化工学报 ›› 2024, Vol. 75 ›› Issue (12): 4468-4476.DOI: 10.11949/0438-1157.20240414
收稿日期:
2024-04-20
修回日期:
2024-07-04
出版日期:
2024-12-25
发布日期:
2025-01-03
通讯作者:
吴静怡
作者简介:
柳祝勋(1994—),男,博士研究生,lzx1994@sjtu.edu.cn
Zhuxun LIU(), Guang YANG, Jingyi WU(
)
Received:
2024-04-20
Revised:
2024-07-04
Online:
2024-12-25
Published:
2025-01-03
Contact:
Jingyi WU
摘要:
密闭空间的颗粒沉积的精密预测在环境和工业领域具有至关重要的意义。本研究的重点是通过修正矩量法中的沉积核函数,使得粒子沉积核函数更加接近精确值从而增强预测模型的准确性。首先,通过引入线性算子修正了坎宁汉滑移系数,使得过渡区沉积核函数更接近精确解。然后,基于对数正态尺寸分布理论,采用矩量法(MOM)建模气溶胶粒子的沉积模型,并对过渡区尺寸范围的粒子的分布结果进行预测。最后,对比了修正解、传统矩量法解、解析解及精确解,结果表明:矩量法修正解在颗粒数浓度、平均几何标准差和颗粒尺寸分布方面表现出更高的精度。在粒子的过渡区尺寸范围内,与传统矩量法解相比,修正解的颗粒数浓度相对误差降低了43.43%。最后通过文献中的实验数据进一步验证了过渡区内沉积核函数的修正效果。
中图分类号:
柳祝勋, 杨光, 吴静怡. 基于矩量法的过渡区颗粒沉积核函数修正及结果验证[J]. 化工学报, 2024, 75(12): 4468-4476.
Zhuxun LIU, Guang YANG, Jingyi WU. Improvement on particle deposition prediction in the intermediate size range based on the moment method[J]. CIESC Journal, 2024, 75(12): 4468-4476.
图3 重力主导范围内粒径分布参数变化比较(rg0=3 μm;σ0=1.5)
Fig.3 Comparison of changes in particle size distribution parameters in the gravitation-dominant range (rg0=3 μm; σ0=1.5)
图4 过渡区范围内粒子分布参数变化比较(rg0=0.1 μm;σ0=1.5)
Fig.4 Comparison of changes in particle size distribution parameters in the intermediate size range (rg0=0.1 μm; σ0=1.5)
图5 过渡区内粒子尺寸分布变化比较(rg0=0.1 μm;σ0=1.5)
Fig.5 Comparison of change in particle size distribution in the particle size range of the intermediate size range(rg0=0.1 μm; σ0=1.5)
1 | Ai Z T, Melikov A K. Airborne spread of expiratory droplet nuclei between the occupants of indoor environments: a review[J]. Indoor Air, 2018, 28(4): 500-524. |
2 | 叶深, 王鹏, 黄祎, 等. 长三角城市群城市空间形态对PM2.5与O3污染空间异质性特征的影响研究[J]. 生态环境学报, 2023, 32(10): 1771-1784. |
Ye S, Wang P, Huang Y, et al. Urban morphology and the influence of the spatial heterogeneity of PM2.5 and O3 pollution: the case of the Yangtze River Delta[J]. Ecology and Environmental Sciences, 2023, 32(10): 1771-1784. | |
3 | Lippmann M, Chen L C, Gordon T, et al. National particle component toxicity (NPACT) initiative: integrated epidemiologic and toxicologic studies of the health effects of particulate matter components[J]. Research Report (Health Effects Institute), 2013(177): 5-13. |
4 | Dinkele R, Khan P Y, Warner D F. Mycobacterium tuberculosis transmission: the importance of precision[J]. The Lancet Infectious Diseases, 2024, 24(7): 679-681. |
5 | Pinho-Go Pinho-Gomes A C, Roaf E, Fuller G, et al. Air pollution and climate change[J]. The Lancet Planetary Health, 2023, 7(9): e727-e728. |
6 | 俞建, 俞洁, 应倩, 等. 浙江省基于卫星遥感数据的气溶胶光学厚度与肺癌的相关性[J]. 肿瘤防治研究, 2020, 47(10): 776-781. |
Yu J, Yu J, Ying Q, et al. Association of aerosol optical depth based on satellite remote sensing data and lung cancer in Zhejiang Province[J]. Cancer Res. Prev. Treat., 2020, 47(10): 776-781. | |
7 | 李金娟, 邵龙义, 杨书申. 可吸入颗粒物的健康效应机制[J]. 环境与健康杂志, 2006, 23(2): 185-188. |
Li J J, Shao L Y, Yang S S. Adverse effect mechanisms of inhalable particulate matters[J]. Journal of Environment and Health, 2006, 23(2): 185-188. | |
8 | Clark T L. Use of log-normal distributions for numerical calculations of condensation and collection[J]. Journal of the Atmospheric Sciences, 1976, 33(5): 810-821. |
9 | Beneš M, Holub R F. Aerosol wall deposition in enclosures investigated by means of a stagnant layer[J]. Environment International, 1996, 22: 883-889. |
10 | Cheng Y S. Wall deposition of radon progeny and particles in a spherical chamber[J]. Aerosol Science and Technology, 1997, 27(2): 131-146. |
11 | Corner J, Pendlebury E. The coagulation and deposition of a stirred aerosol[J]. Proceedings of the Physical Society. Section B, 1951, 64(8): 645. |
12 | Crump J G, Seinfeld J H. Turbulent deposition and gravitational sedimentation of an aerosol in a vessel of arbitrary shape[J]. Journal of Aerosol Science, 1981, 12(5): 405-415. |
13 | Crump J G, Flagan R C, Seinfeld J H. Particle wall loss rates in vessels[J]. Aerosol Science and Technology, 1982, 2(3): 303-309. |
14 | Okuyama K, Kousaka Y, Yamamoto S, et al. Particle loss of aerosols with particle diameters between 6 and 2000 nm in stirred tank[J]. Journal of Colloid and Interface Science, 1986, 110(1): 214-223. |
15 | Holub R F, Raes F, Dingenen R V, et al. Deposition of aerosols and unattached radon daughters in different chambers; Theory and experiment[J]. Radiation Protection Dosimetry, 1988, 24: 217-220. |
16 | van Dingenen R, Raes F, Vanmarcke H. Molecule and aerosol particle wall losses in SMOG chambers made of glass[J]. Journal of Aerosol Science, 1989, 20(1): 113-122. |
17 | Wang F, Chan T L. A new sorting algorithm-based merging weighted fraction Monte Carlo method for solving the population balance equation for particle coagulation dynamics[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2023, 33(2): 881-911. |
18 | Chen Y J, Ding J, Xia X, et al. Reconstruction-based Monte Carlo method for accurate and efficient breakage simulation[J]. Powder Technology, 2022, 401: 117318. |
19 | Mishra B K. Monte Carlo simulation of particle breakage process during grinding[J]. Powder Technology, 2000, 110(3): 246-252. |
20 | Kotalczyk G, Devi J, Kruis F E. A time-driven constant-number Monte Carlo method for the GPU-simulation of particle breakage based on weighted simulation particles[J]. Powder Technology, 2017, 317: 417-429. |
21 | Liu H, Jiang W, Liu W, et al. Monte Carlo simulation of polydisperse particle deposition and coagulation dynamics in enclosed chambers[J]. Vacuum, 2021, 184: 109952. |
22 | 涂茂萍, 张丹, 袁洋, 等. 静止颗粒群热辐射吸收性能的蒙特卡罗法二维数值研究[J]. 西安交通大学学报, 2024, 58(5): 167-178. |
Tu M P, Zhang D, Yuan Y, et al. Thermal radiation absorption properties of two-dimensional stationary particle groups based on the Monte-Carlo method[J]. Journal of Xi'an Jiao Tong University, 2024, 58(5): 167-178. | |
23 | 帅永, 董士奎, 刘林华. 高温含粒子自由流红外辐射特性的反向蒙特卡罗法模拟[J]. 红外与毫米波学报, 2005, 24(2): 100-104. |
Shuai Y, Dong S K, Liu L H. Simulation of infrared radiation characteristics of high temperature free-stream flow including particles by using backward Monte-Carlo method[J]. Journal of Infrared and Millimeter Waves, 2005, 24(2): 100-104. | |
24 | Gelbard F, Tambour Y, Seinfeld J H. Sectional representations for simulating aerosol dynamics [J]. Journal of Colloid and Interface Science, 1980, 76(2): 541-556. |
25 | Xiong Y, Pratsinis S E. Formation of agglomerate particles by coagulation and sintering(part Ⅰ): A two-dimensional solution of the population balance equation[J]. Journal of Aerosol Science, 1991, 24: 283-300. |
26 | Jeong J I, Choi M. Analysis of non-spherical polydisperse particle growth in a two-dimensional tubular reactor[J]. Journal of Aerosol Science, 2003, 34: 713-732. |
27 | 柳冠青, 李水清, 曹文广, 等. 细颗粒湍流聚并的分区法群平衡模拟[J]. 工程热物理学报, 2021, 42(4): 938-943. |
Liu G Q, Li S Q, Cao W G, et al. Modelling on the turbulence agglomeration of fine particles with sectional method of population balance model[J]. Journal of Engineering Thermophysics, 2021, 42(4): 938-943. | |
28 | Guichard R, Belut E. Simulation of airborne nanoparticles transport, deposition and aggregation: experimental validation of a CFD-QMOM approach[J]. Journal of Aerosol Science, 2017, 104: 16-31. |
29 | 刘演华, 林建忠. 两相流中颗粒参数分布的矩方法研究[J]. 空气动力学学报, 2009, 27(6): 656-663. |
Liu Y H, Lin J Z. Research on method of momens of particulate parameter distribution in multiphase flow[J]. Acta Aerodynamica Sinica, 2009, 27(6): 656-663. | |
30 | Pratsinis S E. Simultaneous nucleation, condensation, and coagulation in aerosol reactors[J]. Journal of Colloid and Interface Science, 1988, 124(2): 416-427. |
31 | Pratsinis S E, Kodas T T, Duduković M P, et al. Aerosol reactor design: effect of reactor type and process parameters on product aerosol characteristics[J]. Industrial & Engineering Chemistry Process Design and Development, 1986, 25(3): 634-642. |
32 | Yu M, Lin J, Cao J. Seipenbusch M. An analytical solution for the population balance equation using a moment method[J]. Particuology, 2015, 18: 194-200. |
33 | Park S H, Lee K W. Moment method for aerosol deposition[J]. Journal of Aerosol Science, 2000, 31: 845-846. |
34 | Xu G P, Wang J S. CFD modeling of particle dispersion and deposition coupled with particle dynamical models in a ventilated room[J]. Atmospheric Environment, 2017, 166: 300-314. |
35 | Xu G P, Wang J S, Qiao X Q. Numerical study on evolution of ultrafine particles emitted from vehicle exhaust with multi-dynamical behaviors[J]. Atmospheric Environment, 2021, 244: 117916. |
36 | Walther E, Bogdan M. A novel approach for the modelling of air quality dynamics in underground railway stations[J]. Transportation Research Part D: Transport and Environment, 2017, 56: 33-42. |
37 | Lee K W, Lee Y J, Han D S. The log-normal size distribution theory for Brownian coagulation in the low Knudsen number regime[J]. Journal of Colloid and Interface Science, 1997, 188(2): 486-492. |
38 | Park S H, Lee K W. Analytical solution to change in size distribution of polydisperse particles in closed chamber due to diffusion and sedimentation[J]. Atmospheric Environment, 2002, 36(25): 5459-5467. |
[1] | 董新宇, 边龙飞, 杨怡怡, 张宇轩, 刘璐, 王腾. 冷却条件下倾斜上升管S-CO2流动与传热特性研究[J]. 化工学报, 2024, 75(S1): 195-205. |
[2] | 郭骐瑞, 任丽媛, 陈康, 黄翔宇, 马卫华, 肖乐勤, 周伟良. 用于HTPB推进剂浆料的静态混合管数值模拟[J]. 化工学报, 2024, 75(S1): 206-216. |
[3] | 李匡奚, 于佩潜, 王江云, 魏浩然, 郑志刚, 冯留海. 微气泡旋流气浮装置内流动分析与结构优化[J]. 化工学报, 2024, 75(S1): 223-234. |
[4] | 赵振刚, 周梦瑶, 金典, 张大骋. 基于泡沫碳扩散层的直接甲醇燃料电池改性研究[J]. 化工学报, 2024, 75(S1): 259-266. |
[5] | 徐英宇, 杨国强, 彭璟, 孙海宁, 张志炳. 微界面高级氧化处理煤化工废水的研究[J]. 化工学报, 2024, 75(S1): 283-291. |
[6] | 汪张洲, 唐天琪, 夏嘉俊, 何玉荣. 基于复合相变材料的电池热管理性能模拟[J]. 化工学报, 2024, 75(S1): 329-338. |
[7] | 李雨霜, 王兴成, 温伯尧, 骆政园, 白博峰. 多孔介质中乳状液驱油的两相流动过程及其影响因素[J]. 化工学报, 2024, 75(S1): 56-66. |
[8] | 刘律, 刘洁茹, 范亮亮, 赵亮. 基于层流效应的被动式颗粒分离微流控方法研究[J]. 化工学报, 2024, 75(S1): 67-75. |
[9] | 胡俭, 姜静华, 范生军, 刘建浩, 邹海江, 蔡皖龙, 王沣浩. 中深层U型地埋管换热器取热特性研究[J]. 化工学报, 2024, 75(S1): 76-84. |
[10] | 杜得辉, 冯威, 张江辉, 项燕龙, 乔高攀, 李蔚. 微型翅片疏水复合强化管管内流动沸腾换热预测模型[J]. 化工学报, 2024, 75(S1): 95-107. |
[11] | 任冠宇, 张义飞, 李新泽, 杜文静. 翼型印刷电路板式换热器流动传热特性数值研究[J]. 化工学报, 2024, 75(S1): 108-117. |
[12] | 杨勇, 祖子轩, 李煜坤, 王东亮, 范宗良, 周怀荣. T型圆柱形微通道内CO2碱液吸收数值模拟[J]. 化工学报, 2024, 75(S1): 135-142. |
[13] | 黄俊豪, 庞克亮, 孙方远, 刘福军, 谷致远, 韩龙, 段衍泉, 冯妍卉. 干熄炉料钟结构对焦炭布料粒径均匀度影响的模拟研究[J]. 化工学报, 2024, 75(S1): 158-169. |
[14] | 李舒月, 王欢, 周少强, 毛志宏, 张永民, 王军武, 吴秀花. 基于CPFD方法的U3O8氢还原流化床反应器数值模拟[J]. 化工学报, 2024, 75(9): 3133-3151. |
[15] | 祝赫, 张仪, 齐娜娜, 张锴. 欧拉-欧拉双流体模型中颗粒黏性对液固散式流态化的影响[J]. 化工学报, 2024, 75(9): 3103-3112. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 462
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 126
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||