化工学报 ›› 2024, Vol. 75 ›› Issue (12): 4490-4500.DOI: 10.11949/0438-1157.20240552
赵亮(), 张梦妍, 果正龙, 郭亚丽, 龚路远(
), 沈胜强
收稿日期:
2024-05-26
修回日期:
2024-06-26
出版日期:
2024-12-25
发布日期:
2025-01-03
通讯作者:
龚路远
作者简介:
赵亮(1979—),男,博士,副教授,zlhmf@dlut.edu.cn
基金资助:
Liang ZHAO(), Mengyan ZHANG, Zhenglong GUO, Yali GUO, Luyuan GONG(
), Shengqiang SHEN
Received:
2024-05-26
Revised:
2024-06-26
Online:
2024-12-25
Published:
2025-01-03
Contact:
Luyuan GONG
摘要:
作为一种高效的传热形式,蒸汽冷凝有效应用于石油化工、火电核电、海水淡化及热能管理等工业领域,具有广泛的应用背景,其中研究液滴分布特性是分析液滴演变及传热过程的关键。基于成核、生长、脱落等液滴行为演变构建了滴状冷凝全过程演变及传热数学模型,总结演变进程中最大液滴的位置分布规律和不同尺寸液滴的数量分布规律,展示了竖直及弯曲疏水壁面上的液滴分布特性,为冷凝强化换热提供相应的理论依据。
中图分类号:
赵亮, 张梦妍, 果正龙, 郭亚丽, 龚路远, 沈胜强. 滴状冷凝的液滴分布特性[J]. 化工学报, 2024, 75(12): 4490-4500.
Liang ZHAO, Mengyan ZHANG, Zhenglong GUO, Yali GUO, Luyuan GONG, Shengqiang SHEN. Droplet distribution characteristics of dropwise condensation[J]. CIESC Journal, 2024, 75(12): 4490-4500.
冷凝工况及表面性质 | 数值 |
---|---|
表面过冷度ΔT/K | 1 |
水蒸气饱和温度Tsat/K | 359.08 |
表面张力系数σ/(N·m-1) | 0.0616 |
冷凝水密度ρ/(kg·m-3) | 968 |
冷凝水潜热Hfg/(J·kg-1) | 2.293×106 |
疏水涂层厚度δ/mm | 0.01 |
水热导率kw/(W·m-1·K-1) | 0.6707 |
气液界面传热系数hi/(W·m-2·K-1) | 106 |
疏水膜热导率kδ/(W·m-1·K-1) | 1000 |
表1 模拟的基础参数
Table 1 Basic parameters of simulation
冷凝工况及表面性质 | 数值 |
---|---|
表面过冷度ΔT/K | 1 |
水蒸气饱和温度Tsat/K | 359.08 |
表面张力系数σ/(N·m-1) | 0.0616 |
冷凝水密度ρ/(kg·m-3) | 968 |
冷凝水潜热Hfg/(J·kg-1) | 2.293×106 |
疏水涂层厚度δ/mm | 0.01 |
水热导率kw/(W·m-1·K-1) | 0.6707 |
气液界面传热系数hi/(W·m-2·K-1) | 106 |
疏水膜热导率kδ/(W·m-1·K-1) | 1000 |
图7 不同凝结核密度滴状冷凝演变进程中的最大液滴位置分布(a)和坐标变化(b)
Fig.7 Maximum droplet positional distribution during evolution of dropwise condensation with different condensation nuclei densities (a) and coordinate change (b)
图9 不同凝结核密度滴状冷凝演变进程中的不同尺寸液滴密度对比
Fig.9 Density comparison of sub-size droplets in evolution process of dropwise condensation with different condensation nuclei density
图11 不同壁面滴状冷凝演变进程中最大液滴的空间分布、尺寸变化和传热特性
Fig.11 Spatial distribution, size change and heat transfer characteristics of the largest droplet during the evolution of dropwise condensation on different walls
1 | 唐桂华, 胡浩威, 牛东, 等. 蒸汽珠状冷凝传热的研究进展[J]. 科学通报, 2020, 65(17): 1653-1676. |
Tang G H, Hu H W, Niu D, et al. Advances in vapor dropwise condensation heat transfer[J]. Chinese Science Bulletin, 2020, 65(17): 1653-1676. | |
2 | Rose J W. Dropwise condensation theory and experiment: a review[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2002, 216(2): 115-128. |
3 | 陈宁光, 甘云华. 基于格子Boltzmann方法的荷电液滴蒸发及传热研究[J]. 化工学报, 2023, 74(12): 4829-4839. |
Chen N G, Gan Y H. Study on evaporation and heat transfer of charged sessile droplet based on lattice Boltzmann method[J]. CIESC Journal, 2023, 74(12): 4829-4839. | |
4 | Lo C W, Wang C C, Lu M C. Spatial control of heterogeneous nucleation on the superhydrophobic nanowire array[J]. Advanced Functional Materials, 2014, 24(9): 1211-1217. |
5 | 周兴东, 马学虎, 兰忠, 等. 滴状冷凝强化含不凝气的蒸气冷凝传热机制[J]. 化工学报, 2007, 58(7): 1619-1625. |
Zhou X D, Ma X H, Lan Z, et al. Mechanism of dropwise condensation heat transfer enhancement in presence of non-condensable gas[J]. Journal of Chemical Industry and Engineering(China), 2007, 58(7): 1619-1625. | |
6 | Ma X H, Rose J W, Xu D Q, et al. Advances in dropwise condensation heat transfer: Chinese research[J]. Chemical Engineering Journal, 2000, 78(2/3): 87-93. |
7 | Schmidt E, Schurig W, Sellschopp W. Versuche über die kondensation von wasserdampf in film- und tropfenform[J]. Technische mechanik und thermodynamik, 1930, 1: 53–63. |
8 | Gose E E, Mucciardi A N, Baer E. Model for dropwise condensation on randomly distributed sites[J]. International Journal of Heat and Mass Transfer, 1967, 10(1): 15-22. |
9 | Chen J C. Surface contact—its significance for multiphase heat transfer: diverse examples[J]. Journal of Heat Transfer, 2003, 125(4): 549-566. |
10 | Rose J W, Glicksman L R. Dropwise condensation—the distribution of drop sizes[J]. International Journal of Heat and Mass Transfer, 1973, 16(2): 411-425. |
11 | Tanaka H. A theoretical study of dropwise condensation[J]. Journal of Heat Transfer, 1975, 97(1): 72-78. |
12 | Kim S, Kim K J. Dropwise condensation modeling suitable for superhydrophobic surfaces[J]. Journal of Heat Transfer, 2011, 133(8): 081502. |
13 | Graham C, Griffith P. Drop size distributions and heat transfer in dropwise condensation[J]. International Journal of Heat and Mass Transfer, 1973, 16(2): 337-346. |
14 | Xie J, Xu J L, Shang W, et al. Dropwise condensation on superhydrophobic nanostructure surface, part Ⅱ: Mathematical model[J]. International Journal of Heat and Mass Transfer, 2018, 127: 1170-1187. |
15 | Grooten M H M, van der Geld C W M. Surface property effects on dropwise condensation heat transfer from flowing air-steam mixtures to promote drainage[J]. International Journal of Thermal Sciences, 2012, 54: 220-229. |
16 | 赵崇岩, 颜笑, 黄志勇, 等. 滴状凝结全过程液滴尺寸分布数值模拟[J]. 工程热物理学报, 2020, 41(6): 1485-1490. |
Zhao C Y, Yan X, Huang Z Y, et al. Numerical simulation of droplet size distribution in the whole process of dropwise condensation[J]. Journal of Engineering Thermophysics, 2020, 41(6): 1485-1490. | |
17 | Peng B L, Ma X H, Lan Z, et al. Analysis of condensation heat transfer enhancement with dropwise-filmwise hybrid surface: droplet sizes effect[J]. International Journal of Heat and Mass Transfer, 2014, 77: 785-794. |
18 | Peng B L, Ma X H, Lan Z, et al. Experimental investigation on steam condensation heat transfer enhancement with vertically patterned hydrophobic-hydrophilic hybrid surfaces[J]. International Journal of Heat and Mass Transfer, 2015, 83: 27-38. |
19 | 刘天庆, 穆春丰, 夏松柏, 等. 滴状冷凝初始液滴的形成机理[J]. 化工学报, 2007, 58(4): 821-828. |
Liu T Q, Mu C F, Xia S B, et al. Mechanism of initial droplet formation in dropwise condensation[J]. Journal of Chemical Industry and Engineering(China), 2007, 58(4): 821-828. | |
20 | Glicksman L R, Hunt A W. Numerical simulation of dropwise condensation[J]. International Journal of Heat and Mass Transfer, 1972, 15(11): 2251-2269. |
21 | 赵崇岩, 陈凤, 闫贺, 等. 超疏水表面弹跳凝结液滴尺寸分布模拟[J]. 工程热物理学报, 2020, 41(11): 2782-2787. |
Zhao C Y, Chen F, Yan H, et al. Numerical simulation of droplet size distribution for jumping condensation on the superhydrophobic surface[J]. Journal of Engineering Thermophysics, 2020, 41(11): 2782-2787. | |
22 | Miljkovic N, Enright R, Wang E N. Modeling and optimization of superhydrophobic condensation[J]. Journal of Heat Transfer, 2013, 135(11): 111004. |
23 | Shang Y H, Hou Y M, Yu M, et al. Modeling and optimization of condensation heat transfer at biphilic interface[J]. International Journal of Heat and Mass Transfer, 2018, 122: 117-127. |
24 | Abu-Orabi M. Modeling of heat transfer in dropwise condensation[J]. International Journal of Heat and Mass Transfer, 1998, 41(1): 81-87. |
25 | Farokhirad S, Morris J F, Lee T. Coalescence-induced jumping of droplet: inertia and viscosity effects[J]. Physics of Fluids, 2015, 27(10): 102102. |
26 | Xu W, Lan Z, Liu Q C, et al. Droplet size distributions in dropwise condensation heat transfer: consideration of droplet overlapping and multiple re-nucleation[J]. International Journal of Heat and Mass Transfer, 2018, 127: 44-54. |
27 | Sikarwar B S, Khandekar S, Agrawal S, et al. Dropwise condensation studies on multiple scales[J]. Heat Transfer Engineering, 2012, 33(4/5): 301-341. |
28 | Burnside B M, Hadi H A. Digital computer simulation of dropwise condensation from equilibrium droplet to detectable size[J]. International Journal of Heat and Mass Transfer, 1999, 42(16): 3137-3146. |
29 | Cassie A B D, Baxter S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1944, 40: 546-551. |
30 | 齐宝金, 张莉, 徐宏, 等. 引入接触角的滴状冷凝分形传热功当量模型[J]. 高校化学工程学报, 2011, 25(5): 751-758. |
Qi B J, Zhang L, Xu H, et al. Contact angle affected fractal model of dropwise condensation heat transfer[J]. Journal of Chemical Engineering of Chinese Universities, 2011, 25(5): 751-758. | |
31 | Bahal S, Sharma C S. Modeling dropwise condensation on hydrophobic microgrooved surface[J]. Langmuir, 2023, 39(50): 18486-18498. |
[1] | 董新宇, 边龙飞, 杨怡怡, 张宇轩, 刘璐, 王腾. 冷却条件下倾斜上升管S-CO2流动与传热特性研究[J]. 化工学报, 2024, 75(S1): 195-205. |
[2] | 郭骐瑞, 任丽媛, 陈康, 黄翔宇, 马卫华, 肖乐勤, 周伟良. 用于HTPB推进剂浆料的静态混合管数值模拟[J]. 化工学报, 2024, 75(S1): 206-216. |
[3] | 李匡奚, 于佩潜, 王江云, 魏浩然, 郑志刚, 冯留海. 微气泡旋流气浮装置内流动分析与结构优化[J]. 化工学报, 2024, 75(S1): 223-234. |
[4] | 唐溯, 郑子鏖, 魏翰泽, 许晓玲, 翟晓强. PMMA/PEG600/CNT复合定型相变材料制备与导热强化[J]. 化工学报, 2024, 75(S1): 309-320. |
[5] | 汪张洲, 唐天琪, 夏嘉俊, 何玉荣. 基于复合相变材料的电池热管理性能模拟[J]. 化工学报, 2024, 75(S1): 329-338. |
[6] | 秦思宇, 刘艺佳, 杨佳成, 佟薇, 金立文, 孟祥兆. 受限蒸汽腔内气液两相传热特性研究[J]. 化工学报, 2024, 75(S1): 47-55. |
[7] | 胡俭, 姜静华, 范生军, 刘建浩, 邹海江, 蔡皖龙, 王沣浩. 中深层U型地埋管换热器取热特性研究[J]. 化工学报, 2024, 75(S1): 76-84. |
[8] | 任冠宇, 张义飞, 李新泽, 杜文静. 翼型印刷电路板式换热器流动传热特性数值研究[J]. 化工学报, 2024, 75(S1): 108-117. |
[9] | 李焱, 郑利军, 张恩勇, 王云飞. 深水海底管道软管内部流体渗透特性模型与试验研究[J]. 化工学报, 2024, 75(S1): 118-125. |
[10] | 李新泽, 张双星, 任冠宇, 洪瑞, 杜文静. 大功率LED热管理用脉动热管热性能[J]. 化工学报, 2024, 75(S1): 126-134. |
[11] | 杨勇, 祖子轩, 李煜坤, 王东亮, 范宗良, 周怀荣. T型圆柱形微通道内CO2碱液吸收数值模拟[J]. 化工学报, 2024, 75(S1): 135-142. |
[12] | 黄俊豪, 庞克亮, 孙方远, 刘福军, 谷致远, 韩龙, 段衍泉, 冯妍卉. 干熄炉料钟结构对焦炭布料粒径均匀度影响的模拟研究[J]. 化工学报, 2024, 75(S1): 158-169. |
[13] | 李舒月, 王欢, 周少强, 毛志宏, 张永民, 王军武, 吴秀花. 基于CPFD方法的U3O8氢还原流化床反应器数值模拟[J]. 化工学报, 2024, 75(9): 3133-3151. |
[14] | 陈超伟, 柳洋, 杜文静, 李金波, 史大阔, 辛公明. 局部热点下微肋通道流动传热特性[J]. 化工学报, 2024, 75(9): 3113-3121. |
[15] | 陈巨辉, 苏潼, 李丹, 陈立伟, 吕文生, 孟凡奇. 翅形扰流片作用下的微通道换热特性[J]. 化工学报, 2024, 75(9): 3122-3132. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 496
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 209
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||