化工学报 ›› 2024, Vol. 75 ›› Issue (12): 4453-4467.DOI: 10.11949/0438-1157.20240588
蒋琳1(), 张同旺2, 刘荣正1, 邵友林1, 刘兵1, 刘马林1()
收稿日期:
2024-05-31
修回日期:
2024-08-07
出版日期:
2024-12-25
发布日期:
2025-01-03
通讯作者:
刘马林
作者简介:
蒋琳(1998—),女,博士研究生,jiang-l20@mails.tsinghua.edu.cn
基金资助:
Lin JIANG1(), Tongwang ZHANG2, Rongzheng LIU1, Youlin SHAO1, Bing LIU1, Malin LIU1()
Received:
2024-05-31
Revised:
2024-08-07
Online:
2024-12-25
Published:
2025-01-03
Contact:
Malin LIU
摘要:
提出采用磁性示踪颗粒和磁阻传感器构建颗粒示踪测量系统,系统研究了磁性颗粒示踪实验系统的组成、测量原理、误差分析及影响因素,并指出其优缺点和适用范围。研究发现在地球磁场和颗粒磁场耦合环境下,磁性颗粒和传感器系统依然具有较好的示踪效果。基于磁场感应定律建立颗粒空间位置搜索算法,可以获得颗粒运动轨迹,并获取单颗粒运行方向、运动速率、循环频率等流化参数。磁场测量受影响因素较多,未来还需要高磁性材料的研发以及测量器件敏感度的提高。通过对喷动流化床内环隙区高密度示踪颗粒运动循环时间的测量和分析,证明了测量方法的可靠性。该研究有助于后续包覆过程放大中流化床反应器的设计及优化,是高密度颗粒流化床包覆技术值得进行的研究方向。
中图分类号:
蒋琳, 张同旺, 刘荣正, 邵友林, 刘兵, 刘马林. 高密度颗粒流化行为测量的磁性颗粒示踪方法[J]. 化工学报, 2024, 75(12): 4453-4467.
Lin JIANG, Tongwang ZHANG, Rongzheng LIU, Youlin SHAO, Bing LIU, Malin LIU. Magnetic particle tracing method for measuring fluidization behavior of high-density particles[J]. CIESC Journal, 2024, 75(12): 4453-4467.
图3 (a)实验用三维锥形喷动床结构示意图;(b)颗粒示踪实验装置及探测系统实物图
Fig.3 (a) Schematic diagram of structure of experimental three-dimensional conical spouted bed; (b) Physical drawings of particle tracing experimental device and detection system
参数 | 数值 |
---|---|
喷嘴直径D0/mm | 8 |
底面直径Di/mm | 20 |
床层直径Dc/mm | 100 |
锥角γ/(°) | 60 |
表1 实验用三维锥形喷动床几何参数
Table 1 Geometric parameters of the three-dimensional conical spouted bed used in the experiment
参数 | 数值 |
---|---|
喷嘴直径D0/mm | 8 |
底面直径Di/mm | 20 |
床层直径Dc/mm | 100 |
锥角γ/(°) | 60 |
参数 | 数值 |
---|---|
流化颗粒数 | 2000 |
磁性颗粒数 | 1 |
流化颗粒直径/mm | 3 |
磁性颗粒直径/mm | 3 |
流化颗粒密度/(g/cm3) | 7.6~7.8 |
磁性颗粒密度/(g/cm3) | 7.6 |
流化气体 | 高压氮气 |
流化入口气速/(m/s) | 0~50 |
表2 流化条件下颗粒示踪实验的操作参数
Table 2 Operation parameters of particle tracing experiment under fluidization condition
参数 | 数值 |
---|---|
流化颗粒数 | 2000 |
磁性颗粒数 | 1 |
流化颗粒直径/mm | 3 |
磁性颗粒直径/mm | 3 |
流化颗粒密度/(g/cm3) | 7.6~7.8 |
磁性颗粒密度/(g/cm3) | 7.6 |
流化气体 | 高压氮气 |
流化入口气速/(m/s) | 0~50 |
图6 (a)~(e)不同垂直间距d对应磁场强度原始信号;(f) d=20 mm磁场强度消除地磁后信号
Fig.6 (a) — (e) Original signals of magnetic field intensity corresponding to different vertical spacing d; (f) Magnetic field strength under d=20 mm after eliminating the geomagnetic signal
探测点 | 检测器坐标/cm | 磁场强度理论值/μT | 磁场强度实验值/μT | 磁场强度相对误差 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
N1 | N2 | N3 | N1 | N2 | N3 | N1 | N2 | N3 | ||
1 | S1(-4.76, 2.75, 7.2) S2(-3.89, 3.89, 7.2) S3(-4.76, -2.75, 7.2) | 212.615 | 124.473 | 212.615 | 216 | 92 | 216 | 0.016 | 0.261 | 0.016 |
2 | S1(-4.76, 2.75, 3.6) S2(-3.89, 3.89, 3.6) S3(-4.76, -2.75, 3.6) | 62.674 | 62.582 | 62.674 | 24 | 26 | 24 | 0.617 | 0.585 | 0.617 |
3 | S1(4.76, 2.75, 3.6) S2(3.89, 3.89, 3.6) S3(4.76, -2.75, 3.6) | 212.615 | 124.473 | 212.615 | 252 | 105 | 252 | 0.185 | 0.156 | 0.185 |
表3 示踪颗粒空间位置测量结果
Table 3 Spatial position measurement results of tracer particles
探测点 | 检测器坐标/cm | 磁场强度理论值/μT | 磁场强度实验值/μT | 磁场强度相对误差 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
N1 | N2 | N3 | N1 | N2 | N3 | N1 | N2 | N3 | ||
1 | S1(-4.76, 2.75, 7.2) S2(-3.89, 3.89, 7.2) S3(-4.76, -2.75, 7.2) | 212.615 | 124.473 | 212.615 | 216 | 92 | 216 | 0.016 | 0.261 | 0.016 |
2 | S1(-4.76, 2.75, 3.6) S2(-3.89, 3.89, 3.6) S3(-4.76, -2.75, 3.6) | 62.674 | 62.582 | 62.674 | 24 | 26 | 24 | 0.617 | 0.585 | 0.617 |
3 | S1(4.76, 2.75, 3.6) S2(3.89, 3.89, 3.6) S3(4.76, -2.75, 3.6) | 212.615 | 124.473 | 212.615 | 252 | 105 | 252 | 0.185 | 0.156 | 0.185 |
图16 (a)环隙区示意图;(b)环隙区实物图;(c)环隙区颗粒轨迹测量结果
Fig.16 (a) Schematic diagram of annulus region; (b) Physical drawing of annulus region; (c) Measurement results of particle trajectories in annulus region
图18 流化条件下颗粒示踪实验单个检测器信号强度变化曲线
Fig.18 The change curve of signal intensity of single detector in particle tracing experiment under fluidization condition
1 | Nabielek H, Kühnlein W, Schenk W, et al. Development of advanced HTR fuel elements[J]. Nuclear Engineering and Design, 1990, 121(2): 199-210. |
2 | 刘荣正, 刘马林, 邵友林, 等. 流化床-化学气相沉积技术的应用及研究进展[J]. 化工进展, 2016, 35(5): 1263-1272. |
Liu R Z, Liu M L, Shao Y L, et al. Application and research progress of fluidized bed-chemical vapor deposition technology[J]. Chemical Industry and Engineering Progress, 2016, 35(5): 1263-1272. | |
3 | Liu M L, Liu B, Shao Y L, et al. Optimization design of the coating furnace by 3-d simulation of spouted bed dynamics in the coater[J]. Nuclear Engineering and Design, 2014, 271: 68-72. |
4 | Marshall D W. Spouted bed design considerations for coated nuclear fuel particles[J]. Powder Technology, 2017, 316: 421-425. |
5 | Liu M L, Shao Y L, Liu B. Pressure analysis in the fabrication process of TRISO UO2-coated fuel particle[J]. Nuclear Engineering and Design, 2012, 250: 277-283. |
6 | Fauquet-Alekhine P. Gas-particles flow transitions for high density powder[C]//Proceedings of the World Congress on Engineering. 2012. |
7 | Sari S, Kulah G, Koksal M. Characterization of gas-solid flow in conical spouted beds operating with heavy particles[J]. Experimental Thermal and Fluid Science, 2012, 40: 132-139. |
8 | Goldschmidt M J V, Link J M, Mellema S, et al. Digital image analysis measurements of bed expansion and segregation dynamics in dense gas-fluidised beds[J]. Powder Technology, 2003, 138(2/3): 135-159. |
9 | Xu J, Bao X J, Wei W S, et al. Statistical and frequency analysis of pressure fluctuations in spouted beds[J]. Powder Technology, 2004, 140(1/2): 141-154. |
10 | Patterson E E, Halow J, Daw S. Innovative method using magnetic particle tracking to measure solids circulation in a spouted fluidized bed[J]. Industrial & Engineering Chemistry Research, 2010, 49(11): 5037-5043. |
11 | Mathur K B, Gishler P E. A technique for contacting gases with coarse solid particles[J]. AIChE Journal, 1955, 1(2): 157-164. |
12 | Solimene R, Chirone R, Salatino P. Characterization of the devolatilization rate of solid fuels in fluidized beds by time-resolved pressure measurements[J]. AIChE Journal, 2012, 58(2): 632-645. |
13 | Harris A T, Davidson J F, Thorpe R B. A novel method for measuring the residence time distribution in short time scale particulate systems[J]. Chemical Engineering Journal, 2002, 89(1/2/3): 127-142. |
14 | Luštrik M, Dreu R, Perpar M. Influence of perforated draft tube air intake on a pellet coating process[J]. Powder Technology, 2018, 330: 114-124. |
15 | Bacchuwar S, Vidyapati V, Quan K M, et al. Quantitative bin flow analysis of particle discharge using X-ray radiography[J]. Powder Technology, 2019, 344: 693-705. |
16 | Halow J S, Nicoletti P. Observations of fluidized bed coalescence using capacitance imaging[J]. Powder Technology, 1992, 69(3): 255-277. |
17 | Mehdizad M, Fullard L, Galvosas P, et al. Quantitative measurements of flow dynamics in 3D hoppers using MRI[J]. Powder Technology, 2021, 392: 69-80. |
18 | An R, Kong L W, Li C S. Pore distribution characteristics of thawed residual soils in artificial frozen-wall using NMRI and MIP measurements[J]. Applied Sciences, 2020, 10(2): 544. |
19 | Lin J S, Chen M M, Chao B T. A novel radioactive particle tracking facility for measurement of solids motion in gas fluidized beds[J]. AIChE Journal, 1985, 31(3): 465-473. |
20 | Limtrakul S, Chen J W, Ramachandran P A, et al. Solids motion and holdup profiles in liquid fluidized beds[J]. Chemical Engineering Science, 2005, 60(7): 1889-1900. |
21 | Bindseil G A, Gilbert K M, Scholl T J, et al. First image from a combined positron emission tomography and field-cycled MRI system[J]. Magnetic Resonance in Medicine, 2011, 66(1): 301-305. |
22 | Richter M C, Mainza A N, Govender I, et al. Features of near gravitational material tracers in a dense medium cyclone from PEPT[J]. Powder Technology, 2023, 415: 118095. |
23 | Halow J, Holsopple K, Crawshaw B, et al. Observed mixing behavior of single particles in a bubbling fluidized bed of higher-density particles[J]. Industrial & Engineering Chemistry Research, 2012, 51(44): 14566-14576. |
24 | Buist K A, Jayaprakash P, Kuipers J A M, et al. Magnetic particle tracking for nonspherical particles in a cylindrical fluidized bed[J]. AIChE Journal, 2017, 63(12): 5335-5342. |
25 | Buist K A, van der Gaag A C, Deen N G, et al. Improved magnetic particle tracking technique in dense gas fluidized beds[J]. AIChE Journal, 2014, 60(9): 3133-3142. |
26 | Mema I, Buist K A, Kuipers J A M, et al. Fluidization of spherical versus elongated particles: experimental investigation using magnetic particle tracking[J]. AIChE Journal, 2020, 66(4): e16895. |
27 | 王立乾, 胡忠强, 关蒙萌, 等. 基于巨磁阻效应的磁场传感器研究进展[J]. 仪表技术与传感器, 2021(12): 1-12, 17. |
Wang L Q, Hu Z Q, Guan M M, et al. Research progress of magnetic field sensors based on GMR effect[J]. Instrument Technique and Sensor, 2021(12): 1-12, 17. | |
28 | 张海峰, 刘晓为, 王喜莲, 等. 磁电阻效应的原理及其应用[J]. 哈尔滨工业大学学报, 2008, 40(3): 362-366. |
Zhang H F, Liu X W, Wang X L, et al. Principles and applications of magneto-resistance effect[J]. Journal of Harbin Institute of Technology, 2008, 40(3): 362-366. | |
29 | Mohankumar P, Ajayan J, Yasodharan R, et al. A review of micromachined sensors for automotive applications[J]. Measurement, 2019, 140: 305-322. |
30 | 林乾浩, 钱正洪, 龚天平, 等. 基于GMR传感器的三轴电子罗盘[J]. 机电工程, 2013, 30(1): 55-59. |
Lin Q H, Qian Z H, Gong T P, et al. Three-axis electronic compass based on GMR sensor[J]. Journal of Mechanical & Electrical Engineering, 2013, 30(1): 55-59. | |
31 | Song G S, Kenney M, Chen Y S, et al. Carbon-coated FeCo nanoparticles as sensitive magnetic-particle-imaging tracers with photothermal and magnetothermal properties[J]. Nature Biomedical Engineering, 2020, 4(3): 325-334. |
32 | Kiyuna A, Kiyuna T. Current dipole estimation method for cerebral diagnosis: JP1998201729(A)[P]. 2023-08-10. |
[1] | 赵振刚, 周梦瑶, 金典, 张大骋. 基于泡沫碳扩散层的直接甲醇燃料电池改性研究[J]. 化工学报, 2024, 75(S1): 259-266. |
[2] | 徐英宇, 杨国强, 彭璟, 孙海宁, 张志炳. 微界面高级氧化处理煤化工废水的研究[J]. 化工学报, 2024, 75(S1): 283-291. |
[3] | 李雨霜, 王兴成, 温伯尧, 骆政园, 白博峰. 多孔介质中乳状液驱油的两相流动过程及其影响因素[J]. 化工学报, 2024, 75(S1): 56-66. |
[4] | 刘律, 刘洁茹, 范亮亮, 赵亮. 基于层流效应的被动式颗粒分离微流控方法研究[J]. 化工学报, 2024, 75(S1): 67-75. |
[5] | 杜得辉, 冯威, 张江辉, 项燕龙, 乔高攀, 李蔚. 微型翅片疏水复合强化管管内流动沸腾换热预测模型[J]. 化工学报, 2024, 75(S1): 95-107. |
[6] | 祝赫, 张仪, 齐娜娜, 张锴. 欧拉-欧拉双流体模型中颗粒黏性对液固散式流态化的影响[J]. 化工学报, 2024, 75(9): 3103-3112. |
[7] | 唐昊, 胡定华, 李强, 张轩畅, 韩俊杰. 抗加速度双切线弧流道内气泡动力学行为数值与可视化研究[J]. 化工学报, 2024, 75(9): 3074-3082. |
[8] | 李舒月, 王欢, 周少强, 毛志宏, 张永民, 王军武, 吴秀花. 基于CPFD方法的U3O8氢还原流化床反应器数值模拟[J]. 化工学报, 2024, 75(9): 3133-3151. |
[9] | 黄正梁, 冯铭瑞, 宋琦, 任聪静, 杨遥, 孙婧元, 王靖岱, 阳永荣. 预混进料对废树脂流化裂解反应中颗粒团聚的抑制作用[J]. 化工学报, 2024, 75(9): 3094-3102. |
[10] | 王皓宇, 杨杨, 荆文婕, 杨斌, 唐雨, 刘毅. 不同旋流器作用下气液螺旋环状流动特性研究[J]. 化工学报, 2024, 75(8): 2744-2755. |
[11] | 赵亮, 李雨桥, 张德, 沈胜强. 螺旋喷嘴内外流场特性的实验研究[J]. 化工学报, 2024, 75(8): 2777-2786. |
[12] | 罗正航, 李敬宇, 陈伟雄, 种道彤, 严俊杰. 摇摆运动下低流率蒸汽冷凝换热特性和气泡受力数值模拟[J]. 化工学报, 2024, 75(8): 2800-2811. |
[13] | 曾港, 陈林, 杨董, 袁海专, 黄彦平. 矩形通道内超临界CO2局部热流场可视化实验[J]. 化工学报, 2024, 75(8): 2831-2839. |
[14] | 曲玖哲, 杨鹏, 杨绪飞, 张伟, 宇波, 孙东亮, 王晓东. 硅基微柱簇阵列微通道流动沸腾实验研究[J]. 化工学报, 2024, 75(8): 2840-2851. |
[15] | 李彦熹, 王晔春, 谢向东, 王进芝, 王江, 周煜, 潘盈秀, 丁文涛, 郭烈锦. 蜗壳式多通道气液旋流分离器结构优化及分离特性研究[J]. 化工学报, 2024, 75(8): 2875-2885. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 217
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 90
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||