化工学报 ›› 2024, Vol. 75 ›› Issue (4): 1679-1686.DOI: 10.11949/0438-1157.20231417
王书鹏1(), 杜健军1,2(
), 姚瑶1, 樊江莉1,2, 彭孝军1
收稿日期:
2023-12-31
修回日期:
2024-02-28
出版日期:
2024-04-25
发布日期:
2024-06-06
通讯作者:
杜健军
作者简介:
王书鹏(1999—),男,硕士研究生,13954534632@mail.dlut.edu.cn
基金资助:
Shupeng WANG1(), Jianjun DU1,2(
), Yao YAO1, Jiangli FAN1,2, Xiaojun PENG1
Received:
2023-12-31
Revised:
2024-02-28
Online:
2024-04-25
Published:
2024-06-06
Contact:
Jianjun DU
摘要:
设计合成了两例以罗丹明为母体的荧光染料RDMID-C和RDMID-N。实验结果表明,上述染料分子具有较低的细胞毒性,良好的生物相容性及靶向细胞线粒体的能力。两例荧光染料在细胞器定位实验中与商业化线粒体染料的共定位系数较高,并在小鼠肿瘤中有较长的滞留时间,可以用于肿瘤荧光成像。
中图分类号:
王书鹏, 杜健军, 姚瑶, 樊江莉, 彭孝军. 线粒体靶向的罗丹明衍生物用于肿瘤荧光成像[J]. 化工学报, 2024, 75(4): 1679-1686.
Shupeng WANG, Jianjun DU, Yao YAO, Jiangli FAN, Xiaojun PENG. Mitochondria-targeted rhodamine photosensitizers for tumor fluorescence imaging[J]. CIESC Journal, 2024, 75(4): 1679-1686.
染料 | λmax/nm | λ'max/nm | ε/(105 L/(mol·cm)) | Φf/% |
---|---|---|---|---|
Rhb | 546 | 568 | 0.92 | 69.4 |
RDMID-C | 608 | 650 | 0.15 | 25.2 |
RDMID-N | 636 | 682 | 0.81 | 36.4 |
表1 Rhb、RDMID-C和RDMID-N的光物理参数
Table 1 Photophysical parameters of Rh123, RDMID-C and RDMID-N
染料 | λmax/nm | λ'max/nm | ε/(105 L/(mol·cm)) | Φf/% |
---|---|---|---|---|
Rhb | 546 | 568 | 0.92 | 69.4 |
RDMID-C | 608 | 650 | 0.15 | 25.2 |
RDMID-N | 636 | 682 | 0.81 | 36.4 |
图5 RDMID-C和RDMID-N的荧光强度随溶液黏度(水/甘油体系)的变化
Fig.5 Variation of fluorescence emission spectra of RDMID-C and RDMID-N with the change of solution viscosity(water/glycerol system)
图8 Mito Tracker Green FM、Lyso Tracker Green DND-26和Rhb、RDMID-C、RDMID-N在MCF-7细胞中的共定位实验 (λex=490 nm, λem=523 nm)
Fig.8 Co-localization of Rhb, RDMID-C, RDMID-N and Mito Tracker Green FM,Lyso Tracker Green DND-26 in MCF-7 cells (λex=490 nm, λem=523 nm)
图9 体内荧光成像和注射RDMID-N 4 h后主要器官荧光成像
Fig. 9 In vivo fluorescence images and fluorescence intensities of main organs after injection of RDMID-N for about 4 h
1 | Siegel R L, Wagle N S, Cercek A, et al. Colorectal cancer statistics, 2023[J]. CA: A Cancer Journal for Clinicians, 2023, 73(3): 233-254. |
2 | Zhu J L, Chen W, Yang L, et al. A self-sustaining near-infrared afterglow chemiluminophore for high-contrast activatable imaging[J]. Angewandte Chemie International Edition, 2024: e202318545. |
3 | Bai Y L, Hua J, Zhao J J, et al. A silver-induced absorption red-shifted dual-targeted nanodiagnosis-treatment agent for NIR-Ⅱ photoacoustic imaging-guided photothermal and ROS simultaneously enhanced immune checkpoint blockade antitumor therapy[J]. Advanced Science, 2023: 2198-3844. |
4 | Yang X C, Cheng L L, Zhao Y L, et al. Aggregation-induced emission-active iridium (Ⅲ)-based mitochondria-targeting nanoparticle for two-photon imaging-guided photodynamic therapy[J]. Journal of Colloid and Interface Science, 2024, 659: 320-329. |
5 | Jin J K, Yuan P C, Yu W, et al. Mitochondria-targeting polymer micelle of dichloroacetate induced pyroptosis to enhance osteosarcoma immunotherapy[J]. ACS Nano, 2022, 16(7): 10327-10340. |
6 | Fan L, Zan Q, Wang X D, et al. A mitochondria-targeted and viscosity-sensitive near-infrared fluorescent probe for visualization of fatty liver, inflammation and photodynamic cancer therapy[J]. Chemical Engineering Journal, 2022, 449: 137762. |
7 | Zhao H H, Chen K, Liu M W, et al. A mitochondria-targeted NIR-Ⅱ molecule fluorophore for precise cancer phototheranostics[J]. Journal of Medicinal Chemistry, 2024, 67(1): 467-478. |
8 | Poor T A, Chandel N S. SnapShot: mitochondrial signaling[J]. Molecular Cell, 2023, 83(6):1012-1012.e1. |
9 | Lionaki E, Gkikas I, Tavernarakis N. Mitochondrial protein import machinery conveys stress signals to the cytosol and beyond[J]. BioEssays: 2023, 45(3): e2200160. |
10 | Li Q Y, Lin Y Q, Xu J L, et al. Diet restriction impact on high-fat-diet-induced obesity by regulating mitochondrial cardiolipin biosynthesis and remodeling[J]. Molecules, 2023, 28(11): 4522. |
11 | Li M Y, Yu Y J, Xue K, et al. Genistein mitigates senescence of bone marrow mesenchymal stem cells via ERR α-mediated mitochondrial biogenesis and mitophagy in ovariectomized rats[J]. Redox Biology, 2023, 61: 102649. |
12 | Weiser A, Hermant A, Bermont F, et al. The mitochondrial calcium uniporter (MCU) activates mitochondrial respiration and enhances mobility by regulating mitochondrial redox state[J]. Redox Biology, 2023, 64: 102759. |
13 | Li Y J, Wu R Y, Liu R P, et al. Aurantio-obtusin ameliorates obesity by activating PPAR α-dependent mitochondrial thermogenesis in brown adipose tissues[J]. Acta Pharmacologica Sinca. 2023, 44: 1826-1840. |
14 | Martínez-Reyes I, Cardona L R, Kong H, et al. Mitochondrial ubiquinol oxidation is necessary for tumour growth[J]. Nature, 2020, 585: 288-292. |
15 | Mussazhanova Z, Shimamura M, Kurashige T, et al. Causative role for defective expression of mitochondria-eating protein in accumulation of mitochondria in thyroid oncocytic cell tumors[J]. Cancer Science, 2020, 111(8): 2814-2823. |
16 | Bai R L, Cui J W. Mitochondrial immune regulation and anti-tumor immunotherapy strategies targeting mitochondria[J]. Cancer Letters, 2023, 564: 216223. |
17 | 于富强, 杜健军, 路杨, 等. 血清白蛋白-铜酞菁纳米粒子用于线粒体靶向光疗[J]. 化工学报, 2021, 72(1): 597-608. |
Yu F Q, Du J J, Lu Y, et al. Fabrication of serum albumin-copper phthalocyanine nanoparticles for mitochondria-targeted phototherapy[J]. CIESC Journal, 2021, 72(1): 597-608. | |
18 | Li H D, Wang J Y, Kim H, et al. Activatable near-infrared versatile fluorescent and chemiluminescent dyes based on the dicyanomethylene-4H-pyran scaffold: from design to imaging and theranostics[J]. Angewandte Chemie International Edition, 2024, 63(6): 2311764. |
19 | Han F P, Abbas Abedi S A, He S, et al. Aryl-modified pentamethyl cyanine dyes at the C2′ position: a tunable platform for activatable photosensitizers[J]. Advanced Science, 2024, 11(7): e2305761. |
20 | Gu H, Sun W, Du J J, et al. Dual-acceptor engineering of donor‐acceptor type molecules for all-round boosting anti-tumor phototherapy[J]. Smart Molecules, 2023: 2751-4587. |
21 | Xiong T, Chen Y C, Peng Q, et al. Lipid droplet targeting type Ⅰ photosensitizer for ferroptosis via lipid peroxidation accumulation[J]. Advanced Materials, 2024, 36(4): e2309711. |
22 | Liu W J, Wu B B, Sun W, et al. Near-infrared Ⅱ fluorescent carbon dots for differential imaging of drug-resistant bacteria and dynamic monitoring of immune system defense against bacterial infection in vivo [J]. Chemical Engineering Journal, 2023, 471: 144530. |
23 | Zheng J Z, Du J J, Ge H Y, et al. Viscosity-dependent photocatalysis triggers ferroptosis and type-Ⅰ photodynamic therapy to kill drug-resistant tumors[J]. Chemical Engineering Journal, 2022, 449: 136565. |
24 | Shimolina L E, Izquierdo M A, López-Duarte I, et al. Imaging tumor microscopic viscosity in vivo using molecular rotors[J]. Scientific Reports, 2017, 7: 41097. |
25 | Inada N, Fukuda N, Hayashi T, et al. Temperature imaging using a cationic linear fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy[J]. Nature Protocols, 2019, 14: 1293-1321. |
26 | Zeng Y, Ma J W, Zhang S J, et al. Imaging agents in targeting tumor hypoxia[J]. Current Medicinal Chemistry, 2016, 23(17): 1775-1800. |
27 | Kamya E, Yi S Z, Hussain Z, et al. Donor-acceptor engineering for tailoring highly efficient photosensitizers for image-guided antitumor photodynamic therapy[J]. ACS Macro Letters, 2023, 12(11): 1549-1557. |
28 | Wang Y P, Li X W, Liu W M, et al. A dual organelle-targeting photosensitizer based on curcumin for enhanced photodynamic therapy[J]. Journal of Materials Chemistry B, 2023, 11(45): 10836-10844. |
29 | Wen M, Wang X J, Wang T, et al. Acridinium benzoates for ratiometric fluorescence imaging[J]. Chemistry, 2020, 26(15): 3247-3251. |
30 | Li M L, Long S R, Kang Y, et al. De novo design of phototheranostic sensitizers based on structure-inherent targeting for enhanced cancer ablation[J]. Journal of the American Chemical Society, 2018, 140(46): 15820-15826. |
31 | Yokomizo S, Henary M, Buabeng E R, et al. Topical pH sensing NIR fluorophores for intraoperative imaging and surgery of disseminated ovarian cancer[J]. Advanced Science, 2022, 9(20): e2201416. |
32 | Choi H S, Nasr K, Alyabyev S, et al. Synthesis and in vivo fate of zwitterionic near-infrared fluorophores[J]. Angewandte Chemie International Edition, 2011, 50(28): 6258-6263. |
33 | Owens E A, Lee S, Choi J, et al. NIR fluorescent small molecules for intraoperative imaging[J]. Wiley Interdisciplinary Reviews. Nanomedicine and Nanobiotechnology, 2015, 7(6): 828-838. |
34 | Gregory R. The Guide for Care and use of Laboratory Animals[M]. USA: National Academy of Sciences, 2010. |
[1] | 李紧, 张晓东, 邱杨挺, 姚成, 鲁锡存, 魏茹薇, 罗潇, 钱旭红, 杨有军. 带功能手柄的二苯并呫吨类染料(EC5)用于生物成像[J]. 化工学报, 2024, 75(4): 1687-1696. |
[2] | 孙涛, 孙美莉, 陆然, 余一梓, 王凯峰, 纪晓俊. 合成生物学改造酵母驱动丁二酸绿色生物制造[J]. 化工学报, 2024, 75(4): 1382-1393. |
[3] | 江文钞, 徐兆超. 细胞器超分辨成像荧光染料[J]. 化工学报, 2024, 75(4): 1333-1354. |
[4] | 侯文起, 孙彦, 董晓燕. 碱化修饰甲状腺素运载蛋白显著增强对淀粉样β蛋白聚集的抑制作用[J]. 化工学报, 2023, 74(5): 2100-2110. |
[5] | 李彩风, 王晓, 李岗建, 林军章, 汪卫东, 束青林, 曹嫣镔, 肖盟. 嗜烃乳化菌SL-1与内源菌协同驱油的菌群作用关系研究[J]. 化工学报, 2022, 73(9): 4095-4102. |
[6] | 刘伟, 孙彦. β-淀粉样蛋白的聚集及其调控[J]. 化工学报, 2022, 73(6): 2381-2396. |
[7] | 任玉鑫, 徐润峰, 王婉颖, 陈鹏忠, 彭孝军. 彩色光刻胶用蒽醌染料的合成及稳定性研究[J]. 化工学报, 2022, 73(5): 2251-2261. |
[8] | 王靖楠, 庞建, 秦磊, 郭超, 吕波, 李春, 王超. 丁烯基多杀菌素高产菌株的选育和改造策略[J]. 化工学报, 2022, 73(2): 566-576. |
[9] | 侯晓松, 刘晨星, 任爱玲, 郭斌, 郭渊明. 超声雾化/表面活性剂强化吸收耦合生物洗涤净化甲苯废气[J]. 化工学报, 2022, 73(10): 4692-4706. |
[10] | 宋伟, 王金辉, 胡贵鹏, 陈修来, 刘立明, 吴静. 多酶级联催化合成(R)-β-酪氨酸[J]. 化工学报, 2022, 73(1): 352-361. |
[11] | 陈婷婷, 韩恺忻, 陈翠雪, 凌雪萍, 沈亮, 卢英华. 铁还原菌Shewanella xiamenensis BC01的有机溶剂应激研究[J]. 化工学报, 2021, 72(7): 3747-3756. |
[12] | 毛金竹, 肖淑玲, 杨智淳, 王孝宇, 张诗, 陈俊宏, 谢佶晟, 陈福德, 黄子诺, 冯天宇, 张瑷珲, 方柏山. 合成生物学在农残检测领域的应用[J]. 化工学报, 2021, 72(5): 2413-2425. |
[13] | 王法军, 黄晋培, 徐建鸿. 微反应器内红色基KD重氮化反应动力学研究[J]. 化工学报, 2021, 72(2): 984-992. |
[14] | 苏楠, 吴亦楠, 陈韵亿, 金丽华, 张翀, Aikawa Shimpei, Hasunuma Tomohisa, Kondo Akihiko, 邢新会. ARTP诱变钝顶螺旋藻突变体比较组学研究[J]. 化工学报, 2021, 72(12): 6298-6310. |
[15] | 王凯峰, 王金鹏, 韦萍, 纪晓俊. 代谢工程改造解脂耶氏酵母生产脂肪酸及其衍生物[J]. 化工学报, 2021, 72(1): 351-365. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 353
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 254
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||