1 |
Xiong D H, Lu L M, Holmes R J. Physical separation of iron ore: magnetic separation[M]//Lu L M. Iron Ore. 2nd ed. Amsterdam: Elsevier, 2022: 309-332.
|
2 |
Zhang H Q, Zhang P F, Zhou F, et al. Application of multi-stage dynamic magnetizing roasting technology on the utilization of cryptocrystalline oolitic hematite: a review[J]. International Journal of Mining Science and Technology, 2022, 32(4): 865-876.
|
3 |
Dutta S K, Chokshi Y B. Basic Concepts of Iron and Steel Making[M]. Singapore: Springer, 2020.
|
4 |
Soni R K, Chinthapudi E, Tripathy S K, et al. Review on the chemical reduction modelling of hematite iron ore to magnetite in fluidized bed reactor[J]. Reviews in Chemical Engineering, 2022, 39(8): 1-44.
|
5 |
Lu L, Pan J, Zhu D. Quality requirements of iron ore for iron production[M]//Lu L M. Iron Ore. 2nd ed. Amsterdam: Elsevier, 2015: 475-504.
|
6 |
Sun T H, Shen Y F, Jia J P. Gas cleaning and hydrogen sulfide removal for COREX coal gas by sorption enhanced catalytic oxidation over recyclable activated carbon desulfurizer[J]. Environmental Science & Technology, 2014, 48(4): 2263-2272.
|
7 |
Yi S H, Choi M E, Kim D H, et al. FINEX® as an environmentally sustainable ironmaking process[J]. Ironmaking & Steelmaking, 2019, 46(7): 625-631.
|
8 |
Jeong S J. System dynamics approach for the impacts of FINEX technology and carbon taxes on steel demand: case study of the POSCO[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2015, 2(1): 85-93.
|
9 |
郭慕孙, 李洪钟. 流态化手册[M]. 北京: 化学工业出版社, 2008.
|
|
Guo M S, Li H Z. Handbook of Fluidization[M]. Beijing: Chemical Industry Press, 2008.
|
10 |
He S Y, Sun H Y, Hu C Q, et al. Direct reduction of fine iron ore concentrate in a conical fluidized bed[J]. Powder Technology, 2017, 313: 161-168.
|
11 |
Holappa L. Recent achievements in iron and steel technology[J]. Journal of Chemical Technology & Metallurgy, 2017, 52 (2): 159-167.
|
12 |
An R Y, Yu B Y, Li R, et al. Potential of energy savings and CO2 emission reduction in China's iron and steel industry[J]. Applied Energy, 2018, 226: 862-880.
|
13 |
Patisson F, Mirgaux O. Hydrogen ironmaking: how it works[J]. Metals, 2020, 10(7): 922.
|
14 |
Spreitzer D, Schenk J. Reduction of iron oxides with hydrogen—a review[J]. Steel Research International, 2019, 90(10): 1900108.
|
15 |
Shi J Y, Donskoi E, McElwain D L S, et al. Modelling the reduction of an iron ore-coal composite pellet with conduction and convection in an axisymmetric temperature field[J]. Mathematical and Computer Modelling, 2005, 42(1/2): 45-60.
|
16 |
Valipour M. Mathematical modeling of a non-catalytic gas-solid reaction: hematite pellet reduction with syngas[J]. Scientia Iranica, 2009, 16(2): 108-124.
|
17 |
Tang H, Guo Z, Kitagawa K. Simulation study on performance of Z-path moving-fluidized bed for gaseous reduction of iron ore fines[J]. ISIJ international, 2012, 52(7): 1241-1249.
|
18 |
Natsui S, Kikuchi T, Suzuki R O. Numerical analysis of carbon monoxide-hydrogen gas reduction of iron ore in a packed bed by an Euler-Lagrange approach[J]. Metallurgical and Materials Transactions B, 2014, 45: 2395-2413.
|
19 |
Nouri S, Ebrahim H A, Jamshidi E. Simulation of direct reduction reactor by the grain model[J]. Chemical Engineering Journal, 2011, 166(2): 704-709.
|
20 |
Ariyan Z G, Mohammad Sadegh V, Mojtaba B. Numerical analysis of complicated heat and mass transfer inside a wustite pellet during reducing to sponge iron by H2 and CO gaseous mixture[J]. Journal of Iron and Steel Research International, 2016, 23(11): 1142-1150.
|
21 |
Kinaci M E, Lichtenegger T, Schneiderbauer S. A CFD-DEM model for the simulation of direct reduction of iron-ore in fluidized beds[J]. Chemical Engineering Science, 2020, 227: 115858.
|
22 |
Kinaci M E, Lichtenegger T, Schneiderbauer S. Direct reduction of iron-ore in fluidized beds[J]. Computer Aided Chemical Engineering, 2018, 43: 217-222.
|
23 |
Schneiderbauer S, Pirker S, Puttinger S, et al. A Lagrangian-Eulerian hybrid model for the simulation of poly-disperse fluidized beds: application to industrial-scale olefin polymerization[J]. Powder Technology, 2017, 316: 697-710.
|
24 |
Kinaci M E, Lichtenegger T, Schneiderbauer S. Modelling of chemical reactions in metallurgical processes[C]// Proceedings of the 12th International Conference on Computational Fluid Dynamics in the Oil & Gas, Metallurgical and Process Industries. 2017.
|
25 |
Sakai M, Takahashi H, Pain C C, et al. Study on a large-scale discrete element model for fine particles in a fluidized bed[J]. Advanced Powder Technology, 2012, 23(5): 673-681.
|
26 |
Sakai M, Abe M, Shigeto Y, et al. Verification and validation of a coarse grain model of the DEM in a bubbling fluidized bed[J]. Chemical Engineering Journal, 2014, 244: 33-43.
|
27 |
Washino K, Hsu C H, Kawaguchi T, et al. Similarity model for DEM simulation of fluidized bed[J]. Journal of the Society of Powder Technology, Japan, 2007, 44: 198-205.
|
28 |
Lu L Q, Xu J, Ge W, et al. EMMS-based discrete particle method (EMMS-DPM) for simulation of gas-solid flows[J]. Chemical Engineering Science, 2014, 120: 67-87.
|
29 |
Lan B, Xu J, Zhao P, et al. Long-time coarse-grained CFD-DEM simulation of residence time distribution of polydisperse particles in a continuously operated multiple-chamber fluidized bed[J]. Chemical Engineering Science, 2020, 219: 115599.
|
30 |
Liu X C, Xu J, Ge W, et al. Long-time simulation of catalytic MTO reaction in a fluidized bed reactor with a coarse-grained discrete particle method-EMMS-DPM[J]. Chemical Engineering Journal, 2020, 389: 124135.
|
31 |
Xu J, Liu X C, Hu S W, et al. Virtual process engineering on a three-dimensional circulating fluidized bed with multiscale parallel computation[J]. Journal of Advanced Manufacturing and Processing, 2019, 1(1/2): e10014.
|
32 |
Lan B, Xu J, Zhao P, et al. Scale-up effect of residence time distribution of polydisperse particles in continuously operated multiple-chamber fluidized beds[J]. Chemical Engineering Science, 2021, 244: 116809.
|
33 |
Andrews M J, O'Rourke P J. The multiphase particle-in-cell (MP-PIC) method for dense particulate flows[J]. International Journal of Multiphase Flow, 1996, 22(2): 379-402.
|
34 |
Snider D M. An incompressible three-dimensional multiphase particle-in-cell model for dense particle flows[J]. Journal of Computational Physics, 2001, 170(2): 523-549.
|
35 |
Greengard L, Rokhlin V. A fast algorithm for particle simulations[J]. Journal of Computational Physics, 1987, 73(2): 325-348.
|
36 |
Mokhtar M A, Kuwagi K, Takami T, et al. Validation of the similar particle assembly (SPA) model for the fluidization of Geldart's Group A and D particles[J]. AIChE Journal, 2012, 58(1): 87-98.
|
37 |
Chu K W, Chen J, Yu A B. Applicability of a coarse-grained CFD-DEM model on dense medium cyclone[J]. Minerals Engineering, 2016, 90: 43-54.
|
38 |
Hu C S, Luo K, Wang S, et al. Influences of operating parameters on the fluidized bed coal gasification process: a coarse-grained CFD-DEM study[J]. Chemical Engineering Science, 2019, 195: 693-706.
|
39 |
Berrouk A S, Pornsilph C, Bale S S, et al. Simulation of a large-scale FCC riser using a combination of MP-PIC and four-lump oil-cracking kinetic models[J]. Energy & Fuels, 2017, 31(5): 4758-4770.
|
40 |
Madlmeir S, Radl S. A coarse-grained parcel method for heat and mass transfer simulations of spray coating processes[J]. Advanced Powder Technology, 2022, 33(6): 103590.
|
41 |
Tausendschön J, Kolehmainen J, Sundaresan S, et al. Coarse graining Euler-Lagrange simulations of cohesive particle fluidization[J]. Powder Technology, 2020, 364: 167-182.
|
42 |
de Munck M, Peters E A J F, Kuipers J A M. CFD-DEM fluidized bed drying study using a coarse-graining technique[J]. Industrial & Engineering Chemistry Research, 2023, 62: 20911-20920.
|
43 |
de Munck M, Peters E A J F, Kuipers J A M. Fluidized bed gas-solid heat transfer using a CFD-DEM coarse-graining technique[J]. Chemical Engineering Science, 2023, 280: 119048.
|
44 |
Kanjilal S, Schneiderbauer S. A revised coarse-graining approach for simulation of highly poly-disperse granular flows[J]. Powder Technology, 2021, 385: 517-527.
|
45 |
Lan B, Xu J, Lu S, et al. Direct reduction of iron-ore with hydrogen in fluidized beds: a coarse-grained CFD-DEM-IBM study[J]. Powder Technology, 2024, 438: 119624.
|
46 |
Spitzer R, Manning F, Philbrook W. Generalized model for the gaseous, topochemical reduction of porous hematite spheres[J]. AIME Met. Soc. Trans., 1966, 236 (12): 1715-1724.
|
47 |
Zhao P, Xu J, Ge W, et al. A CFD-DEM-IBM method for Cartesian grid simulation of gas-solid flow in complex geometries[J]. Chemical Engineering Journal, 2020, 389: 124343.
|
48 |
Zhao P, Xu J, Liu X C, et al. A computational fluid dynamics-discrete element-immersed boundary method for Cartesian grid simulation of heat transfer in compressible gas-solid flow with complex geometries[J]. Physics of Fluids, 2020, 32(10): 103306.
|
49 |
Lan B, Zhao P, Xu J, et al. CFD-DEM-IBM simulation of particle drying processes in gas-fluidized beds[J]. Chemical Engineering Science, 2022, 255: 117653.
|
50 |
Zhao P, Xu J, Chang Q, et al. Euler-Lagrange simulation of dense gas-solid flow with local grid refinement[J]. Powder Technology, 2022, 399: 117199.
|
51 |
Zhao P, Xu J, Zhao B D, et al. Cartesian grid simulation of reacting gas-solid flow using CFD-DEM-IBM method[J]. Powder Technology, 2022, 407: 117651.
|
52 |
Lan B, Zhao P, Xu J, et al. The critical role of scale resolution in CFD simulation of gas-solid flows: a heat transfer study using CFD-DEM-IBM method[J]. Chemical Engineering Science, 2023, 266: 118268.
|
53 |
Lu L Q, Morris A, Li T W, et al. Extension of a coarse grained particle method to simulate heat transfer in fluidized beds[J]. International Journal of Heat and Mass Transfer, 2017, 111: 723-735.
|
54 |
Du Z, Liu J Y, Liu F, et al. Relationship of particle size, reaction and sticking behavior of iron ore fines toward efficient fluidized bed reduction[J]. Chemical Engineering Journal, 2022, 447: 137588.
|