化工学报 ›› 2023, Vol. 74 ›› Issue (10): 4229-4240.DOI: 10.11949/0438-1157.20230716

• 过程系统工程 • 上一篇    下一篇

基于动态模式分解的精馏吸收状态变量非设计条件下的重构与预测

党青梅1(), 李强2(), 丁晖殿2, 贾胜坤3, 钱行1(), 苑杨1, 黄克谨1, 陈海胜1   

  1. 1.北京化工大学信息科学与技术学院,北京 100029
    2.中石化石油化工科学研究院有限公司炼油工艺与催化剂 国家工程研究中心,北京 102299
    3.天津大学化工学院,化学工程联合国家重点实验室,天津 300350
  • 收稿日期:2023-07-10 修回日期:2023-09-10 出版日期:2023-10-25 发布日期:2023-12-22
  • 通讯作者: 李强,钱行
  • 作者简介:党青梅(1999—),女,硕士研究生,2021210499@buct.edu.cn
    李强(1973—),男,教授级高级工程师,liq.ripp@sinopec.com
  • 基金资助:
    炼油工艺与催化剂国家工程研究中心(中石化石油化工科学研究院有限公司)开放基金项目

Reconstruction and prediction of distillation or absorption state variables under off-design conditions based on dynamic mode decomposition

Qingmei DANG1(), Qiang LI2(), Huidian DING2, Shengkun JIA3, Xing QIAN1(), Yang YUAN1, Kejin HUANG1, Haisheng CHEN1   

  1. 1.College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
    2.National Engineering Research Center for Petroleum Refining Technology and Catalyst, RIPP, SINOPEC, Beijing 102299, China
    3.State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
  • Received:2023-07-10 Revised:2023-09-10 Online:2023-10-25 Published:2023-12-22
  • Contact: Qiang LI, Xing QIAN

摘要:

精馏和吸收作为典型的非线性过程,其操作过程中存在大量描述系统特征的状态变量。为了对这些状态变量进行重构和预测,实现精馏吸收过程的实时数字孪生,通过动态模式分解算法(DMD)获取非线性系统的近似线性化模型,用于快速获取精馏吸收过程中各级浓度、流量、温度和持料量等状态变量。在此基础上,应用Kalman滤波器对DMD生成的线性模型进行实时校正,使得在非设计和有限测量条件下,也可以有效地预测吸收或精馏的状态变量,而无须重新训练模型。

关键词: 非线性系统, 吸收, 精馏, 动态模式分解算法, 近似线性化, 重构, 预测

Abstract:

Distillation and absorption, as typical nonlinear processes, have a large number of state variables that describe the characteristics of the system during their operation. In order to reconstruct and predict these state variables and realize the real-time digital twin of the distillation and absorption process, this paper obtains an approximate linearized model of the nonlinear system by the dynamic mode decomposition method (DMD), which is used to quickly obtain the state variables such as concentration, flow rate, temperature and holding capacity at each tray of the distillation and absorption process. Based on this, a Kalman filter is applied to correct the linear model generated by DMD in real time, which makes it possible to predict the state variables of absorption or distillation effectively without retraining the model even under off-design and limited measurement conditions.

Key words: nonlinear systems, absorption, distillation, dynamic mode decomposition method, approximate linearization, reconstruction, prediction

中图分类号: