化工学报 ›› 2023, Vol. 74 ›› Issue (S1): 329-337.DOI: 10.11949/0438-1157.20221620
收稿日期:
2022-11-15
修回日期:
2022-12-25
出版日期:
2023-06-05
发布日期:
2023-09-27
通讯作者:
王林
作者简介:
常明慧(1998—),女,硕士研究生,1980597284@qq.com
基金资助:
Minghui CHANG(), Lin WANG(
), Jiajia YUAN, Yifei CAO
Received:
2022-11-15
Revised:
2022-12-25
Online:
2023-06-05
Published:
2023-09-27
Contact:
Lin WANG
摘要:
为解决供热采暖期的电力峰谷问题,提出了盐溶液蓄能型热泵循环,由压缩热泵子系统与盐溶液储释能子系统构成复叠循环实现热能储存与品位提升,利用多层储液思想设计盐溶液储罐结构提升蓄能密度。在建立新循环热力学数学模型的基础上,研究关键运行参数对新循环的性能影响,并评估比较了新循环、传统空气源蓄能热泵和空气源热泵的经济性。研究结果表明:新循环综合制热性能系数低于传统空气源蓄能热泵及空气源热泵,但其蓄能密度和经济性均优于传统两种热泵循环。在300 kW供热量设计负荷下,新循环综合制热性能系数较传统空气源蓄能热泵降低4.76%,但新循环蓄能密度是传统空气源蓄能热泵的2.2倍,而新循环费用年值较传统空气源热泵及空气源蓄能热泵分别降低1.46%和29.00%。
中图分类号:
常明慧, 王林, 苑佳佳, 曹艺飞. 盐溶液蓄能型热泵循环特性研究[J]. 化工学报, 2023, 74(S1): 329-337.
Minghui CHANG, Lin WANG, Jiajia YUAN, Yifei CAO. Study on the cycle performance of salt solution-storage-based heat pump[J]. CIESC Journal, 2023, 74(S1): 329-337.
状态点 | 蓄能阶段参数 | 数值 | 状态点 | 释能阶段参数 | 数值 |
---|---|---|---|---|---|
1 | 蒸发温度/℃ | 22.3 | 4 | 蒸发温度/℃ | -15 |
1 | 蒸发压力/kPa | 612.8 | 4 | 蒸发压力/kPa | 164.1 |
5 | 蒸发冷凝器入口焓/(kJ/kg) | 145.7 | 4 | 风冷换热器入口焓/(kJ/kg) | 101.2 |
1 | 蒸发冷凝器出口焓/(kJ/kg) | 259.6 | 3 | 风冷换热器出口焓/(kJ/kg) | 238.3 |
3 | 冷凝温度/℃ | 65 | 1 | 冷凝温度/℃ | 36.7 |
3 | 冷凝压力/kPa | 1889.3 | 1 | 冷凝压力/kPa | 928.3 |
2 | 溶液解吸器入口焓/(kJ/kg) | 286.9 | 1 | 蒸发冷凝器入口焓/(kJ/kg) | 283.3 |
3 | 溶液解吸器出口焓/(kJ/kg) | 145.7 | 5 | 蒸发冷凝器出口焓/(kJ/kg) | 101.2 |
5 | 制冷剂质量流量/(kg/s) | 2.74 | 5 | 制冷剂质量流量/(kg/s) | 1.68 |
— | 蒸发冷凝器负荷/kW | 312.1 | — | 蒸发冷凝器负荷/kW | 305.1 |
— | 溶液解吸器负荷/kW | 387.1 | — | 风冷换热器负荷/kW | 229.8 |
— | 风冷换热器/kW | 47.0 | — | 压缩机功率/kW | 75.3 |
— | 压缩机功率/kW | 75.0 | 8′ | 蒸发温度/℃ | 31.7 |
10 | 浓溶液焓/(kJ/kg) | 135.1 | 8′ | 蒸发压力/kPa | 4.67 |
6 | 溶液热交换器稀溶液出口温度/℃ | 54 | 8′ | 水蒸气焓/(kJ/kg) | 2558.5 |
6 | 溶液热交换器稀溶液出口焓/(kJ/kg) | 112.8 | 9 | 溶液热交换器浓溶液出口温度/℃ | 33 |
6′ | 水蒸气压力/kPa | 3.62 | 9 | 溶液热交换器浓溶液出口焓/(kJ/kg) | 108.5 |
6′ | 过热水蒸气焓/(kJ/kg) | 2613.9 | 6 | 稀溶液焓值/(kJ/kg) | 137.0 |
8 | 组分水焓/(kJ/kg) | 114.3 | 6 | 稀溶液质量流量/(kg/s) | 1.37 |
— | 溶液发生热/kW | 341.1 | 6 | 溶液热交换器换热量/kW | 33.2 |
— | 组分水质量流量/(kg/s) | 0.125 | — | 盐溶液储罐容积/(m3/h) | 3.27 |
— | 组分水储罐容积/(m3/h) | 0.45 | — | 溶液冷却器负荷/kW | 300 |
— | 泵功率/kW | 0.42 | — | 泵功率/kW | 0.39 |
— | CCOP | 2.0 | — | ESD/(kWh/m3) | 80.65 |
表1 标准设计工况下循环状态参数
Table 1 State parameters under standard design conditions
状态点 | 蓄能阶段参数 | 数值 | 状态点 | 释能阶段参数 | 数值 |
---|---|---|---|---|---|
1 | 蒸发温度/℃ | 22.3 | 4 | 蒸发温度/℃ | -15 |
1 | 蒸发压力/kPa | 612.8 | 4 | 蒸发压力/kPa | 164.1 |
5 | 蒸发冷凝器入口焓/(kJ/kg) | 145.7 | 4 | 风冷换热器入口焓/(kJ/kg) | 101.2 |
1 | 蒸发冷凝器出口焓/(kJ/kg) | 259.6 | 3 | 风冷换热器出口焓/(kJ/kg) | 238.3 |
3 | 冷凝温度/℃ | 65 | 1 | 冷凝温度/℃ | 36.7 |
3 | 冷凝压力/kPa | 1889.3 | 1 | 冷凝压力/kPa | 928.3 |
2 | 溶液解吸器入口焓/(kJ/kg) | 286.9 | 1 | 蒸发冷凝器入口焓/(kJ/kg) | 283.3 |
3 | 溶液解吸器出口焓/(kJ/kg) | 145.7 | 5 | 蒸发冷凝器出口焓/(kJ/kg) | 101.2 |
5 | 制冷剂质量流量/(kg/s) | 2.74 | 5 | 制冷剂质量流量/(kg/s) | 1.68 |
— | 蒸发冷凝器负荷/kW | 312.1 | — | 蒸发冷凝器负荷/kW | 305.1 |
— | 溶液解吸器负荷/kW | 387.1 | — | 风冷换热器负荷/kW | 229.8 |
— | 风冷换热器/kW | 47.0 | — | 压缩机功率/kW | 75.3 |
— | 压缩机功率/kW | 75.0 | 8′ | 蒸发温度/℃ | 31.7 |
10 | 浓溶液焓/(kJ/kg) | 135.1 | 8′ | 蒸发压力/kPa | 4.67 |
6 | 溶液热交换器稀溶液出口温度/℃ | 54 | 8′ | 水蒸气焓/(kJ/kg) | 2558.5 |
6 | 溶液热交换器稀溶液出口焓/(kJ/kg) | 112.8 | 9 | 溶液热交换器浓溶液出口温度/℃ | 33 |
6′ | 水蒸气压力/kPa | 3.62 | 9 | 溶液热交换器浓溶液出口焓/(kJ/kg) | 108.5 |
6′ | 过热水蒸气焓/(kJ/kg) | 2613.9 | 6 | 稀溶液焓值/(kJ/kg) | 137.0 |
8 | 组分水焓/(kJ/kg) | 114.3 | 6 | 稀溶液质量流量/(kg/s) | 1.37 |
— | 溶液发生热/kW | 341.1 | 6 | 溶液热交换器换热量/kW | 33.2 |
— | 组分水质量流量/(kg/s) | 0.125 | — | 盐溶液储罐容积/(m3/h) | 3.27 |
— | 组分水储罐容积/(m3/h) | 0.45 | — | 溶液冷却器负荷/kW | 300 |
— | 泵功率/kW | 0.42 | — | 泵功率/kW | 0.39 |
— | CCOP | 2.0 | — | ESD/(kWh/m3) | 80.65 |
图2 蓄能阶段压缩热泵子系统冷凝温度对CCOP及压缩机功率的影响
Fig.2 Effects of condensation temperature of compression heat pump subsystem in storage stage on CCOP and compressor power
图4 释能阶段压缩热泵子系统蒸发温度对CCOP及压缩机功率的影响
Fig.4 Effects of evaporation temperature of compression heat pump subsystem in discharge stage on CCOP and compressor power
系统 | 容量 | 台数 | 初投资 费用/万元 | 运行 费用/(万元/a) | ||
---|---|---|---|---|---|---|
传统ASHP | 壳管冷凝器 | 300 | 1 | 4.8 | 128.7(总费用) | 2.880 |
翅片蒸发器 | 170 | 1 | 2.9 | |||
压缩机 | 130 | 1 | 118 | |||
热水泵 | 26 | 2 | 0.6 | |||
电子膨胀阀 | — | 1 | 0.6 | |||
储液罐 | — | 1 | 0.6 | |||
电子自动控制器 | — | 1 | 1.2 | |||
传统AEHP | 壳管冷凝器 | 300 | 1 | 4.8 | 198.5(总费用) | 1.383 |
翅片蒸发器 | 158 | 1 | 2.7 | |||
压缩机 | 142 | 1 | 123 | |||
热水泵 | 26 | 2 | 0.6 | |||
蓄能罐 | 81 | 2 | 1.5 | |||
RT65 | 63.5 | 1 | 63.5 | |||
储液罐 | — | 1 | 0.6 | |||
电子自动控制器 | — | 1 | 1.2 | |||
电子膨胀阀 | — | 1 | 0.6 | |||
SEHP循环 | 溶液解吸器 | 387 | 1 | 5 | 126.5(总费用) | 2.875 |
蒸发冷凝器 | 312 | 1 | 2.5 | |||
风冷换热器 | 230 | 1 | 1.6 | |||
压缩机 | 75 | 1 | 41 | |||
溶液冷却器 | 300 | 1 | 1.4 | |||
溶液热交换器 | 33 | 1 | 0.5 | |||
组分水泵 | 0.5 | 1 | 0.1 | |||
盐溶液泵 | 3.3 | 2 | 0.2 | |||
热水泵 | 26 | 2 | 0.4 | |||
盐溶液储罐 | 33 | 1 | 0.4 | |||
组分水储罐 | 4.5 | 1 | 0.1 | |||
溴化锂溶液 | 49.3 | 1 | 73 | |||
节流阀 | — | 1 | 0.3 |
表2 三种系统初投资及运行费用比较
Table 2 Comparison of initial investment and operating costs of three systems
系统 | 容量 | 台数 | 初投资 费用/万元 | 运行 费用/(万元/a) | ||
---|---|---|---|---|---|---|
传统ASHP | 壳管冷凝器 | 300 | 1 | 4.8 | 128.7(总费用) | 2.880 |
翅片蒸发器 | 170 | 1 | 2.9 | |||
压缩机 | 130 | 1 | 118 | |||
热水泵 | 26 | 2 | 0.6 | |||
电子膨胀阀 | — | 1 | 0.6 | |||
储液罐 | — | 1 | 0.6 | |||
电子自动控制器 | — | 1 | 1.2 | |||
传统AEHP | 壳管冷凝器 | 300 | 1 | 4.8 | 198.5(总费用) | 1.383 |
翅片蒸发器 | 158 | 1 | 2.7 | |||
压缩机 | 142 | 1 | 123 | |||
热水泵 | 26 | 2 | 0.6 | |||
蓄能罐 | 81 | 2 | 1.5 | |||
RT65 | 63.5 | 1 | 63.5 | |||
储液罐 | — | 1 | 0.6 | |||
电子自动控制器 | — | 1 | 1.2 | |||
电子膨胀阀 | — | 1 | 0.6 | |||
SEHP循环 | 溶液解吸器 | 387 | 1 | 5 | 126.5(总费用) | 2.875 |
蒸发冷凝器 | 312 | 1 | 2.5 | |||
风冷换热器 | 230 | 1 | 1.6 | |||
压缩机 | 75 | 1 | 41 | |||
溶液冷却器 | 300 | 1 | 1.4 | |||
溶液热交换器 | 33 | 1 | 0.5 | |||
组分水泵 | 0.5 | 1 | 0.1 | |||
盐溶液泵 | 3.3 | 2 | 0.2 | |||
热水泵 | 26 | 2 | 0.4 | |||
盐溶液储罐 | 33 | 1 | 0.4 | |||
组分水储罐 | 4.5 | 1 | 0.1 | |||
溴化锂溶液 | 49.3 | 1 | 73 | |||
节流阀 | — | 1 | 0.3 |
系统 | 初投资/万元 | 运行费用/万元 | 费用年值 (0~15年)/万元 |
---|---|---|---|
传统ASHP | 128.7 | 2.880 | 19.80 |
传统AEHP | 198.5 | 1.383 | 27.48 |
SEHP循环 | 126.5 | 2.875 | 19.51 |
表3 三种系统费用年值
Table 3 Comparison of annual costs of three systems
系统 | 初投资/万元 | 运行费用/万元 | 费用年值 (0~15年)/万元 |
---|---|---|---|
传统ASHP | 128.7 | 2.880 | 19.80 |
传统AEHP | 198.5 | 1.383 | 27.48 |
SEHP循环 | 126.5 | 2.875 | 19.51 |
1 | Mahmoud M, Ramadan M, Naher S, et al. The impacts of different heating systems on the environment: a review[J]. Science of the Total Environment, 2021, 766: 142625. |
2 | Hasnain S M. Review on sustainable thermal energy storage technologies(Part Ⅱ): Cool thermal storage[J]. Energy Conversion and Management, 1998, 39(11): 1139-1153. |
3 | 章学来. 空调蓄冷蓄热技术[M]. 大连: 大连海事大学出版社, 2006: 3. |
Zhang X L. Air Conditioning Cold and Heat Storage Technology[M]. Dalian: Dalian Maritime University Press, 2006: 3. | |
4 | Qu S L, Ma F, Ji R, et al. System design and energy performance of a solar heat pump heating system with dual-tank latent heat storage[J]. Energy and Buildings, 2015, 105: 294-301. |
5 | Dincer I, Dost S, Li X G. Performance analyses of sensible heat storage systems for thermal applications[J]. International Journal of Energy Research, 1997, 21(12): 1157-1171. |
6 | 辛岳芝, 宋尚平, 曲志光. 空气源热泵加冷水机组耦合水蓄能系统在某工程中的应用[J]. 暖通空调, 2022, 52(1): 24-29. |
Xin Y Z, Song S P, Qu Z G. Application of air-source heat pump and water chiller coupled with water energy storage system to a project[J]. Heating Ventilating & Air Conditioning, 2022, 52(1): 24-29. | |
7 | 齐月松, 岳玉亮, 刘天一, 等. 地源热泵结合水蓄能系统应用分析[J]. 暖通空调, 2010, 40(5): 94-97. |
Qi Y S, Yue Y L, Liu T Y, et al. Application analysis of combined ground-source heat pump and water energy storage systems[J]. Heating Ventilating & Air Conditioning, 2010, 40(5): 94-97. | |
8 | 龚欣欣. 污水源热泵+水蓄能系统运行技术经济性分析[D]. 邯郸: 河北工程大学, 2015. |
Gong X X. The running technical and economic analysis of sewage-source heat pump+water storage system[D]. Handan: Hebei University of Engineering, 2015. | |
9 | Gil A, Medrano M, Martorell I, et al. State of the art on high temperature thermal energy storage for power generation (Part 1): Concepts, materials and modellization[J]. Renewable and Sustainable Energy Reviews, 2010, 14(1): 31-55. |
10 | 章学来, 王为, 李志伟, 等. 一种相变蓄热材料及其蓄热热回收的实验研究[J]. 制冷技术, 2012, 32(2): 15-18. |
Zhang X L, Wang W, Li Z W, et al. Experimental study of a phase change material and combined thermal energy storage with heat recovery[J]. Chinese Journal of Refrigeration Technology, 2012, 32(2): 15-18. | |
11 | 关靖馨. 太阳能融冰蓄热供热热泵系统研究[D]. 秦皇岛: 燕山大学, 2019. |
Guan J X. Research on solar deicing heat storage & heat supply heat pump system[D]. Qinhuangdao: Yanshan University, 2019. | |
12 | 武潇, 吴荣华, 吴昊. 冷水相变能热泵系统性能实验分析[J]. 青岛大学学报(工程技术版), 2019, 34(1): 105-110. |
Wu X, Wu R H, Wu H. Experimental study of cold water phase change energy heat pump system[J]. Journal of Qingdao University (Engineering & Technology Edition), 2019, 34(1): 105-110. | |
13 | 刘志斌, 吴荣华, 于灏. 水相变能热泵供热系统运行测试[J]. 暖通空调, 2019, 49(1): 96-100. |
Liu Z B, Wu R H, Yu H. Operation test for heat pump heating system using latent heat of water transformation[J]. Heating Ventilating & Air Conditioning, 2019, 49(1): 96-100. | |
14 | 胡文举, 胡鹏程, 邵正日, 等. 低温蓄能型太阳能辅助空气源热泵系统供热与蓄热特性研究[J]. 可再生能源, 2021, 39(11): 1455-1462. |
Hu W J, Hu P C, Shao Z R, et al. Experimental study on characteristics and performance of solarassisted air source heat pump based on low temperature thermal energy storage[J]. Renewable Energy Resources, 2021, 39(11): 1455-1462. | |
15 | Diallo T M O, Yu M, Zhou J Z, et al. Energy performance analysis of a novel solar PVT loop heat pipe employing a microchannel heat pipe evaporator and a PCM triple heat exchanger[J]. Energy, 2019, 167: 866-888. |
16 | Plytaria M T, Tzivanidis C, Bellos E, et al. Energetic investigation of solar assisted heat pump underfloor heating systems with and without phase change materials[J]. Energy Conversion and Management, 2018, 173: 626-639. |
17 | 邵索拉, 张欢, 由世俊, 等. 带有蓄热型直接冷凝式加热板的空气源热泵系统性能研究[J]. 化工学报, 2020, 71(8): 3480-3489. |
Shao S L, Zhang H, You S J, et al. Performance investigation of air-source heat pump heating system with novel thermal storage refrigerant-heated panel[J]. CIESC Journal, 2020, 71(8): 3480-3489. | |
18 | 范文英, 蒋绿林, 蔡宝瑞, 等. 空气源相变储能复合热泵系统的运行分析[J]. 可再生能源, 2021, 39(9): 1175-1182. |
Fan W Y, Jiang L L, Cai B R, et al. Operation analysis of air source phase change energy storage compound heat pump system[J]. Renewable Energy Resources, 2021, 39(9): 1175-1182. | |
19 | 郭枭, 邱云峰, 史志国, 等. 储热型太阳能供暖系统热输送全过程特性研究[J]. 化工学报, 2021, 72(10): 5384-5395. |
Guo X, Qiu Y F, Shi Z G, et al. Study on whole process characteristic of heat transfer in solar heating system with heat storage[J]. CIESC Journal, 2021, 72(10): 5384-5395. | |
20 | 韩宗伟, 郑茂余, 刘威, 等. 严寒地区太阳能-土壤源热泵相变蓄热供暖系统[J]. 太阳能学报, 2006, 27(12): 1214-1218. |
Han Z W, Zheng M Y, Liu W, et al. Experimental research on solar assisted ground source heat pump heating system with a latent heat storage tank in severe cold area[J]. Acta Energiae Solaris Sinica, 2006, 27(12): 1214-1218. | |
21 | Yan T, Wang R Z, Li T X, et al. A review of promising candidate reactions for chemical heat storage[J]. Renewable and Sustainable Energy Reviews, 2015, 43: 13-31. |
22 | 韩冰川. 基于溶液储能的远距离输运供能能量系统及其应用研究[D]. 合肥: 中国科学技术大学, 2019. |
Han B C. Study on long distance transportation energy supply system and its application based on solution storage[D]. Hefei: University of Science and Technology of China, 2019. | |
23 | Han B C, Cheng W L, Li Y Y, et al. Thermodynamic analysis of heat driven combined cooling heating and power system (CCHP) with energy storage for long distance transmission[J]. Energy Conversion and Management, 2017, 154: 102-117. |
24 | Gao J T, Xu Z Y, Wang R Z. Experimental study on a double-stage absorption solar thermal storage system with enhanced energy storage density[J]. Applied Energy, 2020, 262: 114476. |
25 | N'Tsoukpoe K E. Thermodynamic study of a LiBr-H2O absorption process for solar heat storage with crystallisation of the solution[J]. Solar Energy, 2014, 104: 2-15. |
26 | Yan G, Hu H, Yu J. Performance evaluation on an internal auto-cascade refrigeration cycle with mixture refrigerant R290/R600a[J]. Applied Thermal Engineering, 2015, 75: 994-1000. |
27 | Colorado D, Rivera W. Performance comparison between a conventional vapor compression and compression-absorption single-stage and double-stage systems used for refrigeration[J]. Applied Thermal Engineering, 2015, 87: 273-285. |
28 | Cimsit C, Ozturk I T. Analysis of compression-absorption cascade refrigeration cycles[J]. Applied Thermal Engineering, 2012, 40: 311-317. |
29 | Chu P, Wang H, Chen J, et al. Experiment investigation on a LiBr-H2O concentration difference cold storage system driven by vapor compression heat pump[J]. Solar Energy, 2021, 214: 294-309. |
30 | He H, Wang L, Yuan J, et al. Performance evaluation of solar absorption-compression cascade refrigeration system with an integrated air-cooled compression cycle[J]. Energy Conversion and Management, 2019, 201: 112153. |
[1] | 陈巨辉, 苏潼, 李丹, 陈立伟, 吕文生, 孟凡奇. 翅形扰流片作用下的微通道换热特性[J]. 化工学报, 2024, 75(9): 3122-3132. |
[2] | 卢昕悦, 陈锐莹, 姜夏雪, 梁海瑞, 高歌, 叶正芳. 耦合LNG冷能的液态空气储能系统和液态CO2储能系统对比分析[J]. 化工学报, 2024, 75(9): 3297-3309. |
[3] | 杨艳, 郭亚丽, 于硕文, 潘泊年, 沈胜强. 液氨喷射泵热力性能的计算分析[J]. 化工学报, 2024, 75(6): 2134-2142. |
[4] | 李子扬, 郑楠, 方嘉宾, 魏进家. 再压缩S-CO2布雷顿循环性能分析及多目标优化[J]. 化工学报, 2024, 75(6): 2143-2156. |
[5] | 晁惠雨, 白振敏, 侯汉青, 田立志, 李洪, 房晓权, 石晓华. 液相法合成三聚氰酸体系热力学分析[J]. 化工学报, 2024, 75(6): 2157-2165. |
[6] | 李新泽, 张双星, 杨洪海, 杜文静. 基于电池冷却用新型脉动热管性能的实验研究[J]. 化工学报, 2024, 75(6): 2222-2232. |
[7] | 刘东飞, 张帆, 刘铮, 卢滇楠. 机器学习势及其在分子模拟中的应用综述[J]. 化工学报, 2024, 75(4): 1241-1255. |
[8] | 张政, 汪妩琼, 张雅静, 王康军, 吉远辉. 理论计算在药物制剂设计中的研究进展[J]. 化工学报, 2024, 75(4): 1429-1438. |
[9] | 陈好奇, 史博会, 彭琪, 康琦, 宋尚飞, 姚海元, 陈海宏, 吴海浩, 宫敬. 基于稳定性分析的含酸/醇烃水体系相平衡计算[J]. 化工学报, 2024, 75(3): 789-800. |
[10] | 周辛梓, 李增辉, 孟现阳, 吴江涛. 低温下高纯空气黏度实验研究[J]. 化工学报, 2024, 75(3): 782-788. |
[11] | 王迪, 崔颖晗, 孙灵芳, 周云龙. 超临界二氧化碳混合工质储能系统热力学分析[J]. 化工学报, 2024, 75(10): 3414-3423. |
[12] | 向腾龙, 王治红, 汪贵, 李龙. 液化天然气冷能梯级利用的多功能集成系统研究[J]. 化工学报, 2024, 75(10): 3401-3413. |
[13] | 赵国栋, 熊卓, 赵永椿, 张军营. 焚烧飞灰中六价铬化合物碳热还原脱毒[J]. 化工学报, 2024, 75(10): 3730-3741. |
[14] | 邹启宏, 李乾, 葛天舒. 基于多目标下的两级并联除湿热泵系统实验研究[J]. 化工学报, 2023, 74(S1): 265-271. |
[15] | 杨天阳, 邹慧明, 周晖, 王春磊, 田长青. -30℃电动汽车补气式CO2热泵制热性能实验研究[J]. 化工学报, 2023, 74(S1): 272-279. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 302
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 131
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||