化工学报 ›› 2022, Vol. 73 ›› Issue (9): 4095-4102.DOI: 10.11949/0438-1157.20220442
李彩风1(), 王晓2, 李岗建2, 林军章1, 汪卫东1, 束青林3, 曹嫣镔1, 肖盟2()
收稿日期:
2022-03-28
修回日期:
2022-06-20
出版日期:
2022-09-05
发布日期:
2022-10-09
通讯作者:
肖盟
作者简介:
李彩风(1981—),女,博士,副研究员,licaifeng136.slyt@sinopec.com
Caifeng LI1(), Xiao WANG2, Gangjian LI2, Junzhang LIN1, Weidong WANG1, Qinglin SHU3, Yanbin CAO1, Meng XIAO2()
Received:
2022-03-28
Revised:
2022-06-20
Online:
2022-09-05
Published:
2022-10-09
Contact:
Meng XIAO
摘要:
为了探究稠油开采过程内-外源菌的协同驱油机理,以嗜烃乳化菌Geobacillus stearothermophilus SL-1作为外源菌,考察了该菌与内源菌群的协同降黏、降烃性能。通过16S rDNA扩增子测序,探讨了内-外源菌的协同作用关系。研究结果表明,添加菌株SL-1后,稠油中的长链烷烃被显著降解,原油黏度降低约79.5%。菌群结构分析表明,菌株SL-1的加入有效激活了烃降解菌、产氢菌等采油功能菌,产气量及甲烷含量升高,同时增强了菌群结构的稳定性,进而有利于采油功能菌代谢性能的发挥。物种相关性分析表明,菌株SL-1与Pseudothermotoga、Coprothermobacter、Gelria等产氢菌呈正相关性,这些物种间的相互协同可推动烃降解及产甲烷等进程,进而有利于提高稠油的采收率。本研究为菌株SL-1在稠油开采中的现场应用提供了理论支撑。
中图分类号:
李彩风, 王晓, 李岗建, 林军章, 汪卫东, 束青林, 曹嫣镔, 肖盟. 嗜烃乳化菌SL-1与内源菌协同驱油的菌群作用关系研究[J]. 化工学报, 2022, 73(9): 4095-4102.
Caifeng LI, Xiao WANG, Gangjian LI, Junzhang LIN, Weidong WANG, Qinglin SHU, Yanbin CAO, Meng XIAO. Synergistic relationship between hydrocarbon degrading and emulsifying strain SL-1 and endogenous bacteria during oil displacement[J]. CIESC Journal, 2022, 73(9): 4095-4102.
编号 | 样品组成 |
---|---|
A | 地层水 |
B | 地层水+菌株SL-1 |
C | 地层水+营养激活剂 |
D | 地层水+菌株SL-1+营养激活剂 |
表1 样品组成情况
Table 1 Composition of each sample
编号 | 样品组成 |
---|---|
A | 地层水 |
B | 地层水+菌株SL-1 |
C | 地层水+营养激活剂 |
D | 地层水+菌株SL-1+营养激活剂 |
序列 | 名称 | 组成/% | |
---|---|---|---|
C组 | D组 | ||
1 | H2 | 0.047 | 0.083 |
2 | CO2 | 74.534 | 48.898 |
3 | CO | 0.007 | 0.003 |
4 | CH4 | 24.976 | 50.828 |
5 | 乙烷 | 0.193 | 0.135 |
6 | 乙烯 | 0.009 | 0.005 |
7 | 丙烷 | 0.082 | 0.027 |
8 | 异丁烷 | 0.066 | 0.008 |
9 | 正丁烷 | 0.051 | 0.005 |
10 | 异戊烷 | 0.007 | 0.003 |
11 | 正戊烷 | 0.020 | 0.005 |
12 | 2, 2-二甲基丙烷 | 0.007 | 0.000 |
表2 气体组成分析
Table 2 Analysis of gas composition
序列 | 名称 | 组成/% | |
---|---|---|---|
C组 | D组 | ||
1 | H2 | 0.047 | 0.083 |
2 | CO2 | 74.534 | 48.898 |
3 | CO | 0.007 | 0.003 |
4 | CH4 | 24.976 | 50.828 |
5 | 乙烷 | 0.193 | 0.135 |
6 | 乙烯 | 0.009 | 0.005 |
7 | 丙烷 | 0.082 | 0.027 |
8 | 异丁烷 | 0.066 | 0.008 |
9 | 正丁烷 | 0.051 | 0.005 |
10 | 异戊烷 | 0.007 | 0.003 |
11 | 正戊烷 | 0.020 | 0.005 |
12 | 2, 2-二甲基丙烷 | 0.007 | 0.000 |
项目 | A_7 | B_7 | C_7 | D_7 |
---|---|---|---|---|
Shannon | 2.3549 | 1.9228 | 1.1961 | 1.4179 |
Simpson | 0.1782 | 0.238 | 0.4451 | 0.3236 |
Chao1 | 144.9406 | 80.6471 | 34.3903 | 42.8603 |
表3 Alpha多样性分析
Table 3 Alpha diversity analysis
项目 | A_7 | B_7 | C_7 | D_7 |
---|---|---|---|---|
Shannon | 2.3549 | 1.9228 | 1.1961 | 1.4179 |
Simpson | 0.1782 | 0.238 | 0.4451 | 0.3236 |
Chao1 | 144.9406 | 80.6471 | 34.3903 | 42.8603 |
1 | 于洋, 刘琦, 彭勃, 等. 微生物降解稠油中沥青质的研究进展[J]. 化工进展, 2021, 40(3): 1574-1585. |
Yu Y, Liu Q, Peng B, et al. A review of the biodegradation of asphaltene in heavy oil[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1574-1585. | |
2 | 李彩风, 束青林, 韩保锋, 等. 嗜烃乳化功能菌在多孔介质中的生长规律及驱油机理[J]. 油气地质与采收率, 2021, 28(2): 27-33. |
Li C F, Shu Q L, Han B F, et al. Study on growth law and oil displacement mechanism of hydrocarbonophilic emulsifying bacteria in porous media[J]. Petroleum Geology and Recovery Efficiency, 2021, 28(2): 27-33. | |
3 | Asadollahi L, Salehizadeh H, Yan N. Investigation of biosurfactant activity and asphaltene biodegradation by Bacillus cereus [J]. Journal of Polymers and the Environment, 2016, 24(2): 119-128. |
4 | Yusoff D F, Raja Abd Rahman R N Z, Masomian M,et al. Newly isolated alkane hydroxylase and lipase producing Geobacillus and Anoxybacillus species involved in crude oil degradation[J]. Catalysts, 2020, 10(8): 851. |
5 | Xia W J, Tong L H, Jin T Z, et al. N,S-Heterocycles biodegradation and biosurfactantproduction under CO2/N2 conditions by Pseudomonas and its application on heavy oil recovery[J]. Chemical Engineering Journal, 2021, 413: 128771. |
6 | Lin J H, Zhang K C, Tao W Y, et al. Geobacillus strains that have potential value in microbial enhanced oil recovery[J]. Applied Microbiology and Biotechnology, 2019, 103(20): 8339-8350. |
7 | Zhou J F, Gao P K, Dai X H, et al. Heavy hydrocarbon degradation of crude oil by a novel thermophilic Geobacillus stearothermophilus strain A-2[J]. International Biodeterioration & Biodegradation, 2018, 126: 224-230. |
8 | 李国强, 纪凯华, 李佳斌, 等. 嗜热解烃菌DM-2产生的生物乳化剂[J]. 微生物学通报, 2014, 41(4): 585-591. |
Li G Q, Ji K H, Li J B, et al. Bio-emulsifier produced by a thermophilic hydrocarbon-degrading strain DM-2[J]. Microbiology China, 2014, 41(4): 585-591. | |
9 | 宋永亭, 李彩风, 冯云, 等. 高温产乳化剂菌原位生长下的微观驱油机理[J]. 油气地质与采收率, 2018, 25(2): 90-95. |
Song Y T, Li C F, Feng Y, et al. Microscopic oil displacement mechanism of thermophilic bioemulsifier-producing bacteria in-situ growing[J]. Petroleum Geology and Recovery Efficiency, 2018, 25(2): 90-95. | |
10 | 李彩风, 吴晓玲, 刘涛, 等. 高温产生物乳化剂菌株SL-1的性能评价及物模驱油研究[J]. 安徽大学学报(自然科学版), 2014, 38(1): 90-95. |
Li C F, Wu X L, Liu T, et al. Study on the property evaluation and physical simulation oil displacement of a thermophilic bioemulsifier-producing bacteria SL-1[J]. Journal of Anhui University(Natural Science Edition), 2014, 38(1): 90-95. | |
11 | 孙虎, 李浩帅, 包木太, 等. 化学分散剂作用下不同原油分散效果的影响因素研究[J]. 中国海洋大学学报(自然科学版), 2021, 51(S1): 43-49. |
Sun H, Li H S, Bao M T, et al. Research on influencing factors of different crude oil dispersion effect under the action of chemical dispersants[J]. Periodical of Ocean University of China, 2021, 51(S1): 43-49. | |
12 | 林军章, 冯云, 谭晓明, 等. 原油厌氧微生物降解特征分析[J]. 南京工业大学学报(自然科学版), 2018, 40(3): 49-54. |
Lin J Z, Feng Y, Tan X M, et al. Characteristics of crude oil biodegradation by anaerobic microbial[J]. Journal of Nanjing Tech University (Natural Science Edition), 2018, 40(3): 49-54. | |
13 | 王璟, 王春江, 赵冬至, 等. 渤海湾和黄河口外表层海水中正构烷烃的组成、分布及来源[J]. 海洋环境科学, 2010, 29(2): 242-245. |
Wang J, Wang C J, Zhao D Z, et al. Composition, distribution and source of n-alkanes in surface water in Bohai Bay and outside Huanghe Estuary[J]. Marine Environmental Science, 2010, 29(2): 242-245. | |
14 | Shi J X, Han Y X, Xu C Y, et al. Enhanced biodegradation of coal gasification wastewater with anaerobic biofilm on polyurethane (PU), powdered activated carbon (PAC), and biochar[J]. Bioresource Technology, 2019, 289: 121487. |
15 | Haouari O, Fardeau M L, Cayol J L, et al. Thermodesulfovibrio hydrogeniphilus sp. nov., a new thermophilic sulphate-reducing bacterium isolated from a Tunisian hot spring[J]. Systematic and Applied Microbiology, 2008, 31(1): 38-42. |
16 | Liang B, Wang L Y, Zhou Z C, et al. High frequency of Thermodesulfovibrio spp. and Anaerolineaceae in association with Methanoculleus spp. in a long-term incubation of n-alkanes-degrading methanogenic enrichment culture[J]. Frontiers in Microbiology, 2016, 7: 1431. |
17 | Roumagnac M, Pradel N, Bartoli M, et al. Responses to the hydrostatic pressure of surface and subsurface strains of Pseudothermotoga elfii revealing the piezophilic nature of the strain originating from an oil-producing well[J]. Frontiers in Microbiology, 2020, 11: 588771. |
18 | Jackson T J, Ramaley R F, Meinschein W G. Thermomicrobium, a new genus of extremely thermophilic bacteria[J]. International Journal of Systematic Bacteriology, 1973, 23(1): 28-36. |
19 | Yoon S Y, Noh H S, Kim E H, et al. The highly stable alcohol dehydrogenase of Thermomicrobium roseum: purification and molecular characterization[J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2002, 132(2): 415-422. |
20 | Li P, Wang L, Feng L. Characterization of a novel Rieske-type alkane monooxygenase system in Pusillimonas sp. strain T7-7[J]. Journal of Bacteriology, 2013, 195(9): 1892-1901. |
21 | Segovia V, Reyes A, Rivera G, et al. Production of rhamnolipids by the Thermoanaerobacter sp. CM-CNRG TB177 strain isolated from an oil well in Mexico[J]. Applied Microbiology and Biotechnology, 2021, 105(14): 5833-5844. |
22 | Jayasinghearachchi H S, Sarma P M, Lal B. Biological hydrogen production by extremely thermophilic novel bacterium Thermoanaerobacter mathranii A3N isolated from oil producing well[J]. International Journal of Hydrogen Energy, 2012, 37(7): 5569-5578. |
23 | Nazina T N, Shestakova N M, Semenova E M, et al. Diversity of metabolically active bacteria in water-flooded high-temperature heavy oil reservoir[J]. Frontiers in Microbiology, 2017, 8: 707. |
24 | Chen L R, Du S Y, Xie L. Effects of pH on ex-situ biomethanation with hydrogenotrophic methanogens under thermophilic and extreme-thermophilic conditions[J]. Journal of Bioscience and Bioengineering, 2021, 131(2): 168-175. |
25 | Zhou L, Li K P, Mbadinga S M, et al. Analyses of n-alkanes degrading community dynamics of a high-temperature methanogenic consortium enriched from production water of a petroleum reservoir by a combination of molecular techniques[J]. Ecotoxicology (London, England), 2012, 21(6): 1680-1691. |
26 | Liu Y F, Qi Z Z, Shou L B, et al. Anaerobic hydrocarbon degradation in candidate phylum 'Atribacteria' (JS1) inferred from genomics[J]. The ISME Journal, 2019, 13(9): 2377-2390. |
27 | Veshareh M J, Poulsen M, Nick H M, et al. The light in the dark: in situ biorefinement of crude oil to hydrogen using typical oil reservoir Thermotoga strains[J]. International Journal of Hydrogen Energy, 2022, 47(8): 5101-5110. |
28 | Deng T C, Qian Y F, Chen X J, et al. Ciceribacter ferrooxidans sp. nov., a nitrate-reducing Fe(Ⅱ)-oxidizing bacterium isolated from ferrous ion-rich sediment[J]. Journal of Microbiology, 2020, 58(5): 350-356. |
29 | Duran R, Cravo-Laureau C. Role of environmental factors and microorganisms in determining the fate of polycyclic aromatic hydrocarbons in the marine environment[J]. FEMS Microbiology Reviews, 2016, 40(6): 814-830. |
30 | Louvado A, Gomes N C M, Simões M M Q, et al. Polycyclic aromatic hydrocarbons in deep sea sediments: microbe-pollutant interactions in a remote environment[J]. Science of the Total Environment, 2015, 526: 312-328. |
31 | Miralles G, Grossi V, Acquaviva M, et al. Alkane biodegradation and dynamics of phylogenetic subgroups of sulfate-reducing bacteria in an anoxic coastal marine sediment artificially contaminated with oil[J]. Chemosphere, 2007, 68(7): 1327-1334. |
32 | Zhang S Y, Wang Q F, Xie S G. Stable isotope probing identifies anthracene degraders under methanogenic conditions[J]. Biodegradation, 2012, 23(2): 221-230. |
33 | Castellane T C L, Campanharo J C, Colnago L A, et al. Characterization of new exopolysaccharide production by Rhizobium tropici during growth on hydrocarbon substrate[J]. International Journal of Biological Macromolecules, 2017, 96: 361-369. |
34 | Zhao H P, Wang L, Ren J R, et al. Isolation and characterization of phenanthrene-degrading strains Sphingomonas sp. ZP1 and Tistrella sp. ZP5[J]. Journal of Hazardous Materials, 2008, 152(3): 1293-1300. |
35 | 李金志, 冯云, 林军章, 等. 沾3区块内源微生物好氧和厌氧激活特征[J]. 南京工业大学学报(自然科学版), 2021, 43(5): 670-676. |
Li J Z, Feng Y, Lin J Z, et al. Characteristics of aerobic and anaerobic activation of endogenous microorganisms in Zhan3 block[J]. Journal of Nanjing Tech University (Natural Science Edition), 2021, 43(5): 670-676. | |
36 | Sasaki K, Morita M, Sasaki D, et al. Syntrophic degradation of proteinaceous materials by the thermophilic strains Coprothermobacter proteolyticus and Methanothermobacter thermautotrophicus [J]. Journal of Bioscience and Bioengineering, 2011, 112(5): 469-472. |
37 | Zhu X P, Cao Q, Chen Y C, et al. Effects of mixing and sodium formate on thermophilic in situ biogas upgrading by H2 addition[J]. Journal of Cleaner Production, 2019, 216: 373-381. |
[1] | 杨百玉, 寇悦, 姜峻韬, 詹亚力, 王庆宏, 陈春茂. 炼化碱渣湿式氧化预处理过程DOM的化学转化特征[J]. 化工学报, 2023, 74(9): 3912-3920. |
[2] | 林典, 江国梅, 徐秀彬, 赵波, 刘冬梅, 吴旭. 硅基类液防原油黏附涂层的研制及其减阻性能研究[J]. 化工学报, 2023, 74(8): 3438-3445. |
[3] | 刘爽, 张霖宙, 许志明, 赵锁奇. 渣油及其组分黏度的分子层次组成关联研究[J]. 化工学报, 2023, 74(8): 3226-3241. |
[4] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341. |
[5] | 龙臻, 王谨航, 任俊杰, 何勇, 周雪冰, 梁德青. 离子液体协同PVCap抑制天然气水合物生成实验研究[J]. 化工学报, 2023, 74(6): 2639-2646. |
[6] | 李瑞康, 何盈盈, 卢维鹏, 王园园, 丁皓东, 骆勇名. 电化学强化钴基阴极活化过一硫酸盐的研究[J]. 化工学报, 2023, 74(5): 2207-2216. |
[7] | 吴学红, 栾林林, 陈亚南, 赵敏, 吕财, 刘勇. 可降解柔性相变薄膜的制备及其热性能[J]. 化工学报, 2023, 74(4): 1818-1826. |
[8] | 何洋, 高森虎, 吴青云, 张明理, 龙涛, 牛佩, 高景辉, 孟颖琪. 析湿工况下平直开缝翅片传热传质特性的数值研究[J]. 化工学报, 2023, 74(3): 1073-1081. |
[9] | 张家庆, 蒋榕培, 史伟康, 武博翔, 杨超, 刘朝晖. 煤基/石油基火箭煤油高参数黏温特性与组分特性研究[J]. 化工学报, 2023, 74(2): 653-665. |
[10] | 程伟江, 汪何琦, 高翔, 李娜, 马赛男. 锂离子电池硅基负极电解液成膜添加剂的研究进展[J]. 化工学报, 2023, 74(2): 571-584. |
[11] | 谢煜, 张民, 胡卫国, 王玉军, 骆广生. 利用膜分散微反应器高效溶解D-7-ACA的研究[J]. 化工学报, 2023, 74(2): 748-755. |
[12] | 黄宽, 马永德, 蔡镇平, 曹彦宁, 江莉龙. 油脂催化加氢转化制备第二代生物柴油研究进展[J]. 化工学报, 2023, 74(1): 380-396. |
[13] | 席国君, 刘子涵, 雷广平. FeTPPs-CuBTC协同强化低浓度煤层气吸附分离[J]. 化工学报, 2022, 73(9): 3940-3949. |
[14] | 许贤伦, 钱旸, 张兴旺, 雷乐成. 高压脉冲介质阻挡放电降解土壤中芘的研究[J]. 化工学报, 2022, 73(9): 4025-4033. |
[15] | 郝泽光, 张乾, 高增林, 张宏文, 彭泽宇, 杨凯, 梁丽彤, 黄伟. 生物质与催化裂化油浆共热解协同作用研究[J]. 化工学报, 2022, 73(9): 4070-4078. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||