化工学报 ›› 2023, Vol. 74 ›› Issue (10): 4164-4172.DOI: 10.11949/0438-1157.20230362
高善彬(), 李梦晨, 于宏悦, 沈雨歌, 乔亮, 迟克彬, 史得军
收稿日期:
2023-04-10
修回日期:
2023-07-18
出版日期:
2023-10-25
发布日期:
2023-12-22
通讯作者:
高善彬
作者简介:
高善彬(1982—),男,博士,高级工程师,gsb459@petrochina.com.cn
基金资助:
Shanbin GAO(), Mengchen LI, Hongyue YU, Yuge SHEN, Liang QIAO, Kebin CHI, Dejun SHI
Received:
2023-04-10
Revised:
2023-07-18
Online:
2023-10-25
Published:
2023-12-22
Contact:
Shanbin GAO
摘要:
采用水热法合成ZSM-22分子筛并制备催化剂载体,通过负载贵金属Pt,制备出高分散Pt/H-ZSM-22加氢异构催化剂。以n-C12为原料,考察催化剂的加氢异构性能,在正构烷烃加氢异构反应过程中,通过在原料油中引入一定量含氮物种二正丁胺,使其在催化剂酸性位上发生化学吸附,对催化剂酸性进行原位调控,考察催化剂性能变化。结果表明,随着反应温度提高,酸性调控后的Pt/N-ZSM-22液体收率下降缓慢,且转化率达到85%以上时,Pt/N-ZSM-22的异构选择性比Pt/H-ZSM-22高出约3个百分点。酸性调控后的Pt/N-ZSM-22可通过提高反应温度进行含氮物种脱附,恢复催化剂酸位点的可接近性。采用酸性调控后的催化剂用于以加氢裂化尾油为原料的加氢异构反应,基础油收率均较调控前催化剂有明显提高。
中图分类号:
高善彬, 李梦晨, 于宏悦, 沈雨歌, 乔亮, 迟克彬, 史得军. Pt/ZSM-22催化剂酸性原位调控及加氢异构性能[J]. 化工学报, 2023, 74(10): 4164-4172.
Shanbin GAO, Mengchen LI, Hongyue YU, Yuge SHEN, Liang QIAO, Kebin CHI, Dejun SHI. In-situ acid regulation and hydroisomerization performance of Pt/ZSM-22 catalyst[J]. CIESC Journal, 2023, 74(10): 4164-4172.
图9 Pt/H-ZSM-22和Pt/N-ZSM-22催化剂的转化率和选择性随反应温度的变化
Fig.9 Conversion and isomerization selectivity of Pt/H-ZSM-22 and Pt/N-ZSM-22 catalysts with different reaction temperatures
温度/℃ | Pt/H-ZSM-22/(mmol/g) | Pt/N-ZSM-22/(mmol/g) | Pt/R380-ZSM-22/(mmol/g) | Pt/R390-ZSM-22/(mmol/g) |
---|---|---|---|---|
200 | 0.534 | 0.415 | 0.446 | 0.493 |
350 | 0.370 | 0.257 | 0.289 | 0.328 |
表1 Pt/H-ZSM-22、Pt/N-ZSM-22 和Pt/R-ZSM-22催化剂的吡啶-红外表征结果
Table 1 Py-IR results of Pt/H-ZSM-22, Pt/N-ZSM-22 and Pt/R-ZSM-22 catalysts
温度/℃ | Pt/H-ZSM-22/(mmol/g) | Pt/N-ZSM-22/(mmol/g) | Pt/R380-ZSM-22/(mmol/g) | Pt/R390-ZSM-22/(mmol/g) |
---|---|---|---|---|
200 | 0.534 | 0.415 | 0.446 | 0.493 |
350 | 0.370 | 0.257 | 0.289 | 0.328 |
图12 Pt/N-ZSM-22 和Pt/R-ZSM-22催化剂的转化率和选择性随反应温度的变化
Fig.12 Conversion and isomerization selectivity of Pt/N-ZSM-22 and Pt/R-ZSM-22 catalysts with different reaction temperatures
参数 | 数值 |
---|---|
S/(μg/g) | 1.71 |
N/(μg/g) | <1.1 |
凝点/℃ | 32.9 |
100℃运动黏度/(mm2/s) | 4.865 |
黏度指数 | 130 |
闪点/℃ | 212 |
密度(20℃)/(g/cm3) | 0.841 |
馏程/℃ | |
HK/5%/10%/30% 50%/70%/90%/95%/ KK | 315/374/386/407 426/453/495/511/534 |
组成/%(质量) | |
饱和烃 | 96.61 |
芳烃 | 3.02 |
极性化合物 | 0.37 |
表2 加氢裂化尾油性质
Table 2 Properties of hydrocracking UCO
参数 | 数值 |
---|---|
S/(μg/g) | 1.71 |
N/(μg/g) | <1.1 |
凝点/℃ | 32.9 |
100℃运动黏度/(mm2/s) | 4.865 |
黏度指数 | 130 |
闪点/℃ | 212 |
密度(20℃)/(g/cm3) | 0.841 |
馏程/℃ | |
HK/5%/10%/30% 50%/70%/90%/95%/ KK | 315/374/386/407 426/453/495/511/534 |
组成/%(质量) | |
饱和烃 | 96.61 |
芳烃 | 3.02 |
极性化合物 | 0.37 |
参数 | Pt/H-ZSM-22 | Pt/N-ZSM-22 |
---|---|---|
异构反应温度/℃ | 340 | 360 |
全馏分凝点/℃ | -34 | -33 |
总基础油收率(>280℃),ω/% | 85.18 | 88.31 |
重质基础油收率(>400℃),ω/% | 61.09 | 69.48 |
100℃运动黏度/(mm2/s) | 5.832 | 5.754 |
黏度指数 | 123 | 125 |
倾点/℃ | -18 | -18 |
浊点/℃ | -9 | -8 |
饱和烃/%(质量) | 99 | 99 |
表3 Pt/H-ZSM-22和Pt/N-ZSM-22催化剂加氢异构反应结果
Table 3 Hydroisomerization results of Pt/H-ZSM-22 and Pt/N-ZSM-22 catalysts
参数 | Pt/H-ZSM-22 | Pt/N-ZSM-22 |
---|---|---|
异构反应温度/℃ | 340 | 360 |
全馏分凝点/℃ | -34 | -33 |
总基础油收率(>280℃),ω/% | 85.18 | 88.31 |
重质基础油收率(>400℃),ω/% | 61.09 | 69.48 |
100℃运动黏度/(mm2/s) | 5.832 | 5.754 |
黏度指数 | 123 | 125 |
倾点/℃ | -18 | -18 |
浊点/℃ | -9 | -8 |
饱和烃/%(质量) | 99 | 99 |
1 | Tan Y C, Hu W J, Du Y Y, et al. Species and impacts of metal sites over bifunctional catalyst on long chain n-alkane hydroisomerization: a review[J]. Applied Catalysis A: General, 2021, 611: 117916. |
2 | Kim J, Han S W, Kim J C, et al. Supporting nickel to replace platinum on zeolite nanosponges for catalytic hydroisomerization of n-dodecane[J]. ACS Catalysis, 2018, 8(11): 10545-10554. |
3 | del Campo P, MartÃnez C, Corma A. Activation and conversion of alkanes in the confined space of zeolite-type materials[J]. Chemical Society Reviews, 2021, 50(15): 8511-8595. |
4 | Wang D X, Kang X, Gu Y, et al. Electronic tuning of Ni by Mo species for highly efficient hydroisomerization of n-alkanes comparable to Pt-based catalysts[J]. ACS Catalysis, 2020, 10(18): 10449-10458. |
5 | Wang W, Liu C J, Wu W. Bifunctional catalysts for the hydroisomerization of n-alkanes: the effects of metal-acid balance and textural structure[J]. Catalysis Science & Technology, 2019, 9(16): 4162-4187. |
6 | Weston S C, Peterson B K, Gatt J E, et al. EMM-17, a new three-dimensional zeolite with unique 11-ring channels and superior catalytic isomerization performance[J]. Journal of the American Chemical Society, 2019, 141(40): 15910-15920. |
7 | Deldari H. Suitable catalysts for hydroisomerization of long-chain normal paraffins[J]. Applied Catalysis A: General, 2005, 293: 1-10. |
8 | Gerasimov D N, Fadeev V V, Loginova A N, et al. Catalysts based on zeolite ZSM-23 for isodewaxing of a lubricant stock[J]. Catalysis in Industry, 2013, 5(2): 123-132. |
9 | Liu P, Zhang X G, Yao Y, et al. Pt catalysts supported on β zeolite ion-exchanged with Cr(Ⅲ) for hydroisomerization of n-heptane[J]. Applied Catalysis A: General, 2009, 371(1/2): 142-147. |
10 | Liu Y Y, Murata K, Sakanishi K. Hydroisomerization-cracking of gasoline distillate from Fischer-Tropsch synthesis over bifunctional catalysts containing Pt and heteropolyacids[J]. Fuel, 2011, 90(10): 3056-3065. |
11 | Buluchevskii E A, Fedorova E D, Lavrenov A V, et al. Hydroisomerization of benzene-containing gasoline fraction on Pt/B2O3-Al2O3 and Pt/WO3-Al2O3 catalysts[J]. Catalysis in Industry, 2018, 10(2): 118-125. |
12 | Rüfer A, Reschetilowski W. Application of design of experiments in heterogeneous catalysis: using the isomerization of n-decane for a parameter screening[J]. Chemical Engineering Science, 2012, 75: 364-375. |
13 | Park K C, Ihm S K. Comparison of Pt/zeolite catalysts for n-hexadecane hydroisomerization[J]. Applied Catalysis A: General, 2000, 203(2): 201-209. |
14 | Zhang M, Chen Y J, Wang L, et al. Shape selectivity in hydroisomerization of hexadecane over Pt supported on 10-ring zeolites: ZSM-22, ZSM-23, ZSM-35, and ZSM-48[J]. Industrial & Engineering Chemistry Research, 2016, 55(21): 6069-6078. |
15 | Wang G, Liu Q J, Su W G, et al. Hydroisomerization activity and selectivity of n-dodecane over modified Pt/ZSM-22 catalysts[J]. Applied Catalysis A: General, 2008, 335(1): 20-27. |
16 | Chen Y J, Li C, Chen X, et al. Synthesis and characterization of iron-substituted ZSM-23 zeolite catalysts with highly selective hydroisomerization of n-hexadecane[J]. Industrial & Engineering Chemistry Research, 2018, 57(41): 13721-13730. |
17 | 高善彬, 迟克彬, 杨晓东, 等. 正构烷烃在Pt/SAPO-11催化剂上加氢异构反应性能[J]. 化工学报, 2016, 67(12): 5024-5030。 |
Gao S B, Chi K B, Yang X D, et al. Performance of n-alkane isomerization over Pt/SAPO-11 catalyst[J]. CIESC Journal, 2016, 67(12): 5024-5030. | |
18 | Saxena S K, Kamble R, Singh M, et al. Effect of acid treatments on physico-chemical properties and isomerization activity of mordenite[J]. Catalysis Today, 2009, 141(1/2): 215-219. |
19 | Chen Z Q, Liu S Y, Wang H H, et al. Synthesis and characterization of bundle-shaped ZSM-22 zeolite via the oriented fusion of nanorods and its enhanced isomerization performance[J]. Journal of Catalysis, 2018, 361: 177-185. |
20 | Parmar S, Pant K K, John M, et al. Hydroisomerization of n-hexadecane over Pt/ZSM-22 framework: effect of divalent cation exchange[J]. Journal of Molecular Catalysis A: Chemical, 2015, 404/405: 47-56. |
21 | Ernest W, Valyocsik Y. Synthesis of zeolite ZSM-22 with a heterocyclic organic compound: US 4481177[P].1984. |
22 | Zhang L, Fu W Q, He L W, et al. Design and synthesis of Pt catalyst supported on ZSM-22 nanocrystals with increased accessible 10-MR pore mouths and acidic sites for long-chain n-alkane hydroisomerization[J]. Microporous and Mesoporous Materials, 2021, 313: 110834. |
23 | Mäki-Arvela P, Murzin D Y. Effect of metal particle shape on hydrogen assisted reactions[J]. Applied Catalysis A: General, 2021, 618: 118140. |
24 | Regali F, Liotta L F, Venezia A M, et al. Hydroconversion of n-hexadecane on Pt/silica-alumina catalysts: effect of metal loading and support acidity on bifunctional and hydrogenolytic activity[J]. Applied Catalysis A: General, 2014, 469: 328-339. |
25 | Hu Y F, Wang X S, Guo X W, et al. Effects of channel structure and acidity of molecular sieves in hydroisomerization of n-octane over bi-functional catalysts[J]. Catalysis Letters, 2005, 100(1): 59-65. |
26 | Rey J, Raybaud P, Chizallet C, et al. Competition of secondary versus tertiary carbenium routes for the type B isomerization of alkenes over acid zeolites quantified by ab initio molecular dynamics simulations[J]. ACS Catalysis, 2019, 9(11): 9813-9828. |
27 | Weitkamp J, Jacobs P A, Martens J A. Isomerization and hydrocracking of C9 through C16 n-alkanes on Pt/HZSM-5 zeolite[J]. Applied Catalysis, 1983, 8(1): 123-141. |
28 | Viswanadham N, Dixit L, Gupta J K, et al. Effect of acidity and porosity changes of dealuminated mordenites on n-hexane isomerization[J]. Journal of Molecular Catalysis A: Chemical, 2006, 258(1/2): 15-21. |
29 | Martín A J, Mitchell S, Mondelli C, et al. Unifying views on catalyst deactivation[J]. Nature Catalysis, 2022, 5(10): 854-866. |
30 | Miller S J, Lacheen H S, Chen C Y. Determining the strength of Brønsted acid sites for hydrodewaxing over shape-selective catalysts[J]. Industrial & Engineering Chemistry Research, 2016, 55(24): 6760-6767. |
31 | Elangovan S P, Hartmann M. Evaluation of Pt/MCM-41// MgAPO-n composite catalysts for isomerization and hydrocracking of n-decane[J]. Journal of Catalysis, 2003, 217(2): 388-395. |
[1] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[2] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[3] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[4] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[5] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[6] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[7] | 李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352. |
[8] | 涂玉明, 邵高燕, 陈健杰, 刘凤, 田世超, 周智勇, 任钟旗. 钙基催化剂的设计合成及应用研究进展[J]. 化工学报, 2023, 74(7): 2717-2734. |
[9] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[10] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[11] | 李盼, 马俊洋, 陈志豪, 王丽, 郭耘. Ru/α-MnO2催化剂形貌对NH3-SCO反应性能的影响[J]. 化工学报, 2023, 74(7): 2908-2918. |
[12] | 张谭, 刘光, 李晋平, 孙予罕. Ru基氮还原电催化剂性能调控策略[J]. 化工学报, 2023, 74(6): 2264-2280. |
[13] | 韩奎奎, 谭湘龙, 李金芝, 杨婷, 张春, 张永汾, 刘洪全, 于中伟, 顾学红. 四通道中空纤维MFI分子筛膜用于二甲苯异构体分离[J]. 化工学报, 2023, 74(6): 2468-2476. |
[14] | 朱兴驰, 郭志远, 纪志永, 汪婧, 张盼盼, 刘杰, 赵颖颖, 袁俊生. 选择性电渗析镁锂分离过程模拟优化[J]. 化工学报, 2023, 74(6): 2477-2485. |
[15] | 王辰, 史秀锋, 武鲜凤, 魏方佳, 张昊虹, 车寅, 吴旭. 氧化还原法制备Mn3O4催化剂及其甲苯催化氧化性能与机理研究[J]. 化工学报, 2023, 74(6): 2447-2457. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||