化工学报 ›› 2024, Vol. 75 ›› Issue (9): 3041-3055.DOI: 10.11949/0438-1157.20240351
胡术刚1(), 田国庆1,2, 刘文娟3, 徐广飞4, 刘华清1,2, 张建1,2,5, 王艳龙1,2(
)
收稿日期:
2024-03-29
修回日期:
2024-05-24
出版日期:
2024-09-25
发布日期:
2024-10-10
通讯作者:
王艳龙
作者简介:
胡术刚(1970—),男,博士,教授, husg8921@163.com
基金资助:
Shugang HU1(), Guoqing TIAN1,2, Wenjuan LIU3, Guangfei XU4, Huaqing LIU1,2, Jian ZHANG1,2,5, Yanlong WANG1,2(
)
Received:
2024-03-29
Revised:
2024-05-24
Online:
2024-09-25
Published:
2024-10-10
Contact:
Yanlong WANG
摘要:
纳米零价铁(nZVI)因具有强还原能力和高吸附性能等特点,在环境污染修复中应用前景广阔。近年来,国内外学者开发了多种nZVI的合成方法,并在nZVI还原去除有机、无机污染物以及nZVI耦合高级氧化技术方面均有较大进展。本文综述了nZVI的物理、化学和绿色合成制备方法的原理及优缺点,分析了nZVI还原降解、吸附固定等作用去除有机、无机污染物的机制及影响因素,重点探讨了nZVI联用氧化剂(如分子氧、过氧化氢、过氧化钙和过硫酸盐等)构建类芬顿技术的机理及应用进展,并对nZVI修复技术的环境应用进行了展望,以期为nZVI的高效制备和环境修复领域的广泛应用提供参考。
中图分类号:
胡术刚, 田国庆, 刘文娟, 徐广飞, 刘华清, 张建, 王艳龙. 纳米零价铁的制备及氧化还原技术的应用进展[J]. 化工学报, 2024, 75(9): 3041-3055.
Shugang HU, Guoqing TIAN, Wenjuan LIU, Guangfei XU, Huaqing LIU, Jian ZHANG, Yanlong WANG. Preparation of nanoscale zero-valent iron and its application of reduction and oxidation technology[J]. CIESC Journal, 2024, 75(9): 3041-3055.
制备方法 | 具体过程 | 优点 | 缺点 | |
---|---|---|---|---|
物理法 | ||||
机械球磨法 | 球磨机中钢球撞击并研磨铁粉,通过固态反应或原子扩散生成不规则nZVI | nZVI产率大,无多余副 产物 | nZVI粒径不均,易混合杂质,易团聚胶结,设备能耗高 | |
深度塑性变形法 | 施加准静态压力细化含铁物质以制得nZVI | nZVI粒度均匀,致密性好 | 生产成本高,制备周期长 | |
物理气相沉积法 | 加热含铁气化物或等离子体后急速冷凝,制得晶粒超细的nZVI | nZVI粒径小,表面清洁,颗粒分散性好 | 设备能耗大,生产成本高 | |
冷冻干燥法 | 低温冻结含铁溶液形成固溶体,低压升华溶剂,留下难挥发铁成分,形成nZVI | nZVI粒径小 | 制备周期长,冻干效率低 | |
化学法 | ||||
液相还原法 | 利用硼氢化钠、硼氢化钾、水合肼等还原剂,在溶液体系中还原铁离子制得nZVI | 合成路线简单,反应条件温和,nZVI纯度高,粒径分布均匀 | nZVI易团聚,还原试剂价格昂贵 | |
蒸发冷凝法 | 激光加热铁靶至铁原子蒸发,在惰性气体中快速凝结形成nZVI | 可控制粒径大小,nZVI纯度高,化学活性强 | 制备时间长,设备价格 昂贵 | |
碳热还原法 | 含碳物质与氯化亚铁混合物高温热解,铁离子在保护气的高温环境中被碳还原,得到nZVI | 原料便宜易得,nZVI纯 度高 | 制备条件苛刻,设备能 耗高 | |
热分解法 | 含铁有机金属分子高温热分解,铁元素被还原,形成nZVI | 可调控粒径分布 | 制备条件苛刻,设备能 耗高 | |
电化学法 | 利用电解法,使铁离子在阴极上沉积,生成nZVI | nZVI活性高,nZVI不易团聚 | 制备条件苛刻 | |
超声辅助法 | 利用超声作用促进传质,抑制液相还原制备的nZVI | 可调控粒径分布 | nZVI易高温氧化 | |
绿色还原 合成法 | 多以植物提取物作为原料 | 利用植物(如薄荷叶、大戟叶、葡萄籽、芒果皮、茶叶类)提取物与铁离子溶液混合加热还原制备nZVI | 制备成本低,原料来源广,无有害废物产生 | 铁离子还原不彻底且nZVI会形成团聚体 |
表1 nZVI常见的制备方法及优缺点
Table 1 Common preparation methods of nZVI and their advantages and disadvantages
制备方法 | 具体过程 | 优点 | 缺点 | |
---|---|---|---|---|
物理法 | ||||
机械球磨法 | 球磨机中钢球撞击并研磨铁粉,通过固态反应或原子扩散生成不规则nZVI | nZVI产率大,无多余副 产物 | nZVI粒径不均,易混合杂质,易团聚胶结,设备能耗高 | |
深度塑性变形法 | 施加准静态压力细化含铁物质以制得nZVI | nZVI粒度均匀,致密性好 | 生产成本高,制备周期长 | |
物理气相沉积法 | 加热含铁气化物或等离子体后急速冷凝,制得晶粒超细的nZVI | nZVI粒径小,表面清洁,颗粒分散性好 | 设备能耗大,生产成本高 | |
冷冻干燥法 | 低温冻结含铁溶液形成固溶体,低压升华溶剂,留下难挥发铁成分,形成nZVI | nZVI粒径小 | 制备周期长,冻干效率低 | |
化学法 | ||||
液相还原法 | 利用硼氢化钠、硼氢化钾、水合肼等还原剂,在溶液体系中还原铁离子制得nZVI | 合成路线简单,反应条件温和,nZVI纯度高,粒径分布均匀 | nZVI易团聚,还原试剂价格昂贵 | |
蒸发冷凝法 | 激光加热铁靶至铁原子蒸发,在惰性气体中快速凝结形成nZVI | 可控制粒径大小,nZVI纯度高,化学活性强 | 制备时间长,设备价格 昂贵 | |
碳热还原法 | 含碳物质与氯化亚铁混合物高温热解,铁离子在保护气的高温环境中被碳还原,得到nZVI | 原料便宜易得,nZVI纯 度高 | 制备条件苛刻,设备能 耗高 | |
热分解法 | 含铁有机金属分子高温热分解,铁元素被还原,形成nZVI | 可调控粒径分布 | 制备条件苛刻,设备能 耗高 | |
电化学法 | 利用电解法,使铁离子在阴极上沉积,生成nZVI | nZVI活性高,nZVI不易团聚 | 制备条件苛刻 | |
超声辅助法 | 利用超声作用促进传质,抑制液相还原制备的nZVI | 可调控粒径分布 | nZVI易高温氧化 | |
绿色还原 合成法 | 多以植物提取物作为原料 | 利用植物(如薄荷叶、大戟叶、葡萄籽、芒果皮、茶叶类)提取物与铁离子溶液混合加热还原制备nZVI | 制备成本低,原料来源广,无有害废物产生 | 铁离子还原不彻底且nZVI会形成团聚体 |
材料 | 污染物和其降解效率 | 降解产物 | 降解机制 | 文献 |
---|---|---|---|---|
100.0 g/L nZVI 800.0 ml/min O2 | 10.0 mg/L双氯芬酸 21.3% | — | 氧化 | [ |
3.5 g/L ZVI >0.1 mg/L O2 | 50.0 mg/L硝基苯 39.0% | 丁烯二酸 | 氧化 | [ |
0.4 g/L nZVI O2(连通大气) | 10.0 mg/L 2,4-二氯苯酚 46.7% | — | 氧化、吸附 | [ |
0.2 g/L nZVI O2(连通大气) | 40.0 mg/L 硝基苯 81.0% | 二氧化碳、水 | 氧化 | [ |
1.0 g/L nZVI 8.7 g/L O2 | 20.0 mg/L Sb(Ⅲ) 86.8% | — | 氧化、吸附 | [ |
0.01 g nZVI 0.2 m3/h O2 | 5.0 mg/L 罗丹明B 91.2% | — | 氧化 | [ |
表2 nZVI/O2体系去除环境中污染物的研究进展
Table 2 Research progress on remediation of contaminants by nZVI/O2 system in environment
材料 | 污染物和其降解效率 | 降解产物 | 降解机制 | 文献 |
---|---|---|---|---|
100.0 g/L nZVI 800.0 ml/min O2 | 10.0 mg/L双氯芬酸 21.3% | — | 氧化 | [ |
3.5 g/L ZVI >0.1 mg/L O2 | 50.0 mg/L硝基苯 39.0% | 丁烯二酸 | 氧化 | [ |
0.4 g/L nZVI O2(连通大气) | 10.0 mg/L 2,4-二氯苯酚 46.7% | — | 氧化、吸附 | [ |
0.2 g/L nZVI O2(连通大气) | 40.0 mg/L 硝基苯 81.0% | 二氧化碳、水 | 氧化 | [ |
1.0 g/L nZVI 8.7 g/L O2 | 20.0 mg/L Sb(Ⅲ) 86.8% | — | 氧化、吸附 | [ |
0.01 g nZVI 0.2 m3/h O2 | 5.0 mg/L 罗丹明B 91.2% | — | 氧化 | [ |
材料 | 污染物及其降解效率 | 降解产物 | 降解机制 | 文献 |
---|---|---|---|---|
0.1 g/L nZVI 20.0 mmol/L H2O2 | 50.0 mg/L 四环素 9.8% | 二氧化碳、水、小分子有机物(草酸、甲酸) | 氧化 | [ |
0.5 g/L ZVI 1.0 mmol/L H2O2 | 10.0 mg/L 诺氟沙星 56.7% | — | 氧化 | [ |
0.4 g/L nZVI 0.05% H2O2 | 50.0 mg/L 五氯苯酚 57.0% | — | 氧化、吸附 | [ |
1.5 mmol/L nZVI 5.0 mmol/L H2O2 | 100.0 mg/kg 萘 <60.0% | 二氧化碳、水 | 氧化 | [ |
2.0 g/L nZVI 2.5 ml/L H2O2 | 有机卤素 85.0% | — | 氧化 | [ |
1∶2 膨润土负载nZVI/FeS2 2.0 mmol/L H2O2 | 0.04 mmol/L阿特拉津 98.0% | 二氧化碳、水、无机氮(氯) | 氧化 | [ |
4.0 g/L聚丙烯腈包覆nZVI 1.0 mmol/L H2O2 | 50.0 mg/L罗丹明B 98.3% | 二氧化碳、水 | 氧化、吸附 | [ |
0.02 g/L nZVI 1.0 mmol/L H2O2 | 10.0 mg/L磺胺乙嗪 99.0% | — | 氧化 | [ |
表3 nZVI/H2O2体系去除环境中污染物的研究进展
Table 3 Research progress on remediation of contaminants by nZVI/H2O2 system in environment
材料 | 污染物及其降解效率 | 降解产物 | 降解机制 | 文献 |
---|---|---|---|---|
0.1 g/L nZVI 20.0 mmol/L H2O2 | 50.0 mg/L 四环素 9.8% | 二氧化碳、水、小分子有机物(草酸、甲酸) | 氧化 | [ |
0.5 g/L ZVI 1.0 mmol/L H2O2 | 10.0 mg/L 诺氟沙星 56.7% | — | 氧化 | [ |
0.4 g/L nZVI 0.05% H2O2 | 50.0 mg/L 五氯苯酚 57.0% | — | 氧化、吸附 | [ |
1.5 mmol/L nZVI 5.0 mmol/L H2O2 | 100.0 mg/kg 萘 <60.0% | 二氧化碳、水 | 氧化 | [ |
2.0 g/L nZVI 2.5 ml/L H2O2 | 有机卤素 85.0% | — | 氧化 | [ |
1∶2 膨润土负载nZVI/FeS2 2.0 mmol/L H2O2 | 0.04 mmol/L阿特拉津 98.0% | 二氧化碳、水、无机氮(氯) | 氧化 | [ |
4.0 g/L聚丙烯腈包覆nZVI 1.0 mmol/L H2O2 | 50.0 mg/L罗丹明B 98.3% | 二氧化碳、水 | 氧化、吸附 | [ |
0.02 g/L nZVI 1.0 mmol/L H2O2 | 10.0 mg/L磺胺乙嗪 99.0% | — | 氧化 | [ |
材料 | 污染物及其降解效率 | 降解产物 | 降解机制 | 文献 |
---|---|---|---|---|
0.02 g/L CaO2 0.02 g/L FeS | 19.6 mg/L三氯乙烯 9.3% | 二氧化碳、氯离子 | 氧化 | [ |
0.05 g/L聚乙烯包覆CaO2 0.02 g/L FeS | 19.6 mg/L三氯乙烯 11.0% | — | 氧化 | [ |
0.09 g/L FeS 0.02 g/L 纳米CaO2 | 19.6 mg/L三氯乙烯 <20.0% | — | 氧化 | [ |
5.0 g/L CaO2 1.0%(质量分数)黄铁矿 | 0.1 mmol/L对氨基苯磺酰胺 80.0% | — | 氧化 | [ |
0.1 g/L FeS2 0.07 g/L CaO2 | 10.0 mg/L邻苯二甲酸二乙酯 100.0% | 二氧化碳 | 氧化 | [ |
0.04 g/L CaO2 0.04 g/L 铁基泡沫 | 19.6 mg/L 三氯乙烯 100.0% | — | 氧化 | [ |
表4 还原性铁基材料/CaO2体系去除环境中污染物的研究进展
Table 4 Research progress on remediation of contaminants by reduced iron-based materials/CaO2 system in environment
材料 | 污染物及其降解效率 | 降解产物 | 降解机制 | 文献 |
---|---|---|---|---|
0.02 g/L CaO2 0.02 g/L FeS | 19.6 mg/L三氯乙烯 9.3% | 二氧化碳、氯离子 | 氧化 | [ |
0.05 g/L聚乙烯包覆CaO2 0.02 g/L FeS | 19.6 mg/L三氯乙烯 11.0% | — | 氧化 | [ |
0.09 g/L FeS 0.02 g/L 纳米CaO2 | 19.6 mg/L三氯乙烯 <20.0% | — | 氧化 | [ |
5.0 g/L CaO2 1.0%(质量分数)黄铁矿 | 0.1 mmol/L对氨基苯磺酰胺 80.0% | — | 氧化 | [ |
0.1 g/L FeS2 0.07 g/L CaO2 | 10.0 mg/L邻苯二甲酸二乙酯 100.0% | 二氧化碳 | 氧化 | [ |
0.04 g/L CaO2 0.04 g/L 铁基泡沫 | 19.6 mg/L 三氯乙烯 100.0% | — | 氧化 | [ |
材料 | 污染物及其降解效率 | 降解产物 | 降解机制 | 文献 |
---|---|---|---|---|
1.8 g/kg nZVI 30.0 g/kg 过硫酸盐 | 0.1 g/kg蒽 <25.0% | 二氧化碳、水 | 氧化 | [ |
0.6 g/L nZVI 1.6 mmol/L 过硫酸盐 | 1.0 mg/L菲 70.4% | 二氧化碳、水 | 吸附、氧化 | [ |
0.5 g/L 膨润土负载nZVI 1.0 mmol/L 过硫酸盐 | 0.1 mmol/L苯酚 71.5% | 儿茶酚、1,4-苯醌、丙酸、甲酸 | 氧化 | [ |
3.0 g/kg nZVI 25.0 mmol/L过硫酸盐 | 5.0 mg/kg 四溴双酚A 78.3% | — | 氧化 | [ |
1.0 g/L生物碳负载ZVI 0.5 mmol/L 过一硫酸氢盐 | 10.0 mg/L 阿特拉津 79.3% | 二氧化碳、水、无机氮、氯离子 | 氧化 | [ |
0.1 g/L nZVI 12.0 mmol/L 过硫酸盐 | 100.0 mg/L诺氟沙星 93.8% | 短链酸、二氧化碳、水 | 氧化 | [ |
1.0 g/L 生物炭负载nZVI 0.8 mmol/L 过硫酸盐 | 10.0 mg/L 双酚A 98.0% | 二氧化碳、水 | 氧化 | [ |
0.8 g/L 碳包覆ZVI 1.0 mmol/L 过硫酸氢盐 | 40.0 mg/L左氧氟沙星 99.0% | 二氧化碳、水 | 吸附、氧化 | [ |
表5 nZVI/过硫酸盐体系去除环境中污染物的研究进展
Table 5 Research progress on remediation of contaminants by nZVI/persulfate system in environment
材料 | 污染物及其降解效率 | 降解产物 | 降解机制 | 文献 |
---|---|---|---|---|
1.8 g/kg nZVI 30.0 g/kg 过硫酸盐 | 0.1 g/kg蒽 <25.0% | 二氧化碳、水 | 氧化 | [ |
0.6 g/L nZVI 1.6 mmol/L 过硫酸盐 | 1.0 mg/L菲 70.4% | 二氧化碳、水 | 吸附、氧化 | [ |
0.5 g/L 膨润土负载nZVI 1.0 mmol/L 过硫酸盐 | 0.1 mmol/L苯酚 71.5% | 儿茶酚、1,4-苯醌、丙酸、甲酸 | 氧化 | [ |
3.0 g/kg nZVI 25.0 mmol/L过硫酸盐 | 5.0 mg/kg 四溴双酚A 78.3% | — | 氧化 | [ |
1.0 g/L生物碳负载ZVI 0.5 mmol/L 过一硫酸氢盐 | 10.0 mg/L 阿特拉津 79.3% | 二氧化碳、水、无机氮、氯离子 | 氧化 | [ |
0.1 g/L nZVI 12.0 mmol/L 过硫酸盐 | 100.0 mg/L诺氟沙星 93.8% | 短链酸、二氧化碳、水 | 氧化 | [ |
1.0 g/L 生物炭负载nZVI 0.8 mmol/L 过硫酸盐 | 10.0 mg/L 双酚A 98.0% | 二氧化碳、水 | 氧化 | [ |
0.8 g/L 碳包覆ZVI 1.0 mmol/L 过硫酸氢盐 | 40.0 mg/L左氧氟沙星 99.0% | 二氧化碳、水 | 吸附、氧化 | [ |
1 | Sun M C, Jiang H X, Zhang Z H, et al. Coupling direct voltage and granular activated carbon modified nanoscale zero valent iron for enhancing anaerobic methane production[J]. Chemosphere, 2022, 286: 131840. |
2 | Xie Y J, Zhang M Y, Ma L H, et al. Overlooked encounter process that affects physical behaviors of stabilized nanoscale zero-valent iron during in situ groundwater remediation[J]. Journal of Hazardous Materials, 2024, 461: 132547. |
3 | Yang X Y, Li X M, Wang X J, et al. Magnetic triiron tetraoxide/biochar-loaded nanoscale zero-valent iron for chromium (Ⅵ) removal from aqueous solution[J]. Journal of the Taiwan Institute of Chemical Engineers, 2024, 159: 105458. |
4 | Hu Y B, Du T, Ma L H, et al. Insights into the mechanisms of aqueous Cd(Ⅱ) reduction and adsorption by nanoscale zerovalent iron under different atmosphere conditions[J]. Journal of Hazardous Materials, 2022, 440: 129766. |
5 | Ohta N, Kobayashi M, Kawase Y. Removal of pharmaceutically active compounds (PhACs) by zero-valent iron: quantification of removal mechanisms consisting of degradation, adsorption and co-precipitation[J]. Environmental Science and Pollution Research, 2023, 30(13): 38819-38831. |
6 | Lan J T, Qiu L J, Cai X, et al. Oxalate-modified microscale zero-valent iron for trichloroethylene elimination by adsorption enhancement and accelerating electron transfer[J]. Separation and Purification Technology, 2024, 331: 125966. |
7 | Huang D, Liu J Y, Zhang J H, et al. Enhanced removal of florfenicol by distributing nanoscale zerovalent iron onto activated carbon: mechanism and toxicity evaluation[J]. Chemical Engineering Journal, 2024, 479: 147938. |
8 | Nandana B, John S, Velmaiel K E, et al. Passivation bypassed zero valent iron based heterostructures for effective removal of persistent antibiotics by solar driven photo-Fenton process[J]. Journal of Environmental Chemical Engineering, 2024, 12(1): 111567. |
9 | Sun Y, Xia L, Wang J Y, et al. Activation of H2O2 via sulfide-modified nanoscale zero-valent iron for tetracycline removal: performance and mechanism[J]. Separation and Purification Technology, 2024, 330: 125238. |
10 | Khoshnam M, Salimijazi H. Synthesis and characterization of magnetic-photocatalytic Fe3O4/SiO2/α-Fe2O3 nano core-shell[J]. Surfaces and Interfaces, 2021, 26: 101322. |
11 | Thomas N, Dionysiou D D, Pillai S C. Heterogeneous Fenton catalysts: a review of recent advances[J]. Journal of Hazardous Materials, 2021, 404: 124082. |
12 | Raji M, Ahmad Mirbagheri S, Ye F, et al. Nano zero-valent iron on activated carbon cloth support as Fenton-like catalyst for efficient color and COD removal from melanoidin wastewater[J]. Chemosphere, 2021, 263: 127945. |
13 | Zhang J Q, Zhu Q, Xing Z P. Preparation of new materials by ethylene glycol modification and Al(OH)3 coating nZVI to remove sulfides in water[J]. Journal of Hazardous Materials, 2020, 390: 122049. |
14 | Zhang Y H, Li D L, She L, et al. Ball-milled zero-valent iron with formic acid for effectively removing Cu(Ⅱ)-EDTA accomplished by EDTA ligands oxidative degradation and Cu(Ⅱ) removal[J]. Journal of Hazardous Materials, 2024, 465: 133009. |
15 | Valiev R Z, Straumal B, Langdon T G. Using severe plastic deformation to produce nanostructured materials with superior properties[J]. Annual Review of Materials Research, 2022, 52: 357-382. |
16 | El-Fattah H A. Effect of surface morphology on optical properties of two multilayer structures CuO/ZnO/SiC and Al2O3/ZnO/SiC[J]. Scientific Reports, 2023, 13: 23035. |
17 | 刘雪羽, 吴齐叶, 敖良根, 等. 纳米零价铁的改性及去除重金属的应用研究[J]. 应用化工, 2023, 52(12): 3459-3465. |
Liu X Y, Wu Q Y, Ao L G, et al. Study on modification of nano-sized zero-valent iron and its application in heavy metal removal[J]. Applied Chemical Industry, 2023, 52(12): 3459-3465. | |
18 | Chen A K, Huang Y, Liu H. Fabrication of Chitin microspheres supported sulfidated nano zerovalent iron and their performance in Cr(Ⅵ) removal[J]. Chemosphere, 2023, 338: 139609. |
19 | Liu Z W, Dong S S, Zou D, et al. Electrochemically mediated nitrate reduction on nanoconfined zerovalent iron: properties and mechanism[J]. Water Research, 2020, 173: 115596. |
20 | Pang Y X, Ruan Y, Feng Y, et al. Ultrasound assisted zero valent iron corrosion for peroxymonosulfate activation for Rhodamine-B degradation[J]. Chemosphere, 2019, 228: 412-417. |
21 | Wang P, Fu F G, Liu T Y. A review of the new multifunctional nano zero-valent iron composites for wastewater treatment: emergence, preparation, optimization and mechanism[J]. Chemosphere, 2021, 285: 131435. |
22 | Phyu Mon P, Cho P P, Chanadana L, et al. Bio-waste assisted phase transformation of Fe3O4/carbon to nZVI/graphene composites and its application in reductive elimination of Cr(Ⅵ) removal from aquifer[J]. Separation and Purification Technology, 2023, 306: 122632. |
23 | 何飞飞, 陈维芳, 陈再, 等. 碳热法合成纳米零价铁-活性炭复合材料性质表征和应用[J]. 能源研究与信息, 2020, 36(2): 63-68. |
He F F, Chen W F, Chen Z, et al. Characterization and application of nanoscale zero-valent iron-carbon composite synthesized by carbothermal method[J]. Energy Research and Information, 2020, 36(2): 63-68. | |
24 | Deewan R, Yan D Y S, Khamdahsag P, et al. Remediation of arsenic-contaminated water by green zero-valent iron nanoparticles[J]. Environmental Science and Pollution Research, 2023, 30(39): 90352-90361. |
25 | Gan L, Li B B, Guo M Y, et al. Mechanism for removing 2,4-dichlorophenol via adsorption and Fenton-like oxidation using iron-based nanoparticles[J]. Chemosphere, 2018, 206: 168-174. |
26 | Guo M Y, Weng X L, Wang T, et al. Biosynthesized iron-based nanoparticles used as a heterogeneous catalyst for the removal of 2,4-dichlorophenol[J]. Separation and Purification Technology, 2017, 175: 222-228. |
27 | Liu C M, Diao Z H, Huo W Y, et al. Simultaneous removal of Cu2+ and bisphenol A by a novel biochar-supported zero valent iron from aqueous solution: synthesis, reactivity and mechanism[J]. Environmental Pollution, 2018, 239: 698-705. |
28 | Kumar K M, Mandal B K, Kumar K S, et al. Biobased green method to synthesise palladium and iron nanoparticles using Terminalia chebula aqueous extract[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2013, 102: 128-133. |
29 | Wang B, Zhu C, Ai D, et al. Activation of persulfate by green nano-zero-valent iron-loaded biochar for the removal of p-nitrophenol: performance, mechanism and variables effects[J]. Journal of Hazardous Materials, 2021, 417: 126106. |
30 | Patil S P, Sahu K G, Andhale G S. Lantana camara mediated green synthesis of metallic nanoparticles: a mini review[J]. Inorganic Chemistry Communications, 2024, 160: 111853. |
31 | Diao Z H, Xu X R, Jiang D, et al. Bentonite-supported nanoscale zero-valent iron/persulfate system for the simultaneous removal of Cr(Ⅵ) and phenol from aqueous solutions[J]. Chemical Engineering Journal, 2016, 302: 213-222. |
32 | Kim H S, Kim T, Ahn J Y, et al. Aging characteristics and reactivity of two types of nanoscale zero-valent iron particles (FeBH and FeH2) in nitrate reduction[J]. Chemical Engineering Journal, 2012, 197: 16-23. |
33 | Liu Y Q, Choi H, Dionysiou D, et al. Trichloroethene hydrodechlorination in water by highly disordered monometallic nanoiron[J]. Chemistry of Materials, 2005, 17(21): 5315-5322. |
34 | Tang H, Wang J Q, Zhang S, et al. Recent advances in nanoscale zero-valent iron-based materials: characteristics, environmental remediation and challenges[J]. Journal of Cleaner Production, 2021, 319: 128641. |
35 | Wang Y L, Liu Y Z, Su G P, et al. Transformation and implication of nanoparticulate zero valent iron in soils[J]. Journal of Hazardous Materials, 2021, 412: 125207. |
36 | 王艳龙, 林道辉. 纳米零价铁与土壤组分的相互作用及其环境效应[J]. 化学进展, 2017, 29(9): 1072-1081. |
Wang Y L, Lin D H. The interaction between nano zero-valent iron and soil components and its environmental implication[J]. Progress in Chemistry, 2017, 29(9): 1072-1081. | |
37 | Wang Y L, Zou Y T, Yang K, et al. Reciprocal interferences of heavy metal and dissolved organic matter on their immobilizations by modulating the interfacial interactions with nanoscale zero-valent iron[J]. Separation and Purification Technology, 2022, 298: 121671. |
38 | Qian W, Liang J Y, Zhang W X, et al. A porous biochar supported nanoscale zero-valent iron material highly efficient for the simultaneous remediation of cadmium and lead contaminated soil[J]. Journal of Environmental Sciences, 2022, 113: 231-241. |
39 | Crane R A, Sapsford D J. Selective formation of copper nanoparticles from acid mine drainage using nanoscale zerovalent iron particles[J]. Journal of Hazardous Materials, 2018, 347: 252-265. |
40 | Fang Y, Wen J, Zhang H B, et al. Enhancing Cr(Ⅵ) reduction and immobilization by magnetic core-shell structured NZVI@MOF derivative hybrids[J]. Environmental Pollution, 2020, 260: 114021. |
41 | Wu Z C, Su X B, Lin Z, et al. Mechanism of As(Ⅴ) removal by green synthesized iron nanoparticles[J]. Journal of Hazardous Materials, 2019, 379: 120811. |
42 | Xia X, Liu J, Jin L, et al. Organic matter counteracts the enhancement of Cr(Ⅲ) extractability during the Fe(Ⅱ)-catalyzed ferrihydrite transformation: a nanoscale- and molecular-level investigation[J]. Environmental Science & Technology, 2023, 57(36): 13496-13505. |
43 | Frierdich A J, McBride A, Tomkinson S, et al. Nickel cycling and negative feedback on Fe(Ⅱ)-catalyzed recrystallization of goethite[J]. ACS Earth and Space Chemistry, 2019, 3(9): 1932-1941. |
44 | Crane R A, Scott T B. Nanoscale zero-valent iron: future prospects for an emerging water treatment technology[J]. Journal of Hazardous Materials, 2012, 211: 112-125. |
45 | Wei K, Li H, Gu H Y, et al. Strained zero-valent iron for highly efficient heavy metal removal[J]. Advanced Functional Materials, 2022, 32(26): 2200498. |
46 | Mu Y, Ai Z H, Zhang L Z, et al. Insight into core-shell dependent anoxic Cr(Ⅵ) removal with Fe@Fe2O3 nanowires: indispensable role of surface bound Fe(Ⅱ)[J]. ACS Applied Materials & Interfaces, 2015, 7(3): 1997-2005. |
47 | Li S, Tang J C, Liu Q L, et al. A novel stabilized carbon-coated nZVI as heterogeneous persulfate catalyst for enhanced degradation of 4-chlorophenol[J]. Environment International, 2020, 138: 105639. |
48 | Huang X Y, Niu X J, Zhang D Q, et al. Fate and mechanistic insights into nanoscale zerovalent iron (nZVI) activation of sludge derived biochar reacted with Cr(Ⅵ)[J]. Journal of Environmental Management, 2022, 319: 115771. |
49 | Diao Z H, Du J J, Jiang D, et al. Insights into the simultaneous removal of Cr6+ and Pb2+ by a novel sewage sludge-derived biochar immobilized nanoscale zero valent iron: coexistence effect and mechanism[J]. Science of the Total Environment, 2018, 642: 505-515. |
50 | Zhao Y, Li Q X, Shi Q T, et al. Mechanisms of phosphate removal by micron-scale zero-valent iron[J]. Separation and Purification Technology, 2023, 319: 123706. |
51 | Nagoya S, Nakamichi S, Kawase Y. Mechanisms of phosphate removal from aqueous solution by zero-valent iron: a novel kinetic model for electrostatic adsorption, surface complexation and precipitation of phosphate under oxic conditions[J]. Separation and Purification Technology, 2019, 218: 120-129. |
52 | Rodríguez-Maroto J M, García-Herruzo F, García-Rubio A, et al. Kinetics of the chemical reduction of nitrate by zero-valent iron[J]. Chemosphere, 2009, 74(6): 804-809. |
53 | Erhardt C S, Basegio T M, Capela I, et al. AOX degradation of the pulp and paper industry bleaching wastewater using nZVI in two different agitation processes[J]. Environmental Technology & Innovation, 2021, 22: 101420. |
54 | Guo Y G, Huang W L, Chen B, et al. Removal of tetracycline from aqueous solution by MCM-41-zeolite A loaded nano zero valent iron: synthesis, characteristic, adsorption performance and mechanism[J]. Journal of Hazardous Materials, 2017, 339: 22-32. |
55 | Xu H, Zhang L, Yao C H, et al. Synergistic effect of extracellular polymeric substances and carbon layer on electron utilization of Fe@C during anaerobic treatment of refractory wastewater[J]. Water Research, 2023, 231: 119609. |
56 | Qin C Y, Zhang J Y, Zhang C W, et al. Abiotic transformation of nitrobenzene by zero valent iron under aerobic conditions: relative contributions of reduction and oxidation in the presence of ethylene diamine tetraacetic acid[J]. Environmental Science & Technology, 2021, 55(10): 6828-6837. |
57 | Gu H, Gao Y Q, Xiong M M, et al. Removal of nitrobenzene from aqueous solution by graphene/biochar supported nanoscale zero-valent-iron: reduction enhancement behavior and mechanism[J]. Separation and Purification Technology, 2021, 275: 119146. |
58 | Ahmad S, Liu X M, Tang J C, et al. Biochar-supported nanosized zero-valent iron (nZVI/BC) composites for removal of nitro and chlorinated contaminants[J]. Chemical Engineering Journal, 2022, 431: 133187. |
59 | Ou Y H, Wei C Y, Shih Y H. Short-chain organic acids increase the reactivity of zerovalent iron nanoparticles toward polychlorinated aromatic pollutants[J]. Chemical Engineering Journal, 2016, 284: 372-379. |
60 | Gao F L, Zhang M Y, Yang X Z, et al. Post-sulfidation of biochar supported nanoscale zero-valent iron with different sulfur precursors: reactivity and selectivity on tetrabromobisphenol A reduction[J]. Chemical Engineering Journal, 2023, 461: 141953. |
61 | Cheng R, Wang J L, Zhang W X. Degradation of chlorinated phenols by nanoscale zero-valent iron[J]. Frontiers of Environmental Science & Engineering in China, 2008, 2(1): 103-108. |
62 | Keenan C R, Sedlak D L. Factors affecting the yield of oxidants from the reaction of nanoparticulate zero-valent iron and oxygen[J]. Environmental Science & Technology, 2008, 42(4): 1262-1267. |
63 | Joo S H, Feitz A J, Waite T D. Oxidative degradation of the carbothioate herbicide, molinate, using nanoscale zero-valent iron[J]. Environmental Science & Technology, 2004, 38(7): 2242-2247. |
64 | Huang Q, Cao M H, Ai Z H, et al. Reactive oxygen species dependent degradation pathway of 4-chlorophenol with Fe@Fe2O3 core-shell nanowires[J]. Applied Catalysis B: Environmental, 2015, 162: 319-326. |
65 | Chi Z F, Ju S J, Liu X Y, et al. Graphene oxide supported sulfidated nano zero-valent iron (S-nZVI@GO) for antimony removal: the role of active oxygen species and reaction mechanism[J]. Chemosphere, 2022, 308: 136253. |
66 | Lee H, Lee H J, Kim H E, et al. Oxidant production from corrosion of nano- and microparticulate zero-valent iron in the presence of oxygen: a comparative study[J]. Journal of Hazardous Materials, 2014, 265: 201-207. |
67 | Ali M, Danish M, Tariq M, et al. Mechanistic insights into the degradation of trichloroethylene by controlled release nano calcium peroxide activated by iron species coupled with nano iron sulfide[J]. Chemical Engineering Journal, 2020, 399: 125754. |
68 | Zhang F, Chen C, Zhou J R, et al. Enhancing O2 resistance during storage and 2,4-dichlorophenol degradation reaction of nano zero-valent iron by in situ formation on the partially delignified stalk[J]. Separation and Purification Technology, 2024, 332: 125818. |
69 | Li S, Tang J C, Wang L, et al. Carbon coating enhances single-electron oxygen reduction reaction on nZVI surface for oxidative degradation of nitrobenzene[J]. Science of the Total Environment, 2021, 770: 144680. |
70 | Xue C, Peng Y M, Chen A W, et al. Drastically inhibited nZVI-Fenton oxidation of organic pollutants by cysteine: multiple roles in the nZVI/O2/hv system[J]. Journal of Colloid and Interface Science, 2021, 582: 22-29. |
71 | Xie W J, Yuan S H, Tong M, et al. Contaminant degradation by ·OH during sediment oxygenation: dependence on Fe(Ⅱ) species[J]. Environmental Science & Technology, 2020, 54(5): 2975-2984. |
72 | He J, Miller C J, Collins R, et al. Production of a surface-localized oxidant during oxygenation of mackinawite (FeS)[J]. Environmental Science & Technology, 2020, 54(2): 1167-1176. |
73 | Bae S, Collins R N, Waite T D, et al. Advances in surface passivation of nanoscale zerovalent iron: a critical review[J]. Environmental Science & Technology, 2018, 52(21): 12010-12025. |
74 | Liu J J, Diao Z H, Liu C M, et al. Synergistic reduction of copper (Ⅱ) and oxidation of norfloxacin over a novel sewage sludge-derived char-based catalyst: performance, fate and mechanism[J]. Journal of Cleaner Production, 2018, 182: 794-804. |
75 | Diao Z H, Chu W. FeS2 assisted degradation of atrazine by bentonite-supported nZVI coupling with hydrogen peroxide process in water: performance and mechanism[J]. Science of the Total Environment, 2021, 754: 142155. |
76 | Sahu R S, Bindumadhavan K, Doong R A. Boron-doped reduced graphene oxide-based bimetallic Ni/Fe nanohybrids for the rapid dechlorination of trichloroethylene[J]. Environmental Science: Nano, 2017, 4(3): 565-576. |
77 | Ling R, Chen J P, Shao J H, et al. Degradation of organic compounds during the corrosion of ZVI by hydrogen peroxide at neutral pH: kinetics, mechanisms and effect of corrosion promoting and inhibiting ions[J]. Water Research, 2018, 134: 44-53. |
78 | Cheng R, Cheng C, Liu G H, et al. Removing pentachlorophenol from water using a nanoscale zero-valent iron/H2O2 system[J]. Chemosphere, 2015, 141: 138-143. |
79 | Son H S, Im J K, Zoh K D. A Fenton-like degradation mechanism for 1,4-dioxane using zero-valent iron (Fe0) and UV light[J]. Water Research, 2009, 43(5): 1457-1463. |
80 | Ghauch A, Baydoun H, Dermesropian P. Degradation of aqueous carbamazepine in ultrasonic/Fe0/H2O2 systems[J]. Chemical Engineering Journal, 2011, 172(1): 18-27. |
81 | Zhou T, Li Y Z, Wong F S, et al. Enhanced degradation of 2,4-dichlorophenol by ultrasound in a new Fenton like system (Fe/EDTA) at ambient circumstance[J]. Ultrasonics Sonochemistry, 2008, 15(5): 782-790. |
82 | Lu B Z, Fang Z Q, Tsang P E. Effect and mechanism of norfloxacin removal by Eucalyptus leaf extract enhanced the ZVI/H2O2 process[J]. Science of the Total Environment, 2024, 914: 169820. |
83 | Yang R M, Zeng G L, Xu Z Q, et al. Insights into the role of nanoscale zero-valent iron in Fenton oxidation and its application in naphthalene degradation from water and slurry systems[J]. Water Environment Research, 2022, 94(4): e10710. |
84 | Xu Y, Guo Q, Li Y, et al. Stabilization of nano zero-valent iron by electrospun composite mat with good catalysis and recyclability[J]. Journal of Cleaner Production, 2022, 363: 132459. |
85 | Lin C C, Cheng Y J. Effectiveness of using nanoscale zero-valent iron and hydrogen peroxide in degrading sulfamethazine in water[J]. Journal of the Taiwan Institute of Chemical Engineers, 2021, 118: 179-186. |
86 | Aggelopoulos C A, Meropoulis S, Hatzisymeon M, et al. Degradation of antibiotic enrofloxacin in water by gas-liquid nsp-DBD plasma: parametric analysis, effect of H2O2 and CaO2 additives and exploration of degradation mechanisms[J]. Chemical Engineering Journal, 2020, 398: 125622. |
87 | Pan J Y, Xie Y. Relativistic transformation between τ and TCG for Mars missions under IAU resolutions[J]. Research in Astronomy and Astrophysics, 2014, 14(2): 233-240. |
88 | Liang W, Zhou N Q, Dai C M, et al. Study of diclofenac removal by the application of combined zero-valent iron and calcium peroxide nanoparticles in groundwater[J]. Journal of Groundwater Science and Engineering, 2021, 9(3): 171-180. |
89 | Hou C, Zhao J, Zhang Y L, et al. Enhanced simultaneous removal of cadmium, lead, and acetochlor in hyporheic zones with calcium peroxide coupled with zero-valent iron: mechanisms and application[J]. Chemical Engineering Journal, 2022, 427: 130900. |
90 | Wang Y L, Xu J, Yang K, et al. A versatile nanocomposite Fe0@SiO2@CaO2 for reductive, oxidative, and coagulation removal of organic and inorganic contaminants from water[J]. Chemical Engineering Journal, 2023, 454: 140048. |
91 | 姚静波, 周杰, 王明新, 等. 纳米零价铁和过氧化钙联合降解土壤淋洗废液的α-HCH[J]. 环境科学, 2018, 39(11): 5142-5150. |
Yao J B, Zhou J, Wang M X, et al. Degradation of α-HCH in soil washing solutions with nZVI and CaO2 [J]. Environmental Science, 2018, 39(11): 5142-5150. | |
92 | Ali M, Zhang X, Idrees A, et al. Advancement in Fenton-like reactions using PVA coated calcium peroxide/FeS system: pivotal role of sulfide ion in regenerating the Fe(Ⅱ) ions and improving trichloroethylene degradation[J]. Journal of Environmental Chemical Engineering, 2021, 9(1): 104591. |
93 | Sun Y, Danish M, Ali M, et al. Trichloroethene degradation by nanoscale CaO2 activated with Fe(Ⅱ)/FeS: the role of FeS and the synergistic activation mechanism of Fe(Ⅱ)/FeS[J]. Chemical Engineering Journal, 2020, 394: 124830. |
94 | Kim J G, Kim H B, Jeong W G, et al. Enhanced-oxidation of sulfanilamide in groundwater using combination of calcium peroxide and pyrite[J]. Journal of Hazardous Materials, 2021, 419: 126514. |
95 | Zhou Y, Huang M, Wang X L, et al. Efficient transformation of diethyl phthalate using calcium peroxide activated by pyrite[J]. Chemosphere, 2020, 253: 126662. |
96 | Huang J Y, Li N, Zhou Z Y, et al. Comparative studies on trichloroethylene degradation by Fe foam catalyzing three hydrogen peroxide-based oxidants[J]. Journal of Environmental Chemical Engineering, 2022, 10(2): 107335. |
97 | Wang J L, Wang S Z. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants[J]. Chemical Engineering Journal, 2018, 334: 1502-1517. |
98 | Li S, Tang J C, Yu C, et al. Efficient degradation of anthracene in soil by carbon-coated nZVI activated persulfate[J]. Journal of Hazardous Materials, 2022, 431: 128581. |
99 | Zhou L, Wang Y C, Li D Q, et al. Efficient degradation of phenanthrene by biochar-supported nano zero-valent iron activated persulfate: performance evaluation and mechanism insights[J]. Environmental Science and Pollution Research International, 2023, 30(60): 125731-125740. |
100 | Yuan X H, Li T L, He Y Y, et al. Degradation of TBBPA by nZVI activated persulfate in soil systems[J]. Chemosphere, 2021, 284: 131166. |
101 | Chen M L, Yao X W, Diao Z H, et al. Oxalic acid enhanced removal of heavy metal and pesticide by peroxymonosulphate activation with a green biochar iron composite: reactivity and mechanism[J]. Separation and Purification Technology, 2023, 327: 125013. |
102 | Zhang Y C, Zhao L, Yang Y K, et al. Degradation of norfloxacin in an aqueous solution by the nanoscale zero-valent iron-activated persulfate process[J]. Journal of Nanomaterials, 2020, 2020: 3286383. |
103 | Huang S T, Lei Y Q, Guo P R, et al. Degradation of Levofloxacin by a green zero-valent iron-loaded carbon composite activating peroxydisulfate system: reactivity, products and mechanism[J]. Chemosphere, 2023, 340: 139899. |
104 | Wang Z, Qiu W, Pang S Y, et al. Relative contribution of ferryl ion species (Fe(Ⅳ)) and sulfate radical formed in nanoscale zero valent iron activated peroxydisulfate and peroxymonosulfate processes[J]. Water Research, 2020, 172: 115504. |
105 | Ji Q Q, Li J, Xiong Z K, et al. Enhanced reactivity of microscale Fe/Cu bimetallic particles (mFe/Cu) with persulfate (PS) for p-nitrophenol (PNP) removal in aqueous solution[J]. Chemosphere, 2017, 172: 10-20. |
106 | Guo X J, Yang Z, Dong H Y, et al. Simple combination of oxidants with zero-valent-iron (ZVI) achieved very rapid and highly efficient removal of heavy metals from water[J]. Water Research, 2016, 88: 671-680. |
107 | Sun X S, Ran Z X, Wu Y R, et al. Optimization of PAHs oxidation from contaminated soil using modified nanoscale zero-valent iron combined with potassium permanganate[J]. RSC Advances, 2022, 12(12): 7335-7346. |
108 | Wang X Y, Liu P, Fu M L, et al. Novel sequential process for enhanced dye synergistic degradation based on nano zero-valent iron and potassium permanganate[J]. Chemosphere, 2016, 155: 39-47. |
[1] | 裴蓓, 郝治斌, 徐天祥, 钟子琪, 李瑞, 贾冲, 段玉龙. 表面活性剂对含盐双流体细水雾灭火效能的影响[J]. 化工学报, 2024, 75(9): 3369-3378. |
[2] | 李舒月, 王欢, 周少强, 毛志宏, 张永民, 王军武, 吴秀花. 基于CPFD方法的U3O8氢还原流化床反应器数值模拟[J]. 化工学报, 2024, 75(9): 3133-3151. |
[3] | 曾港, 陈林, 杨董, 袁海专, 黄彦平. 矩形通道内超临界CO2局部热流场可视化实验[J]. 化工学报, 2024, 75(8): 2831-2839. |
[4] | 杨明军, 宋维, 张磊, 凌铮, 陈兵兵, 宋永臣. CO2-海水水合物生成强化方法研究[J]. 化工学报, 2024, 75(8): 2939-2948. |
[5] | 郑晓园, 蔡炎嶙, 应芝, 王波, 豆斌林. 污水污泥磷形态亚临界水热转化研究[J]. 化工学报, 2024, 75(8): 2970-2982. |
[6] | 张亚斌, 苏杨, 张慧荣, 宋一朋, 李健, 郭彦霞. 钢渣、电石渣增强硫化砷渣稳定化/固化机制[J]. 化工学报, 2024, 75(7): 2656-2669. |
[7] | 白炳林, 杜燊, 李明佳, 张传琪. 基于水相剥离的单壁碳纳米管薄膜透光和导电特性[J]. 化工学报, 2024, 75(7): 2680-2687. |
[8] | 刘旭升, 李泽洋, 杨宇森, 卫敏. 电催化二氧化碳还原制备气态产物的研究进展[J]. 化工学报, 2024, 75(7): 2385-2408. |
[9] | 张颂红, 赵欣怡, 楼小玲, 沈绍传, 贠军贤. 阳离子交换纳晶胶分离乳过氧化物酶的研究[J]. 化工学报, 2024, 75(7): 2574-2582. |
[10] | 罗莉, 陈文尧, 张晶, 钱刚, 周兴贵, 段学志. 氧化铝结构与表面性质调控及其催化甲醇脱水制二甲醚性能研究[J]. 化工学报, 2024, 75(7): 2522-2532. |
[11] | 王天闻, 闫肃, 赵梦园, 杨天让, 刘建国. 固体氧化物电池空气电极铬中毒机理及抗铬性能研究进展[J]. 化工学报, 2024, 75(6): 2091-2108. |
[12] | 李子扬, 郑楠, 方嘉宾, 魏进家. 再压缩S-CO2布雷顿循环性能分析及多目标优化[J]. 化工学报, 2024, 75(6): 2143-2156. |
[13] | 张广宇, 付然飞, 孙冰, 袁俊聪, 冯翔, 杨朝合, 徐伟. CO2-环氧丙烷合成碳酸丙烯酯:氢键供体效应研究[J]. 化工学报, 2024, 75(6): 2243-2251. |
[14] | 王岩, 周佳文, 孙培亮, 陈勇, 齐元红, 彭冲. 磁性聚氨基噻唑吸附剂脱除水体Hg2+性能[J]. 化工学报, 2024, 75(6): 2283-2298. |
[15] | 常成功, 宋皓楠, 雷飞霞, 狄子琛, 程芳琴. 高炉喷吹重整焦炉气工艺分析及减碳潜力研究[J]. 化工学报, 2024, 75(6): 2344-2352. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 336
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 560
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||