1 |
谢勇, 段冲, 谢洪良. 中国环氧树脂行业“十四五”发展规划的建议[J]. 热固性树脂, 2022, 37(4): 61-64.
|
|
Xie Y, Duan C, Xie H L. Suggestions for the 14th five-year plan of epoxy resin industry in China[J]. Thermosetting Resin, 2022, 37(4): 61-64.
|
2 |
王玉瑛, 曲茵. 环氧氯丙烷生产技术及国内市场分析[J]. 化学工业, 2022, 40(4): 88-91, 108.
|
|
Wang Y Y, Qu Y. Production technology and domestic market analysis of epoxy chloropropane[J]. Chemical Industry, 2022, 40(4): 88-91, 108.
|
3 |
Groll H P A, Hearne G. Halogenation of hydrocarbons substitution of chlorine and bromine into straight-chain olefins[J]. Industrial & Engineering Chemistry, 1939, 31(12): 1530-1537.
|
4 |
Groll H P A, Hearne G, Rust F F, et al. Halogenation of hydrocarbons chlorination of olefins and olefin-paraffin mixtures at moderate temperatures induced substitution[J]. Industrial & Engineering Chemistry, 1939, 31(10): 1239-1244.
|
5 |
刘利. 丙烯高温氯化反应研究与反应器设计优化[J]. 中国氯碱, 2023(8):23-30.
|
|
Liu L. Research on propylene high-temperature chlorination reaction and optimization of reactor design[J]. China Chlor-Alkali, 2023(8): 23-30.
|
6 |
Boozalis T S, Ivy J B, Willis G G. Allyl chloride process: US4319062[P]. 1982-03-09.
|
7 |
Muthusamy D. Process for preparing allyl chloride: US5118889[P]. 1992-06-02.
|
8 |
Miyazaki H, Hasegawa T, Kajimoto Y, et al. Process and device for production of allyl chloride: US5367105[P]. 1994-11-22.
|
9 |
Schindler H D, Sze M C, Herbert R. Production of allyl chloride: US3865886[P]. 1975-02-11.
|
10 |
Kinoshita M, Omoto N. Methods for producting allyl chloride and dichlorohydrin: WO2010JP06215[P]. 2024-07-03.
|
11 |
薄纯金, 王吉峰, 李胜军, 等. 一种氯丙烯的生产工艺: 103724155B[P]. 2015-08-19.
|
|
Bo C J, Wang J F, Li S J, et al. A production process of allyl chloride: 103724155B[P]. 2015-08-19.
|
12 |
韩路长, 王新龙, 罗和安, 等. 一种适用于气-气快速反应的混合装置: 204429125U[P]. 2015-07-01.
|
|
Han L C, Wang X L, Luo H A, et al. A mixing device for gas-gas fast reaction: 204429125U[P]. 2015-07-01.
|
13 |
Fujimoto K, Takashima H, Kunugi T. Oxychlorination of propylene on supported palladium and other platinum group metal catalysts[J]. Journal of Catalysis, 1976, 43(1): 234-242.
|
14 |
Potapov A M, Rafikov S R. Some mechanisms in catalytic direct and oxidative chlorination of propylene[J]. Preparative Organic Chemistry, 1986, 35(11): 2252-2256.
|
15 |
Miyake T, Hirakawa K, Hanaya M, et al. Method for producing allyl chloride: US5208399[P]. 1993-05-04.
|
16 |
Dianis W P. Production of allylic chlorides: US5262575[P]. 1993-11-16.
|
17 |
Miyake T, Hanaya M. Screening of metal chloride catalysts for oxychlorination of propene[J]. Applied Catalysis A: General, 1995, 121(1): L13-L17.
|
18 |
Li M, Han L C, Luo X, et al. The kinetics modeling and reactor simulation of propylene chlorination reaction process[J]. AIChE Journal, 2021, 67(10): 17341-1-17341-15.
|
19 |
Froment G F, Bischoff K B, Juray D W. Chemical Reactor Analysis and Design[M]. New York: Wiley, 1990.
|
20 |
Denbigh K G, Turner J C R. Chemical Reactor Theory[M]. 3rd ed. Cambridge: Cambridge University Press, 1985.
|
21 |
Wen C Y, Fan L T. Models for Flow Systems and Chemical Reactors[M]. New York: Marcel Inc, 1975.
|
22 |
Lakatos B G. Population balance model for mixing in continuous flow systems[J]. Chemical Engineering Science, 2008, 63(2):404-423.
|
23 |
Tirtowidjojo M M, Beckett P C, Baker J F. Process to make allyl chloride and reactor useful in that process: US5504266[P]. 1996-04-02.
|
24 |
Seider W D, Seader J D, Daniel R L. Product and Process Design Principles: Synthesis, Analysis, and Evaluation[M]. 2nd ed. New York: John Wiley & Sons Inc, 2004.
|
25 |
Schweidtmann A M, Clayton A D, Holmes N, et al. Machine learning meets continuous flow chemistry: automated optimization towards the Pareto front of multiple objectives[J]. Chemical Engineering Journal, 2018, 352: 277-282.
|
26 |
Deb K, Jain H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach(Part Ⅰ): Solving problems with box constraints[J]. IEEE Transactions on Evolutionary Computation, 2013, 18(4): 577-601.
|
27 |
Wang Y H, Chen C, Tao Y, et al. A many-objective optimization of industrial environmental management using NSGA-Ⅲ: a case of China's iron and steel industry[J]. Applied Energy, 2019, 242: 46-56.
|
28 |
Ishibuchi H, Imada R, Setoguchi Y, et al. Performance comparison of NSGA-Ⅱ and NSGA-Ⅲ on various many-objective test problems[C]//2016 IEEE Congress on Evolutionary Computation (CEC). Vancouver, BC, Canada: IEEE, 2016: 3045-3052.
|
29 |
Campos Ciro G, Dugardin F, Yalaoui F, et al. A NSGA-Ⅱ and NSGA-Ⅲ comparison for solving an open shop scheduling problem with resource constraints[J]. IFAC-PapersOnLine, 2016, 49(12): 1272-1277.
|
30 |
Jain H, Deb K. An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach(Part Ⅱ): Handling constraints and extending to an adaptive approach[J]. IEEE Transactions on Evolutionary Computation, 2013, 18(4):602-622.
|