化工学报 ›› 2023, Vol. 74 ›› Issue (S1): 287-294.DOI: 10.11949/0438-1157.20221632
收稿日期:
2022-11-16
修回日期:
2022-12-25
出版日期:
2023-06-05
发布日期:
2023-09-27
通讯作者:
王文
作者简介:
宋嘉豪(1999—),男,硕士,songjiahao@sjtu.edu.cn
Received:
2022-11-16
Revised:
2022-12-25
Online:
2023-06-05
Published:
2023-09-27
Contact:
Wen WANG
摘要:
斯特林发动机作为一种外部供热的闭式循环发动机,与高温热管耦合在一些特定场合能够实现热功转换目标。采用热阻网格法和绝热分析法分析高温热管和斯特林发动机,通过对热管与发动机间的热流等进行迭代计算,分析二者间的耦合运行特性。基于一个斯特林发动机及能够满足其输入热能需求的高温热管组合,分析了耦合情况下斯特林发动机的运行特征,包括斯特林发动机的启动特性以及输出功率随热源温度的变化。结果表明,在1000 K的热源温度下,斯特林系统在400 s后达到稳态,能够提供约101 W的稳态输出功率;随着热源温度的升高,发动机内的功率损失会随之升高,使得发动机的输出功率增长趋缓;改变热管壁厚,发动机输出功率先增大后减小,在所研究工况下的热管管壁最优厚度为7 mm。
中图分类号:
宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294.
Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe[J]. CIESC Journal, 2023, 74(S1): 287-294.
1 | 杨泰蓉, 叶宏, 王军, 等. 1 kWα型斯特林发动机的改造及性能测试[J]. 太阳能学报, 2005, 20(5): 703-707. |
Yang T R, Ye H, Wang J, et al. Modification and performance test of an 1 kW α type Stirling engine[J]. Acta Energiae Solaris Sinica, 2005, 20(5): 703-707. | |
2 | 韩强, 祁影霞. 碟式斯特林发动机的研究进展[J]. 能源研究与信息, 2020, 36(2): 117-123. |
Han Q, Qi Y X. Research progress on dish Stirling engine[J]. Energy Research and Information, 2020, 36(2): 117-123. | |
3 | 朱顺敏, 余国瑶, 马英, 等. 焦点固定型碟式-斯特林太阳能热发电系统实验研究[J]. 工程热物理学报, 2021, 42(8): 1925-1929. |
Zhu S M, Yu G Y, Ma Y, et al. Experimental investigation on a focus-fixed dish-stirling concentrated solar power system[J]. Journal of Engineering Thermophysics, 2021, 42(8): 1925-1929. | |
4 | 王丽萍, 杨晓宏, 田瑞, 等. 基于碟式太阳能发电的β型斯特林发动机热性能数值计算[J]. 可再生能源, 2018, 36(3): 351-358. |
Wang L P, Yang X H, Tian R, et al. Numerical analysis for thermal performance of β-type stirling engine based on dish solar generation[J]. Renewable Energy Resources, 2018, 36(3): 351-358. | |
5 | Taki O, Rhazi K S, Mejdoub Y. A study of stirling engine efficiency combined with solar energy[J]. Advances in Science Technology and Engineering Systems Journal, 2021, 6(2): 837-845. |
6 | Aishwarya R, Dhivyabharathi K. Solar powered stirling engine for self-generating electricity[C]//International Conference on Recent Advancements in Electrical, Electronics and Control Engineering. Institute of Electrical and Electronics Engineers, 2011: 442-447. |
7 | Aditya A, Balaji G, Chengappa B C, et al. Design and development of solar Stirling engine for power generation[C]// International Conference on Advances in Manufacturing. Materials and Energy Engineering, 2018, 376(1): 012022. |
8 | Durcansky P, Nosek R, Jnadacka J. Use of Stirling engine for waste heat recovery[J]. Energies, 2020, 13(16): 4133. |
9 | Laazaar K, Boutammachte N. Development of a new technique of waste heat recovery in cement plants based on stirling engine technology[J]. Applied Thermal Engineering, 2022, 210(4): 118316. |
10 | Saadon S. Possibility of using Stirling engine as waste heat recovery-preliminary concept[J]. IOP Conference Series: Earth and Environmental Science, 2019, 268(1): 012095. |
11 | Ramachandran S, Kumar N, Mallina V T. A comprehensive perspective of waste heat recovery potential from solar Stirling engines[C]//19th International Stirling Engine Conference. E3S Web of Conferences, 2021, 313(2): 06001. |
12 | 李广华, 黄宇, 高文志, 等. 基于斯特林循环的汽油机尾气余热回收系统设计与试验研究[J]. 内燃机工程, 2016, 37(3): 55-59. |
Li G H, Huang Y, Gao W Z, et al. Gasoline waste heat recovery system design and experimental research based on Stirling cycle[J]. Chinese Internal Combustion Engine Engineering, 2016, 37(3): 55-59. | |
13 | Mason L S, Casani J, Elliott J O, et al. A small fission power system for NASA planetary science missions[J]. Journal of the British Interplanetary Society, 2011, 64(3): 76-87. |
14 | Ranken W, Mike H. Heat pipe cooled reactors for multi-kilowatt space power supplies[C]//International Heat Pipe Conference. Albuquerque, 1995. |
15 | Moura E, Henriques I B, Ribeiro G B. Thermodynamic-dynamic coupling of a Stirling engine for space exploration[J]. Thermal Science and Engineering Progress, 2022, 32(3): 101320. |
16 | Poston D, Mcclure P R, Dixon D D, et al. Experimental demonstration of a heat pipe-Stirling engine nuclear reactor[J]. Nuclear Technology, 2014, 188(3): 229-237. |
17 | Poston D, Gibson M, Godfroy T J, et al. KRUSTY reactor design[J]. Nuclear Technology, 2020, 206(sup1): 13-30. |
18 | Santos A, Leite V, Theodoro R, et al. Characterization of a coupled copper-water heat pipe with a free piston Stirling engine[C]//18th Brazilian Congress of Thermal Sciences and Engineering. 2020. |
19 | 王成龙, 田文喜, 苏光辉, 等. 新概念熔盐堆非能动余热排出系统中钠热管的特性研究[J]. 原子能科学技术, 2013, 47(12): 2254-2260. |
Wang C L, Tian W X, Su G H, et al. Behavior study on heat pipe in passive heat removal system of new concept molten salt reactor[J]. Atomic Energy Science and Technology, 2013, 47(12): 2254-2260. | |
20 | Urieli I, Berchowitz D. Stirling Cycle Engine Analysis[M]. United Kingdom: Adam Hilger, 1984. |
21 | 刘柏岙. 基于β型斯特林发动机的换热与结构优化及实验研究[D]. 杭州: 浙江大学, 2021. |
Liu B A. Heat transfer and structure optimization based on β type Stirling engine and experimental research[D]. Hangzhou: Zhejiang University, 2021. | |
22 | 杨泰蓉, 叶宏, 王军, 等. 斯特林循环分析法的发展及1 kW斯特林机二级简化分析[J]. 太阳能学报, 2008, 17(8): 999-1007. |
Yang T R, Ye H, Wang J, et al. Development of the stirling cycle analysis and the second order simplified analysis of a 1 kW Stirling engine[J]. Acta Energiae Solaris Sinica, 2008, 17(8): 999-1007. | |
23 | Zuo Z, Faghri A. A network thermodynamic analysis of the heat pipe[J]. International Journal of Heat and Mass Transfer, 1998, 41(11): 1473-1484. |
24 | Cao Y D, Faghri A. Transient two-dimensional compressible analysis for high-temperature heat pipes with pulsed heat input[J]. Numerical Heat Transfer, 1990, 18(4): 483-502. |
25 | Faghri A, Harley C. Transient lumped heat pipe analyses[J]. Heat Recovery Systems and CHP, 1994, 14(4): 351-363. |
26 | Reader G T, Hooper C. Stirling Engine[M]. United Kingdom: Cambridge University Press, 1983. |
27 | 刘柏岙, 王树林, 肖刚. 斯特林循环中射流现象及其对循环特性影响[J]. 热力发电, 2021, 50(9): 80-86. |
Liu B A, Wang S L, Xiao G. Jet impingement in Stirling cycle and its influence on cycle characteristics[J]. Thermal Power Generation, 2021, 50(9): 80-86. | |
28 | Feldman K T, Whiting G H. Applications of the heat pipe[J]. Mechanical Engineering, 1968, 11(5): 48-53. |
29 | Faghri A. Heat Pipe Science and Technology[M]. Untied Kingdom: Taylor and Francis Press, 1995: 15-23. |
30 | Cotter T P. Theory of heat pipes[R]. USA: Los Alamos Scientific Lab, 1965. |
[1] | 李季, 王建林, 何睿, 周新杰, 王雯, 赵利强. 基于DBSVDD-RVR的多模态间歇过程质量变量在线软测量[J]. 化工学报, 2024, 75(9): 3231-3241. |
[2] | 赵武灵, 满奕. 基于变分编码器的纳米纤维素分子结构预测模型框架研究[J]. 化工学报, 2024, 75(9): 3221-3230. |
[3] | 祝赫, 张仪, 齐娜娜, 张锴. 欧拉-欧拉双流体模型中颗粒黏性对液固散式流态化的影响[J]. 化工学报, 2024, 75(9): 3103-3112. |
[4] | 陈巨辉, 苏潼, 李丹, 陈立伟, 吕文生, 孟凡奇. 翅形扰流片作用下的微通道换热特性[J]. 化工学报, 2024, 75(9): 3122-3132. |
[5] | 李舒月, 王欢, 周少强, 毛志宏, 张永民, 王军武, 吴秀花. 基于CPFD方法的U3O8氢还原流化床反应器数值模拟[J]. 化工学报, 2024, 75(9): 3133-3151. |
[6] | 钱啸宇, 阮璇, 李水清. 外加电场下电介质颗粒层结构重构与悬浮[J]. 化工学报, 2024, 75(8): 2756-2762. |
[7] | 朱子良, 王爽, 姜宇昂, 林梅, 王秋旺. 欧拉-拉格朗日迭代固-液相变算法[J]. 化工学报, 2024, 75(8): 2763-2776. |
[8] | 邓爱明, 何玉荣, 唐天琪, 胡彦伟. 导流板对喷雾流化床内颗粒生长过程影响的模拟[J]. 化工学报, 2024, 75(8): 2787-2799. |
[9] | 王倩倩, 李冰, 郑伟波, 崔国民, 赵兵涛, 明平文. 氢燃料电池局部动态特征三维模型[J]. 化工学报, 2024, 75(8): 2812-2820. |
[10] | 金虎, 杨帆, 戴梦瑶. 基于格子Boltzmann方法的液滴在圆柱壁面上运动过程研究[J]. 化工学报, 2024, 75(8): 2897-2908. |
[11] | 杨明军, 巩广军, 郑嘉男, 宋永臣. 泥质低渗水合物降压开采特性与模型研究[J]. 化工学报, 2024, 75(8): 2909-2916. |
[12] | 童永祺, 程杰, 林海, 陈曦, 赵海波. 10 MWth化学链燃烧反应装置的CPFD模拟[J]. 化工学报, 2024, 75(8): 2949-2959. |
[13] | 豆少军, 郝亮. PEMFC催化层耦合气体电荷传输过程的介观模拟[J]. 化工学报, 2024, 75(8): 3002-3010. |
[14] | 方立昌, 李梓龙, 陈博, 苏政, 贾莉斯, 王智彬, 陈颖. 基于相变微胶囊悬浮液的芯片阵列冷却特性研究[J]. 化工学报, 2024, 75(7): 2455-2464. |
[15] | 黄静茹, 陈佳轩, 张群锋, 阮晋, 朱来, 叶光华, 周兴贵. ZSM-5分子筛结构对苯烷基化反应性能影响的数值模拟研究[J]. 化工学报, 2024, 75(7): 2544-2555. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 489
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 182
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||