化工学报 ›› 2023, Vol. 74 ›› Issue (10): 4153-4163.DOI: 10.11949/0438-1157.20230709
何笑1(), 刘晶晶1, 李文瑶1, 刘永卓1(), 郭庆杰1,2
收稿日期:
2023-07-10
修回日期:
2023-09-05
出版日期:
2023-10-25
发布日期:
2023-12-22
通讯作者:
刘永卓
作者简介:
何笑(1998—),女,硕士研究生,hexiao557@163.com
基金资助:
Xiao HE1(), Jingjing LIU1, Wenyao LI1, Yongzhuo LIU1(), Qingjie GUO1,2
Received:
2023-07-10
Revised:
2023-09-05
Online:
2023-10-25
Published:
2023-12-22
Contact:
Yongzhuo LIU
摘要:
生物质化学链热解利用载氧体将生物质热解-气化反应解耦为不同温度下进行的两级反应,能够同时得到高品质生物油/化学品和清洁合成气。本研究采用溶胶-凝胶法,分别选择碱土金属(Ca、Sr、Ba)和过渡金属(Co、Ni、Cu)制备了六种铁基复合载氧体,并研究了它们在玉米秸秆生物质化学链热解过程中的载氧-催化性能。研究表明:六种还原态铁基复合载氧体对生物质热解液体产物具有良好的催化裂解、酮基化反应和加氢脱氧能力,显著减少生物油中含氧化合物的含量,增加烃类化合物的生成,在气化阶段将热解焦氧化成以CO为主要组成的合成气。其中,Ca-Fe复合载氧体使生物油中酸类化合物的含量从无载氧体时的29.4%降低到0.3%,合成气中CO产率达到330 L/kg生物质。在650℃、生物质-载氧体质量比为3∶6的优化条件下,对Ca-Fe复合载氧体的10次热解-气化循环进行了研究,结果表明,10次循环过程中Ca-Fe复合载氧体具有优异的催化、脱氧和氧化性能,但多次循环后存在铁相分离和团聚现象。因此,高效稳定铁基复合载氧体仍是未来生物质化学链热解的研究重点。
中图分类号:
何笑, 刘晶晶, 李文瑶, 刘永卓, 郭庆杰. 玉米秸秆化学链热解过程铁基复合载氧体的载氧-催化性能[J]. 化工学报, 2023, 74(10): 4153-4163.
Xiao HE, Jingjing LIU, Wenyao LI, Yongzhuo LIU, Qingjie GUO. Oxygen-carrying and catalytic properties of iron-based composite oxygen carrier for chemical looping pyrolysis of corn stalk[J]. CIESC Journal, 2023, 74(10): 4153-4163.
元素分析/%(质量) | 工业分析/%(质量) | 成分分析/%(质量) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
C | H | O | N | S | M | V | A | FC | 纤维素 | 半纤维素 | 木质素 |
38.65 | 4.51 | 55.07 | 1.38 | 0.39 | 3.72 | 66.35 | 11.73 | 18.19 | 31.63 | 13.90 | 14.68 |
表1 玉米秸秆元素分析、工业分析和成分分析
Table 1 Ultimate, proximate and component analysis of corn stalk
元素分析/%(质量) | 工业分析/%(质量) | 成分分析/%(质量) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
C | H | O | N | S | M | V | A | FC | 纤维素 | 半纤维素 | 木质素 |
38.65 | 4.51 | 55.07 | 1.38 | 0.39 | 3.72 | 66.35 | 11.73 | 18.19 | 31.63 | 13.90 | 14.68 |
1 | 国家能源局, 生物质能发展“十三五”规划[R]. 北京:国家能源局, 2016. |
National Energy Administration. 13th five-year plan for biomass energy development [R]. Beijing: NEA, 2016. | |
2 | 张会岩, 杨海平, 陆强, 等. 生物质定向热解制取高品质液体燃料、化学品和碳材料研究进展[J]. 工程热物理学报, 2021, 42(12): 3031-3044. |
Zhang H Y, Yang H P, Lu Q, et al. Progress of directional pyrolysis of biomass to produce high-quality liquid fuels, chemicals and carbon materials[J]. Journal of Engineering Thermophysics, 2021, 42(12):3031-3044. | |
3 | Solarte-Toro J C, González-Aguirre J A, Poveda Giraldo J A, et al. Thermochemical processing of woody biomass: a review focused on energy-driven applications and catalytic upgrading[J]. Renewable and Sustainable Energy Reviews, 2021, 136: 110376. |
4 | Cao L C, Yu I K M, Xiong X N, et al. Biorenewable hydrogen production through biomass gasification: a review and future prospects[J]. Environmental Research, 2020, 186: 109547. |
5 | Dai L L, Wang Y P, Liu Y H, et al. A review on selective production of value-added chemicals via catalytic pyrolysis of lignocellulosic biomass[J]. Science of the Total Environment, 2020, 749: 142386. |
6 | Sekar M, Mathimani T, Alagumalai A, et al. A review on the pyrolysis of algal biomass for biochar and bio-oil—bottlenecks and scope[J]. Fuel, 2021, 283: 119190. |
7 | Yildiz G, Ronsse F, van Duren R, et al. Challenges in the design and operation of processes for catalytic fast pyrolysis of woody biomass[J]. Renewable and Sustainable Energy Reviews, 2016, 57: 1596-1610. |
8 | Liu R H, Sarker M, Rahman M M, et al. Multi-scale complexities of solid acid catalysts in the catalytic fast pyrolysis of biomass for bio-oil production—a review[J]. Progress in Energy and Combustion Science, 2020, 80: 100852. |
9 | Gutierrez A, Kaila R K, Honkela M L, et al. Hydrodeoxygenation of guaiacol on noble metal catalysts[J]. Catalysis Today, 2009, 147(3/4): 239-246. |
10 | Bulushev D A, Ross J R H. Catalysis for conversion of biomass to fuels via pyrolysis and gasification: a review[J]. Catalysis Today, 2011, 171(1): 1-13. |
11 | Lu Q A, Zhang Z F, Dong C Q, et al. Catalytic upgrading of biomass fast pyrolysis vapors with nano metal oxides: an analytical Py-GC/MS study[J]. Energies, 2010, 3(11): 1805-1820. |
12 | Aysu T, Fermoso J, Sanna A. Ceria on alumina support for catalytic pyrolysis of Pavlova sp. microalgae to high-quality bio-oils[J]. Journal of Energy Chemistry, 2018, 27(3): 874-882. |
13 | Zheng A Q, Zhao Z L, Chang S, et al. Effect of crystal size of ZSM-5 on the aromatic yield and selectivity from catalytic fast pyrolysis of biomass[J]. Journal of Molecular Catalysis A: Chemical, 2014, 383/384: 23-30. |
14 | Liu J J, Hou Q D, Ju M T, et al. Biomass pyrolysis technology by catalytic fast pyrolysis, catalytic co-pyrolysis and microwave-assisted pyrolysis: a review[J]. Catalysts, 2020, 10(7): 742. |
15 | 仉利, 姚宗路, 赵立欣, 等. 生物质热化学转化提质及其催化剂研究进展[J]. 化工学报, 2020, 71(8): 3416-3427. |
Zhang L, Yao Z L, Zhao L X, et al. Research progress on thermochemical conversion of biomass to enhance quality and catalyst[J]. CIESC Journal, 2020, 71(8): 3416-3427. | |
16 | 刘永卓, 郭庆杰. 化学链基础理论及其在节能减排中的应用[J]. 工程研究-跨学科视野中的工程, 2015, 7(4): 404-412. |
Liu Y Z, Guo Q J. Fundamental principles and its application of chemical looping in the field of energy-saving and emission reduction [J]. Journal of Engineering Studies, 2015, 7(4): 404-412. | |
17 | Adánez J, Abad A, Mendiara T, et al. Chemical looping combustion of solid fuels[J]. Progress in Energy and Combustion Science, 2018, 65: 6-66. |
18 | Zeng L, Cheng Z, Fan J A, et al. Metal oxide redox chemistry for chemical looping processes[J]. Nature Reviews Chemistry, 2018, 2(11): 349-364. |
19 | Zhu X, Imtiaz Q, Donat F, et al. Chemical looping beyond combustion—a perspective[J]. Energy & Environmental Science, 2020, 13(3): 772-804. |
20 | 吴志强, 张博, 杨伯伦. 生物质化学链转化技术研究进展[J]. 化工学报, 2019, 70(8): 2835-2853. |
Wu Z Q, Zhang B, Yang B L. Research progress on biomass chemical-looping conversion technology[J]. CIESC Journal, 2019, 70(8): 2835-2853. | |
21 | Lin Y, Wang H T, Wang Y H, et al. Review of biomass chemical looping gasification in China[J]. Energy & Fuels, 2020, 34(7): 7847-7862. |
22 | 刘永卓, 赵书菊, 张欣涛, 等. 一种基于化学链的低阶煤和生物质分级利用装置及方法: 110437882B[P]. 2020-09-29. |
Liu Y Z, Zhao S J, Zhang X T, et al. Graded utilization device and method for low-rank coals and biomasses based on chemical looping: 110437882B[P]. 2020-09-29. | |
23 | Liu Y Z, Wang T, Zhang X T, et al. Chemical looping staged conversion of microalgae with calcium ferrite as oxygen carrier: pyrolysis and gasification characteristics[J]. Journal of Analytical and Applied Pyrolysis, 2021, 156: 105129. |
24 | Liu Y Z, Liu J J, Wang T, et al. Co-production of upgraded bio-oils and H2-rich gas from microalgae via chemical looping pyrolysis[J]. International Journal of Hydrogen Energy, 2021, 46(49): 24942-24955. |
25 | Zhang J Z, He T, Wang Z Q, et al. The search of proper oxygen carriers for chemical looping partial oxidation of carbon[J]. Applied Energy, 2017, 190: 1119-1125. |
26 | Yan J C, Sun R, Shen L H, et al. Hydrogen-rich syngas production with tar elimination via biomass chemical looping gasification (BCLG) using BaFe2O4/Al2O3 as oxygen carrier[J]. Chemical Engineering Journal, 2020, 387: 124107. |
27 | 袁聪, 蒲舸, 高杰, 等. 改性BaFe2O4载氧体生物质化学链气化特性[J]. 化工学报, 2022, 73(3): 1359-1368. |
Yuan C, Pu G, Gao J, et al. Biomass chemical-looping gasification characteristics of K-modified BaFe2O4 oxygen carrier[J]. CIESC Journal, 2022, 73(3): 1359-1368. | |
28 | Liu G C, Liao Y F, Wu Y T, et al. Application of calcium ferrites as oxygen carriers for microalgae chemical looping gasification[J]. Energy Conversion and Management, 2018, 160: 262-272. |
29 | Marek E, Hu W T, Gaultois M, et al. The use of strontium ferrite in chemical looping systems[J]. Applied Energy, 2018, 223: 369-382. |
30 | Hashimoto K, Otomo R, Kamiya Y. SrFe1- x Sn x O3- δ nanoparticles with enhanced redox properties for catalytic combustion of benzene[J]. Catalysis Science & Technology, 2020, 10(18): 6342-6349. |
31 | 王旭锋, 刘晶, 刘丰, 等. 基于CoFe2O4载氧体的生物质化学链气化反应特性[J]. 化工学报, 2019, 70(4): 1583-1590. |
Wang X F, Liu J, Liu F, et al. Characteristics of biomass chemical looping gasification with CoFe2O4 as oxygen carrier[J]. CIESC Journal, 2019, 70(4): 1583-1590. | |
32 | 孙焱, 沈晓文, 许细薇, 等. 化学链耦合催化重整热解生物油制备合成气[J]. 化工学报, 2021, 72(11): 5607-5619. |
Sun Y, Shen X W, Xu X W, et al. Coupled chemical looping and catalytic reforming to produce syngas from pyrolysis bio-oil[J]. CIESC Journal, 2021, 72(11): 5607-5619. | |
33 | An M, Yuan N N, Guo Q J. Analysis of the role of Cu for improving the reactivity of Cu-modified Fe2O3 oxygen carriers in the chemical looping gasification process with coal[J]. Fuel, 2021, 305: 121619. |
34 | Chen J, Zhao K, Zhao Z L, et al. Identifying the roles of MFe2O4 (M= Cu, Ba, Ni, and Co) in the chemical looping reforming of char, pyrolysis gas and tar resulting from biomass pyrolysis[J]. International Journal of Hydrogen Energy, 2019, 44(10): 4674-4687. |
35 | Huang Z, Zheng A Q, Deng Z B, et al. In-situ removal of toluene as a biomass tar model compound using NiFe2O4 for application in chemical looping gasification oxygen carrier[J]. Energy, 2020, 190: 116360. |
36 | Ly H V, Lim D H, Sim J W, et al. Catalytic pyrolysis of tulip tree (Liriodendron) in bubbling fluidized-bed reactor for upgrading bio-oil using dolomite catalyst[J]. Energy, 2018, 162: 564-575. |
37 | Hu Q, Shen Y, Chew J W, et al. Chemical looping gasification of biomass with Fe2O3/CaO as the oxygen carrier for hydrogen-enriched syngas production[J]. Chemical Engineering Journal, 2020, 379: 122346. |
38 | Kumar R, Enjamuri N, Shah S, et al. Ketonization of oxygenated hydrocarbons on metal oxide based catalysts[J]. Catalysis Today, 2018, 302: 16-49. |
39 | Qin L, Majumder A, Fan J A, et al. Evolution of nanoscale morphology in single and binary metal oxide microparticles during reduction and oxidation processes[J]. Journal of Materials Chemistry A, 2014, 2(41):17511–17520. |
40 | Cheng Z, Qin L, Fan J A, et al. New insight into the development of oxygen carrier materials for chemical looping systems[J]. Engineering, 2018, 4(3): 343-351. |
[1] | 吴雷, 刘姣, 李长聪, 周军, 叶干, 刘田田, 朱瑞玉, 张秋利, 宋永辉. 低阶粉煤催化微波热解制备含碳纳米管的高附加值改性兰炭末[J]. 化工学报, 2023, 74(9): 3956-3967. |
[2] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[3] | 陈佳起, 赵万玉, 姚睿充, 侯道林, 董社英. 开心果壳基碳点的合成及其对Q235碳钢的缓蚀行为研究[J]. 化工学报, 2023, 74(8): 3446-3456. |
[4] | 吴文涛, 褚良永, 张玲洁, 谭伟民, 沈丽明, 暴宁钟. 腰果酚生物基自愈合微胶囊的高效制备工艺研究[J]. 化工学报, 2023, 74(7): 3103-3115. |
[5] | 杨峥豪, 何臻, 常玉龙, 靳紫恒, 江霞. 生物质快速热解下行式流化床反应器研究进展[J]. 化工学报, 2023, 74(6): 2249-2263. |
[6] | 董茂林, 陈李栋, 黄六莲, 吴伟兵, 戴红旗, 卞辉洋. 酸性助水溶剂制备木质纳米纤维素及功能应用研究进展[J]. 化工学报, 2023, 74(6): 2281-2295. |
[7] | 葛泽峰, 吴雨青, 曾名迅, 查振婷, 马宇娜, 侯增辉, 张会岩. 灰化学成分对生物质气化特性的影响规律[J]. 化工学报, 2023, 74(5): 2136-2146. |
[8] | 衣思敏, 马亚丽, 刘伟强, 张金帅, 岳岩, 郑强, 贾松岩, 李雪. 微晶菱镁矿蒸氨及水化动力学研究[J]. 化工学报, 2023, 74(4): 1578-1586. |
[9] | 刘海芹, 李博文, 凌喆, 刘亮, 俞娟, 范一民, 勇强. 羟基-炔点击化学改性半乳甘露聚糖薄膜的制备及性能研究[J]. 化工学报, 2023, 74(3): 1370-1378. |
[10] | 陈瑞哲, 程磊磊, 顾菁, 袁浩然, 陈勇. 纤维增强树脂复合材料化学回收技术研究进展[J]. 化工学报, 2023, 74(3): 981-994. |
[11] | 祖凌鑫, 胡荣庭, 李鑫, 陈余道, 陈广林. 木质生物质化学组分的碳释放产物特征和反硝化利用程度[J]. 化工学报, 2023, 74(3): 1332-1342. |
[12] | 郑杰元, 张先伟, 万金涛, 范宏. 丁香酚环氧有机硅树脂的制备及其固化动力学研究[J]. 化工学报, 2023, 74(2): 924-932. |
[13] | 张娜, 潘鹤林, 牛波, 张亚运, 龙东辉. 酚醛树脂热裂解反应机理的密度泛函理论研究[J]. 化工学报, 2023, 74(2): 843-860. |
[14] | 陈睿哲, 刘永峰, 殷晨阳, 王龙, 张璐, 宋金瓯. 1-硝基丙烷引发正己烷热解的机理研究[J]. 化工学报, 2023, 74(10): 4319-4329. |
[15] | 韩修远, 张守玉, 徐嘉庆, 陈旭阳, 张邢佳, 徐梓航, 胡南, 吴玉新. 水热过程中杉木屑组分的演变对木醋液的影响[J]. 化工学报, 2023, 74(10): 4311-4318. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||