化工学报 ›› 2024, Vol. 75 ›› Issue (12): 4555-4562.DOI: 10.11949/0438-1157.20240461
收稿日期:
2024-04-26
修回日期:
2024-08-12
出版日期:
2024-12-25
发布日期:
2025-01-03
通讯作者:
吴云
作者简介:
吴云(1973—),男,博士,副研究员,wu.yun@ctbu.edu.cn
基金资助:
Received:
2024-04-26
Revised:
2024-08-12
Online:
2024-12-25
Published:
2025-01-03
Contact:
Yun WU
摘要:
采用磁性羰基铁颗粒作为载体,负载纳米TiO2制成复合光催化剂,并对复合催化剂表面进行疏水亲油改性,制备得到具有疏水亲油特性的负载型纳米TiO2复合光催化剂。采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、红外光谱仪(FTIR)和紫外-可见光谱仪(UV)等,表征了复合催化材料的晶相组成和微观形貌,评价了催化材料的疏水亲油性能、磁回收性能,对比研究了普通沸石负载型TiO2催化剂和疏水改性羰基铁负载型TiO2催化剂对三种石油烃污染物降解效果,并进一步考察了催化剂加载量和循环使用对石油烃降解效率的影响。结果表明,疏水改性羰基铁负载型TiO2催化剂具有疏水亲油特性,可使得非极性石油烃类污染物能更好地与催化材料的活性位点接触,且由于催化材料颗粒具有磁性,在磁场作用下易于回收;新型催化材料对水中的石油烃类污染物具有更好的降解效率,常规TiO2/沸石催化剂的光解效果对污染物的最大去除率为75%左右,而TiO2/改性羰基铁的最大去除率可以达到95%,且降解速率更快,随着催化剂浓度的增加,降解效果提高,但当浓度进一步增加至4 g·L-1时,降解效果下降;在重复使用过程中,复合光催化材料活性降低不明显,说明复合催化材料的稳定性较好。
中图分类号:
吴云, 龚海峰. 疏水改性羰基铁负载TiO2光催化降解石油烃污染物[J]. 化工学报, 2024, 75(12): 4555-4562.
Yun WU, Haifeng GONG. Carbonyl iron loaded TiO2 photocatalyst by hydrophobic modification for degradation of petroleum hydrocarbon pollutants in water[J]. CIESC Journal, 2024, 75(12): 4555-4562.
图3 羰基铁颗粒改性前后扫描电镜图像及磁性(a),(b) SEM images of iron powders before the modification; (c),(d) SEM images of iron powders after the modification, insets in panels (a) and (c) are the EDX results; (e),(f) Digital photos showing the pristine iron particles and the SHIPs in water and oil, insets are the respective profiles of water and toluene on the surfaces of the powders; (g),(h) Magnetism of before and after the superhydrophobic modification
Fig.3 SEM images and magnetism of iron powders before and after the superhydrophobic modification
图4 疏水改性羰基铁颗粒对油水乳化液的分离和分离机理(a)—(d) Photographs showing the separation of the surfactant free emulsion of oil-in-water [panels (c) and (d) reflect the incomplete and complete separation, respectively, depending on the amount of SHIPs used]; Fluorescence microscope images of the emulsion before (e) and after (f) the separation (red droplets in panel (e) are silicone oil dyed by fluorescent dye); (g) FTIR spectra of the emulsion and the clean water left after the separation; (h) Schematic illustration of the separation of the silicone oil-in-water emulsion
Fig.4 Separation of hydrophobic modified carbonyl iron particles for oil-in-water emulsion and separation mechanism
1 | Husseini M, Makkouk R, Rabaa A, et al. Determination of polycyclic aromatic hydrocarbons (PAH4) in the traditional Lebanese grilled chicken: implementation of new, rapid and economic analysis method[J]. Food Analytical Methods, 2018, 11(1): 201-214. |
2 | Roya K, Payam S, Parinaz P, et al. Is there any association between urinary metabolites of polycyclic aromatic hydrocarbons combined with hydrothermal treatment[J]. Processing and Application of Ceramics, 2018, 10(4): 249-256. |
3 | 杨楠柠, 潘玉英, 童森炜, 等. 地下水位波动及降水对原油在非均质土层中重分布的影响[J]. 环境科学研究, 2019, 32(3): 475-484. |
Yang N N, Pan Y Y, Tong S W, et al. The influence of water table fluctuation and rainfall on redistribution of crude oil in heterogeneous soil[J]. Research of Environmental Sciences, 2019, 32(3): 475-484. | |
4 | Li S J, Chen Y N, Zhang J Q, et al. The relationship of chromophoric dissolved organic matter parallel factor analysis fluorescence and polycyclic aromatic hydrocarbons in natural surface waters[J]. Environmental Science and Pollution Research International, 2018, 25(2): 1428-1438. |
5 | Greish S, Rinnan Å, Marcussen H, et al. Interaction mechanisms between polycyclic aromatic hydrocarbons (PAHs) and organic soil washing agents[J]. Environmental Science and Pollution Research International, 2018, 25(1): 299-311. |
6 | Phelps C D, Young L Y. Anaerobic biodegradation of BTEX and gasoline in various aquatic sediments[J]. Biodegradation, 1999, 10(1): 15-25. |
7 | Yan S, Zhou Q X. Toxic effects of Hydrilla verticillata exposed to toluene, ethylbenzene and xylene and safety assessment for protecting aquatic macrophytes[J]. Chemosphere, 2011, 85(6): 1088-1094. |
8 | Gödeke S, Richnow H H, Weiβ H, et al. Multi tracer test for the implementation of enhanced in situ bioremediation at a BTEX-contaminated megasite[J]. Journal of Contaminant Hydrology, 2006, 87(3/4): 211-236. |
9 | Zou X J, Dong Y Y, Ke J, et al. Cobalt monoxide/tungsten trioxide p-n heterojunction boosting charge separation for efficient visible-light-driven gaseous toluene degradation[J]. Chemical Engineering Journal, 2020, 400: 125919-125930. |
10 | Yilmaz N, Davis S M. Polycyclic aromatic hydrocarbon (PAH) formation in a diesel engine fueled with diesel, biodiesel and biodiesel/n-butanol blends[J]. Fuel, 2016, 181: 729-740. |
11 | Kim J, Lee A H, Chang W. Manipulation of unfrozen water retention for enhancing petroleum hydrocarbon biodegradation in seasonally freezing and frozen soil[J]. Environmental Science & Technology, 2021, 55(13): 9172-9180. |
12 | Tan P Q, Zhong Y M, Hu Z Y, et al. Size distributions, PAHs and inorganic ions of exhaust particles from a heavy duty diesel engine using B20 biodiesel with different exhaust aftertreatments[J]. Energy, 2017, 141: 898-906. |
13 | Gao J B, Ma C C, Xing S K, et al. Particle- and gas-phase PAHs toxicity equivalency quantity emitted by a non-road diesel engine with non-thermal plasma technology[J]. Environmental Science and Pollution Research International, 2016, 23(19): 20017-20026. |
14 | Adesina O A, Sonibare J A, Diagboya P N, et al. Spatiotemporal distributions of polycyclic aromatic hydrocarbons close to a typical medical waste incinerator[J]. Environmental Science and Pollution Research, 2018, 25(1): 274-282. |
15 | Kanakaraju D, Kockler J, Motti C A, et al. Titanium dioxide/zeolite integrated photocatalytic adsorbents for the degradation of amoxicillin[J]. Applied Catalysis B: Environmental, 2015, 166: 45-55. |
16 | Barkouch H, Bessbousse H, Amar M, et al. Bismuth-doped TiO2 enable solar photocatalytic water treatment[J]. Optical Materials, 2023, 146: 114507. |
17 | Jia Z M, Zhao Y R, Shi J N, et al. Adsorption kinetics of the photocatalytic reaction of nano-TiO2 cement-based materials: a review[J]. Construction and Building Materials, 2023, 370: 130462-130477. |
18 | Zhang H, Bian H, Wang F, et al. Enhanced photocatalytic reduction of CO2 over pg-C3N4-supported TiO2 nanoparticles with Ag modification[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 674: 131989-131999. |
19 | Zou H J, Feng Y J, Ma J P, et al. Relationship between defect and strain in oxygen vacancy-engineered TiO2 towards photocatalytic H2 generation[J]. Ceramics International, 2023, 49(22, Part B): 36244-36250. |
20 | Macchi M, Martinez M, Tauil R M N, et al. Insights into the genome and proteome of Sphingomonas paucimobilis strain 20006FA involved in the regulation of polycyclic aromatic hydrocarbon degradation[J]. World Journal of Microbiology & Biotechnology, 2017, 34(1): 7. |
21 | Üzer E, Kumar P, Kisslinger R, et al. Vapor deposition of semiconducting phosphorus allotropes into TiO2 nanotube arrays for photoelectrocatalytic water splitting[J]. ACS Applied Nano Materials, 2019, 2(6): 3358-3367. |
22 | Zhang J, Zhang X Y, Dong S S, et al. N-doped carbon quantum dots/TiO2 hybrid composites with enhanced visible light driven photocatalytic activity toward dye wastewater degradation and mechanism insight[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 325: 104-110. |
23 | Zheng F Y, Wang Z H, Chen J, et al. Synthesis of carbon quantum dot-surface modified P25 nanocomposites for photocatalytic degradation of p-nitrophenol and acid violet 43[J]. RSC Advances, 2014, 4(58): 30605-30609. |
24 | Hoque M, Guzman M. Photocatalytic activity: experimental features to report in heterogeneous photocatalysis[J]. Materials, 2018, 11(10): 1990-2001. |
25 | Huang H L, Huang H B, Zhan Y J, et al. Efficient degradation of gaseous benzene by VUV photolysis combined with ozone-assisted catalytic oxidation: performance and mechanism[J]. Applied Catalysis B: Environmental, 2016, 186: 62-68. |
26 | Filippatos P P, Kelaidis N, Vasilopoulou M, et al. Defect processes in F and Cl doped anatase TiO2 [J]. Scientific Reports, 2019, 9: 19970. |
27 | Kim J H, Nishimura F, Yonezawa S, et al. Enhanced dispersion stability and photocatalytic activity of TiO2 particles fluorinated by fluorine gas[J]. Journal of Fluorine Chemistry, 2012, 144: 165-170. |
28 | Lee K, Yoon H, Ahn C, et al. Strategies to improve the photocatalytic activity of TiO2: 3D nanostructuring and heterostructuring with graphitic carbon nanomaterials[J]. Nanoscale, 2019, 11(15): 7025-7040. |
29 | Wang Q, Huang J Y, Sun H T, et al. Uniform carbon dots@TiO2 nanotube arrays with full spectrum wavelength light activation for efficient dye degradation and overall water splitting[J]. Nanoscale, 2017, 9(41): 16046-16058. |
30 | Shafique M, Mahr M S, Yaseen M, et al. CQD/TiO2 nanocomposite photocatalyst for efficient visible light-driven purification of wastewater containing methyl orange dye[J]. Materials Chemistry and Physics, 2022, 278: 125583. |
[1] | 陈彦霖, 周爱国, 郑家乐, 杨川箬, 葛天舒. 载体对于胺浸渍类DAC吸附剂性能的影响[J]. 化工学报, 2024, 75(S1): 217-222. |
[2] | 石美琳, 赵连达, 邓行健, 王静松, 左海滨, 薛庆国. 催化甲烷重整工艺的研究进展[J]. 化工学报, 2024, 75(S1): 25-39. |
[3] | 周文博, 殷姜维, 张丹, 杨越, 于佳豪, 赵冰超. 热辐射加热下NaCl水溶液液滴蒸发过程的实验研究[J]. 化工学报, 2024, 75(S1): 85-94. |
[4] | 王冉, 王焕, 熊晓云, 关慧敏, 郑云锋, 陈彩琳, 秦玉才, 宋丽娟. FCC催化剂传质强化活性位利用效率的可视化分析[J]. 化工学报, 2024, 75(9): 3198-3209. |
[5] | 裴蓓, 郝治斌, 徐天祥, 钟子琪, 李瑞, 贾冲, 段玉龙. 表面活性剂对含盐双流体细水雾灭火效能的影响[J]. 化工学报, 2024, 75(9): 3369-3378. |
[6] | 王树振, 王玉婷, 马梦茜, 张巍, 向江南, 鲁海莹, 王琰, 范彬彬, 郑家军, 代卫炯, 李瑞丰. 两步晶化合成ZSM-22分子筛及其临氢异构反应性能[J]. 化工学报, 2024, 75(9): 3176-3187. |
[7] | 刘亚超, 谭晓杰, 李旭东, 王瑞, 王慧, 韩璇, 赵青山. DES合成高活性CoCO3纳米片及析氧反应性能研究[J]. 化工学报, 2024, 75(9): 3320-3328. |
[8] | 张梦婷, 王书林, 桑熙, 元兴昊, 徐刚. 人工Cu-TM1459金属酶催化不对称迈克尔加成反应[J]. 化工学报, 2024, 75(9): 3255-3265. |
[9] | 刘旭升, 李泽洋, 杨宇森, 卫敏. 电催化二氧化碳还原制备气态产物的研究进展[J]. 化工学报, 2024, 75(7): 2385-2408. |
[10] | 王寅, 初鹏飞, 刘虎, 吕静, 黄守莹, 王胜平, 马新宾. 不同pH铝溶胶对二甲醚羰基化成型丝光沸石催化剂性能的影响[J]. 化工学报, 2024, 75(7): 2533-2543. |
[11] | 杨露, 刘聪聪, 孟彤彤, 张博远, 杨腾飞, 邓文安, 王晓斌. 分散型催化剂在煤/重油共炼体系中的加氢抑焦作用[J]. 化工学报, 2024, 75(7): 2556-2564. |
[12] | 罗莉, 陈文尧, 张晶, 钱刚, 周兴贵, 段学志. 氧化铝结构与表面性质调控及其催化甲醇脱水制二甲醚性能研究[J]. 化工学报, 2024, 75(7): 2522-2532. |
[13] | 王天闻, 闫肃, 赵梦园, 杨天让, 刘建国. 固体氧化物电池空气电极铬中毒机理及抗铬性能研究进展[J]. 化工学报, 2024, 75(6): 2091-2108. |
[14] | 霍宗伟, 牛亚宾, 潘艳秋. 油水膜分离中高黏度油滴行为研究和影响因素分析[J]. 化工学报, 2024, 75(6): 2262-2273. |
[15] | 赵亭亭, 鄢立祥, 唐福利, 肖敏之, 谭烨, 宋刘斌, 肖忠良, 李灵均. 光辅助锂-二氧化碳电池催化剂的设计策略与反应机理研究进展[J]. 化工学报, 2024, 75(5): 1750-1764. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 62
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 109
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||