化工学报 ›› 2024, Vol. 75 ›› Issue (3): 914-923.DOI: 10.11949/0438-1157.20231370
陈宇翔1(), 刘传磊1, 龚子君2, 赵起越1, 郭冠初1, 姜豪1, 孙辉1,3,4(
), 沈本贤1
收稿日期:
2023-12-25
修回日期:
2024-02-06
出版日期:
2024-03-25
发布日期:
2024-05-11
通讯作者:
孙辉
作者简介:
陈宇翔(1996—),男,博士研究生,chenyuxiang0425@gmail.com
基金资助:
Yuxiang CHEN1(), Chuanlei LIU1, Zijun GONG2, Qiyue ZHAO1, Guanchu GUO1, Hao JIANG1, Hui SUN1,3,4(
), Benxian SHEN1
Received:
2023-12-25
Revised:
2024-02-06
Online:
2024-03-25
Published:
2024-05-11
Contact:
Hui SUN
摘要:
针对传统胺洗脱硫工艺中有机硫脱除效率低,溶剂开发周期长、成本高等问题,利用7种机器学习算法建立了乙硫醇溶解度的定量构效关系模型,运用SHAP方法阐释了乙硫醇的吸收机理,对备选分子库进行了虚拟筛选,识别出高效吸收脱除乙硫醇的溶剂。基于COSMO-RS模型计算了14732种溶剂的乙硫醇溶解度,这些分子覆盖了广泛的化学空间;XGBoost算法在预测乙硫醇溶解度方面表现最佳,该算法的
中图分类号:
陈宇翔, 刘传磊, 龚子君, 赵起越, 郭冠初, 姜豪, 孙辉, 沈本贤. 机器学习辅助乙硫醇高效吸收溶剂分子设计[J]. 化工学报, 2024, 75(3): 914-923.
Yuxiang CHEN, Chuanlei LIU, Zijun GONG, Qiyue ZHAO, Guanchu GUO, Hao JIANG, Hui SUN, Benxian SHEN. Machine learning-assisted solvent molecule design for efficient absorption of ethanethiol[J]. CIESC Journal, 2024, 75(3): 914-923.
原料 | 含量 | 生产厂家 |
---|---|---|
3-乙氧基丙胺 | 99.0% | 北京华威锐科化工有限公司 |
3-丁氧基丙胺 | 98.0% | 上海恩拿马生物科技有限公司 |
3-二乙胺基丙胺 | 99.0% | 上海迈瑞尔生化科技有限公司 |
1,4-二甲基哌嗪 | 98.0% | 上海迈瑞尔生化科技有限公司 |
环丁砜 | 99.7% | 上海新铂化学技术有限公司 |
混合气 | 上海伟创标准气体有限公司 | |
乙硫醇 | 5578.2 mg/m3(标准工况) | |
氮气 | 余量 |
表1 平衡溶解度测定实验所用原料
Table 1 Raw materials used for equilibrium solubility determination experiment
原料 | 含量 | 生产厂家 |
---|---|---|
3-乙氧基丙胺 | 99.0% | 北京华威锐科化工有限公司 |
3-丁氧基丙胺 | 98.0% | 上海恩拿马生物科技有限公司 |
3-二乙胺基丙胺 | 99.0% | 上海迈瑞尔生化科技有限公司 |
1,4-二甲基哌嗪 | 98.0% | 上海迈瑞尔生化科技有限公司 |
环丁砜 | 99.7% | 上海新铂化学技术有限公司 |
混合气 | 上海伟创标准气体有限公司 | |
乙硫醇 | 5578.2 mg/m3(标准工况) | |
氮气 | 余量 |
图2 初始训练集中分子量、辛醇-水分配系数、乙硫醇摩尔溶解度的分布情况和初始训练集的二维化学空间
Fig.2 Distribution of molecular weight, octanol-water partition coefficient, and molar solubility of ethanethiol in the initial training set, and the two-dimensional chemical space of the initial training set
算法 | 超参数 | 搜索空间 | 优化后的参数 |
---|---|---|---|
MLR | default | — | default |
RR | alpha | logspace(-5,3,20) | 0.16 |
LR | alpha | logspace(-5,3,20) | 0.12 |
KNN | n_neighbors | [ | 8 |
DT | max_depth | [ | 100 |
RF | max_depth | [ | 100 |
max_features | [sqrt, log2, none] | sqrt | |
n_estimators | [ | 10000 | |
XGBoost | learning_rate | [0.001,0.01,0.1,1,10] | 0.01 |
max_depth | [ | 100 | |
n_estimators | [ | 10000 |
表 2 不同算法的超参数
Table 2 Hyperparameter of different algorithms
算法 | 超参数 | 搜索空间 | 优化后的参数 |
---|---|---|---|
MLR | default | — | default |
RR | alpha | logspace(-5,3,20) | 0.16 |
LR | alpha | logspace(-5,3,20) | 0.12 |
KNN | n_neighbors | [ | 8 |
DT | max_depth | [ | 100 |
RF | max_depth | [ | 100 |
max_features | [sqrt, log2, none] | sqrt | |
n_estimators | [ | 10000 | |
XGBoost | learning_rate | [0.001,0.01,0.1,1,10] | 0.01 |
max_depth | [ | 100 | |
n_estimators | [ | 10000 |
算法 | RMSE | MAE | ||
---|---|---|---|---|
MLR | 0.66 | 0.65 | 1.23 | 0.87 |
RR | 0.66 | 0.65 | 1.24 | 0.87 |
LR | 0.64 | 0.63 | 1.27 | 0.90 |
KNN | 0.57 | 0.36 | 1.67 | 1.25 |
DT | 0.75 | 0.48 | 1.50 | 1.04 |
RF | 0.95 | 0.65 | 1.23 | 0.86 |
XGBoost | 0.98 | 0.66 | 1.22 | 0.84 |
表3 不同算法得到的乙硫醇溶解度预测模型的指标
Table 3 Metrics of ethanethiol solubility prediction model using different algorithms
算法 | RMSE | MAE | ||
---|---|---|---|---|
MLR | 0.66 | 0.65 | 1.23 | 0.87 |
RR | 0.66 | 0.65 | 1.24 | 0.87 |
LR | 0.64 | 0.63 | 1.27 | 0.90 |
KNN | 0.57 | 0.36 | 1.67 | 1.25 |
DT | 0.75 | 0.48 | 1.50 | 1.04 |
RF | 0.95 | 0.65 | 1.23 | 0.86 |
XGBoost | 0.98 | 0.66 | 1.22 | 0.84 |
分子结构 | 分子名称 | CAS号 | 沸点/℃ | 熔点/℃ | 水溶性 |
---|---|---|---|---|---|
![]() | 3-乙氧基丙胺 | 6291-85-6 | 136~138 | -24 | 可溶 |
![]() | 3-二乙胺基丙胺 | 104-78-9 | 168~171 | -60 | 可溶 |
![]() | 1,4-二甲基哌嗪 | 106-58-1 | 131~132 | -1 | 可溶 |
![]() | 3-丁氧基丙胺 | 16499-88-0 | 169~170 | -65 | 可溶 |
表4 选出的4个分子的性质
Table 4 Properties of the four selected molecules
分子结构 | 分子名称 | CAS号 | 沸点/℃ | 熔点/℃ | 水溶性 |
---|---|---|---|---|---|
![]() | 3-乙氧基丙胺 | 6291-85-6 | 136~138 | -24 | 可溶 |
![]() | 3-二乙胺基丙胺 | 104-78-9 | 168~171 | -60 | 可溶 |
![]() | 1,4-二甲基哌嗪 | 106-58-1 | 131~132 | -1 | 可溶 |
![]() | 3-丁氧基丙胺 | 16499-88-0 | 169~170 | -65 | 可溶 |
图6 实验测定40℃下乙硫醇在3-乙氧基丙胺、3-二乙胺基丙胺、1,4-二甲基哌嗪、3-丁氧基丙胺和环丁砜中溶解的亨利常数
Fig. 6 The experimental Henry’s constants of ethanethiol in 3-ethoxypropylamine, 3-diethylaminopropylamine, 1,4-dimethylpiperazine, 3-butoxypropylamine and sulfolane at 40℃
1 | 中国石油国家高端智库研究中心. 中国天然气发展报告(2023) [M]. 北京: 石油工业出版社, 2023. |
PetroChina National Research Center for High-End Think Tank. China Natural Gas Development Report (2023) [M]. Beijing: Petroleum Industry Press, 2023. | |
2 | de Angelis A. Natural gas removal of hydrogen sulphide and mercaptans[J]. Applied Catalysis B: Environmental, 2012, 113/114: 37-42. |
3 | Iliuta M C, Larachi F. Solubility of total reduced sulfurs (hydrogen sulfide, methyl mercaptan, dimethyl sulfide, and dimethyl disulfide) in liquids[J]. Journal of Chemical & Engineering Data, 2007, 52(1): 2-19. |
4 | Petit C, Mendoza B, Bandosz T J. Hydrogen sulfide adsorption on MOFs and MOF/graphite oxide composites[J]. Chemphyschem: a European Journal of Chemical Physics and Physical Chemistry, 2010, 11(17): 3678-3684. |
5 | Nemestóthy N, Bakonyi P, Lajtai-Szabó P, et al. The impact of various natural gas contaminant exposures on CO2/CH4 separation by a polyimide membrane[J]. Membranes, 2020, 10(11): 324. |
6 | Gągol M, Soltani R D C, Przyjazny A, et al. Effective degradation of sulfide ions and organic sulfides in cavitation-based advanced oxidation processes (AOPs)[J]. Ultrasonics Sonochemistry, 2019, 58: 104610. |
7 | Aghel B, Janati S, Wongwises S, et al. Review on CO2 capture by blended amine solutions[J]. International Journal of Greenhouse Gas Control, 2022, 119: 103715. |
8 | 陈颖, 杨鹤, 梁宏宝, 等. 天然气脱硫脱碳方法的研究进展[J]. 石油化工, 2011, 40: 565-570. |
Chen Y, Yang H, Liang H B, et al. Advances in research of decarbonization and desulfurization for natural gas[J]. Petrochemical Technology, 2011, 40: 565-570. | |
9 | Al-Baghli N A, Pruess S A, Yesavage V F, et al. A rate-based model for the design of gas absorbers for the removal of CO2 and H2S using aqueous solutions of MEA and DEA[J]. Fluid Phase Equilibria, 2001, 185(1/2): 31-43. |
10 | 王开岳. 天然气脱硫脱碳工艺发展进程的回顾: 甲基二乙醇胺现居一支独秀地位[J]. 天然气与石油, 2011, 29(1): 15-21. |
Wang K Y. Review on development process of gas desulfurization and decarburization technique—methyldiethanolamine (MDEA for short) outshines others[J]. Natural Gas and Oil, 2011, 29(1): 15-21. | |
11 | 王开岳. 天然气净化工艺: 脱硫脱碳、脱水、硫黄回收及尾气处理[M]. 2版. 北京: 石油工业出版社, 2015. |
Wang K Y. Natural Gas Purification Process: Desulfurization and Decarbonization, Dehydration, Sulfur Recovery and Tail Gas Treatment[M]. 2nd ed. Beijing: Petroleum Industry Press, 2015. | |
12 | Hochgesand G. Rectisol and purisol[J]. Industrial & Engineering Chemistry, 1970, 62(7): 37-43. |
13 | Murrieta-Guevara F, Rebolledo-Libreros E, Trejo A. Gas solubility of hydrogen sulfide and carbon dioxide in mixtures of sulfolane with diethanolamine at different temperatures[J]. Fluid Phase Equilibria, 1994, 95: 163-174. |
14 | Bucklin R W, Schendel R. Comparison of fluor solvent and selexol processes[J]. Energy Progress, 1984, 4: 137-142. |
15 | Luo Q L, Feng B, Liu Z H, et al. Experimental study on simultaneous absorption and desorption of CO2, SO2, and NO x using aqueous N-methyldiethanolamine and dimethyl sulfoxide solutions[J]. Energy & Fuels, 2018, 32(3): 3647-3659. |
16 | Orlov A A, Marcou G, Horvath D, et al. Computer-aided design of new physical solvents for hydrogen sulfide absorption[J]. Industrial & Engineering Chemistry Research, 2021, 60(23): 8588-8596. |
17 | Shokouhi M, Farahani H, Vahidi M, et al. Experimental solubility of carbonyl sulfide in sulfolane and γ-butyrolactone[J]. Journal of Chemical & Engineering Data, 2017, 62(10): 3401-3408. |
18 | Abduesslam M, Kayi H K. Capture of carbonyl sulfide by organic liquid mixtures: a systematic DFT investigation[J]. Industrial & Engineering Chemistry Research, 2021, 60(3): 1366-1374. |
19 | Rivera-Tinoco R, Bouallou C. Reaction kinetics of carbonyl sulfide (COS) with diethanolamine in methanolic solutions[J]. Industrial & Engineering Chemistry Research, 2008, 47(19): 7375-7380. |
20 | Fisher R A. Design of experiments[J]. BMJ, 1936, 1(3923): 554. |
21 | 于惠波, 沈本贤, 孙辉, 等. 改性UDS溶剂提高天然气中甲硫醇脱除效率的研究[J]. 石油炼制与化工, 2017, 48: 28-33. |
Yu H B, Shen B X, Sun H, et al. Study of improving MeSH removal efficiency by modified UDS solvent from natural gas[J]. Petroleum Processing and Petrochemicals, 2017, 48: 28-33. | |
22 | 段思慧. 脱硫醇吸收剂的量化计算及溶解机理研究[D]. 北京: 北京化工大学, 2020. |
Duan S H. Study on quantitative calculation and dissolution mechanism of desulfurized alcohol absorbent[D]. Beijing: Beijing University of Chemical Technology, 2020. | |
23 | Francoeur P G, Koes D R. SolTranNet—a machine learning tool for fast aqueous solubility prediction[J]. Journal of Chemical Information and Modeling, 2021, 61(6): 2530-2536. |
24 | Chen Y X, Liu C L, Guo G C, et al. Machine-learning-guided reaction kinetics prediction towards solvent identification for chemical absorption of carbonyl sulfide[J]. Chemical Engineering Journal, 2022, 444: 136662. |
25 | Boobier S, Liu Y F, Sharma K, et al. Predicting solvent-dependent nucleophilicity parameter with a causal structure property relationship[J]. Journal of Chemical Information and Modeling, 2021, 61(10): 4890-4899. |
26 | Maskeri M A, Fernandes A J, Di Mauro G, et al. Taming keteniminium reactivity by steering reaction pathways: computational predictions and experimental validations[J]. Journal of the American Chemical Society, 2022, 144(51): 23358-23367. |
27 | LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521: 436-444. |
28 | 王彦旭. 基于机器学习的低共熔溶剂的物性预测及其在CO2吸收中的应用研究[D]. 杭州: 浙江大学, 2023. |
Wang Y X. Physical property prediction of deep eutectic solvents based on machine learning and its application in CO2 absorption[D]. Hangzhou: Zhejiang University, 2023. | |
29 | Blum L C, Reymond J L. 970 million druglike small molecules for virtual screening in the chemical universe database GDB-13[J]. Journal of the American Chemical Society, 2009, 131(25): 8732-8733. |
30 | Tropsha A. Best practices for QSAR model development, validation, and exploitation[J]. Molecular Informatics, 2010, 29(6/7): 476-488. |
31 | Boobier S, Hose D R J, Blacker A J, et al. Machine learning with physicochemical relationships: solubility prediction in organic solvents and water[J]. Nature Communications, 2020, 11: 5753. |
32 | Sorkun M C, Khetan A, Er S. AqSolDB, a curated reference set of aqueous solubility and 2D descriptors for a diverse set of compounds[J]. Scientific Data, 2019, 6: 143. |
33 | Moriwaki H, Tian Y S, Kawashita N, et al. Mordred: a molecular descriptor calculator[J]. Journal of Cheminformatics, 2018, 10(1): 4. |
34 | Liu C L, Chen Y X, Jiang H, et al. Revealing the structure-interaction-dissolubility relationships through computational investigation coupled with solubility measurement: toward solvent design for organosulfide capture[J]. Industrial & Engineering Chemistry Research, 2022, 61(20): 7183-7192. |
35 | Tomasulo P. ChemIDplus—super source for chemical and drug information[J]. Medical Reference Services Quarterly, 2002, 21(1): 53-59. |
36 | Wang J M, Krudy G, Hou T J, et al. Development of reliable aqueous solubility models and their application in druglike analysis[J]. Journal of Chemical Information and Modeling, 2007, 47(4): 1395-1404. |
37 | Sayers E W, Bolton E E, Brister J R, et al. Database resources of the national center for biotechnology information[J]. Nucleic Acids Research, 2022, 50(D1): D20-D26. |
[1] | 曾玉娇, 肖炘, 杨刚, 张意博, 郑光明, 李防, 汪凤玲. 基于机理与数据混合驱动的湿法磷酸生产过程代理建模与优化[J]. 化工学报, 2024, 75(3): 936-944. |
[2] | 李文俊, 赵中阳, 倪震, 周灿, 郑成航, 高翔. 基于气-液传质强化的湿法烟气脱硫CFD模拟研究[J]. 化工学报, 2024, 75(2): 505-519. |
[3] | 黄琮琪, 吴一梅, 陈建业, 邵双全. 碱性电解水制氢装置热管理系统仿真研究[J]. 化工学报, 2023, 74(S1): 320-328. |
[4] | 胡超, 董玉明, 张伟, 张红玲, 周鹏, 徐红彬. 浓硫酸活化五氧化二钒制备高浓度全钒液流电池正极电解液[J]. 化工学报, 2023, 74(S1): 338-345. |
[5] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及![]() |
[6] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
[7] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[8] | 胡兴枝, 张皓焱, 庄境坤, 范雨晴, 张开银, 向军. 嵌有超小CeO2纳米粒子的碳纳米纤维的制备及其吸波性能[J]. 化工学报, 2023, 74(8): 3584-3596. |
[9] | 刘尚豪, 贾胜坤, 罗祎青, 袁希钢. 基于梯度提升决策树的三组元精馏流程结构最优化[J]. 化工学报, 2023, 74(5): 2075-2087. |
[10] | 李木金, 胡松, 施德磐, 赵鹏, 高瑞, 李进龙. 环氧丁烷尾气溶剂吸收及精制工艺[J]. 化工学报, 2023, 74(4): 1607-1618. |
[11] | 杨灿, 孙雪琦, 尚明华, 张建, 张香平, 曾少娟. 相变离子液体体系吸收分离CO2的研究现状及展望[J]. 化工学报, 2023, 74(4): 1419-1432. |
[12] | 何万媛, 陈一宇, 朱春英, 付涛涛, 高习群, 马友光. 阵列凸起微通道内气液两相传质特性研究[J]. 化工学报, 2023, 74(2): 690-697. |
[13] | 党青梅, 李强, 丁晖殿, 贾胜坤, 钱行, 苑杨, 黄克谨, 陈海胜. 基于动态模式分解的精馏吸收状态变量非设计条件下的重构与预测[J]. 化工学报, 2023, 74(10): 4229-4240. |
[14] | 王煦清, 严圣林, 朱礼涛, 张希宝, 罗正鸿. 填料塔中有机胺吸收CO2气液传质的研究进展[J]. 化工学报, 2023, 74(1): 237-256. |
[15] | 任嘉辉, 刘豫, 刘朝, 刘浪, 李莹. 基于分子指纹和拓扑指数的工质临界温度理论预测[J]. 化工学报, 2022, 73(4): 1493-1500. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||