 73(3): 1389-1402. |
[11] | 王祺, 房阔, 贺聪慧, 王凯军. 流动电极电容去离子技术综述:研究进展与未来挑战[J]. 化工学报, 2022, 73(3): 975-989. |
[12] | 顾鋆鋆, 黎睿, 吴兴熠, 汤显强, 胡艳平. 电动导排孔隙水对泥-水界面氮释放通量的控制效果研究[J]. 化工学报, 2022, 73(11): 5118-5127. |
[13] | 郑喜, 王涛, 任永胜, 赵珍珍, 王雪琪, 赵之平. 聚间苯二甲酰间苯二胺平板膜的制备及其性能研究[J]. 化工学报, 2022, 73(10): 4707-4721. |
[14] | 张兰河, 汪露, 李梓萌, 唐宏, 郭静波, 贾艳萍, 张明爽. 电极超滤膜生物反应器处理阴离子表面活性剂废水[J]. 化工学报, 2022, 73(10): 4679-4691. |
[15] | 付鹏波,田金乙,吕文杰,黄渊,刘毅,卢浩,杨强,修光利,汪华林. 物理法水处理技术[J]. 化工学报, 2022, 73(1): 59-72. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||