化工学报 ›› 2025, Vol. 76 ›› Issue (1): 71-80.DOI: 10.11949/0438-1157.20240680
黄鑫(), 李逸龙, 李卫东, 施鸿翔, 尹鹏博, 李臻超, 滕霖(
), 江莉龙
收稿日期:
2024-06-18
修回日期:
2024-09-21
出版日期:
2025-01-25
发布日期:
2025-02-08
通讯作者:
滕霖
作者简介:
黄鑫(1993—),男,副教授,mmfhmt_hx@163.edu.cn
基金资助:
Xin HUANG(), Yilong LI, Weidong LI, Hongxiang SHI, Pengbo YIN, Zhenchao LI, Lin TENG(
), Lilong JIANG
Received:
2024-06-18
Revised:
2024-09-21
Online:
2025-01-25
Published:
2025-02-08
Contact:
Lin TENG
摘要:
氨作为高效的储氢载体,具有替代化石燃料能源的巨大潜力。利用成品油管道增输液氨,可充分利用管道运能,节约输送成本。液氨-成品油混合体系的相平衡问题对于管输工艺具有重要意义,此外减压过程会引起更为复杂的相变问题。针对液氨-成品油混合体系进行实验研究,初步阐述了氨/油(体积比)和含水率对液氨-成品油混合体系相平衡和减压相变的影响规律,得到了液氨-成品油混合体系的相平衡压力,揭示了液氨-成品油混合体系减压过程的相变现象。研究发现,在0~30℃,氨-油混合体系的平衡蒸气压小于两种纯组分的饱和蒸气压,而在-2~0℃大于纯液氨的饱和蒸气压,并在氨/油(体积比)为70∶30时达到最大值。同时水分的存在会降低氨-油混合体系的平衡蒸气压。氨-油无水混合体系在减压过程中会产生气泡,压力越低气泡增多,发泡行为越剧烈。含水液氨-成品油混合体系在减压过程中会产生液滴群,并慢慢变大且聚并,在减压结束后聚并形成大液滴留在底部。上述研究成果对成品油管道增输液氨技术发展和应用具有重要的理论指导意义。
中图分类号:
黄鑫, 李逸龙, 李卫东, 施鸿翔, 尹鹏博, 李臻超, 滕霖, 江莉龙. 液氨-成品油混合体系相平衡及减压相变规律研究[J]. 化工学报, 2025, 76(1): 71-80.
Xin HUANG, Yilong LI, Weidong LI, Hongxiang SHI, Pengbo YIN, Zhenchao LI, Lin TENG, Lilong JIANG. Research on the phase equilibrium and depressurization phase transition characteristics of liquid ammonia-refined oil mixed system[J]. CIESC Journal, 2025, 76(1): 71-80.
图1 高压可视化反应测试系统1—液氨瓶;2—气瓶(氮气);3—压力表;4—阀门;5—反应釜进气阀;6—恒温水浴;7—数据采集系统;8—摄像机;9—废液槽;10—反应釜;11—压力传感器;12—温度传感器;13—反应釜排气阀
Fig.1 High-pressure visual reaction test system1—liquid ammonia bottle; 2—gas cylinder (nitrogen); 3—pressure gauge; 4—valve; 5—reactor inlet valve; 6—constant temperature water bath; 7—data acquisition system; 8—camera; 9—waste liquid tank; 10—reactor; 11—pressure sensor; 12—temperature sensor; 13—reactor exhaust valve
物性 | 92#汽油 | 0#柴油 |
---|---|---|
密度/(g/cm3) | 0.752 | 0.834 |
黏度(20℃)/(mPa·s) | 0.72 | 4.74 |
饱和蒸气压(20℃)/MPa | 0.047 | 0.001 |
表1 92#汽油和0#柴油的基础物性
Table 1 Physical parameters of 92# gasoline and 0# diesel
物性 | 92#汽油 | 0#柴油 |
---|---|---|
密度/(g/cm3) | 0.752 | 0.834 |
黏度(20℃)/(mPa·s) | 0.72 | 4.74 |
饱和蒸气压(20℃)/MPa | 0.047 | 0.001 |
温度/℃ | 实验值/MPa | 实验值[ | 相对误差/% | |
---|---|---|---|---|
压力/mmHg | 压力/MPa | |||
0 | 0.44 | 3220.5 | 0.43 | 2.33 |
5 | 0.52 | 3864.3 | 0.51 | 1.96 |
10 | 0.62 | 4615.4 | 0.61 | 1.64 |
15 | 0.74 | 5463.3 | 0.73 | 1.37 |
20 | 0.85 | 6432.5 | 0.86 | -1.16 |
25 | 1.02 | 7525.1 | 1.00 | 2.00 |
30 | 1.18 | 8749.8 | 1.16 | 1.72 |
表2 纯液氨饱和蒸气压实验值与文献[28]实验值误差分析
Table 2 Deviation between the experimental value of pure liquid ammonia saturation vapor pressure and the experimental value of Ref.[28]
温度/℃ | 实验值/MPa | 实验值[ | 相对误差/% | |
---|---|---|---|---|
压力/mmHg | 压力/MPa | |||
0 | 0.44 | 3220.5 | 0.43 | 2.33 |
5 | 0.52 | 3864.3 | 0.51 | 1.96 |
10 | 0.62 | 4615.4 | 0.61 | 1.64 |
15 | 0.74 | 5463.3 | 0.73 | 1.37 |
20 | 0.85 | 6432.5 | 0.86 | -1.16 |
25 | 1.02 | 7525.1 | 1.00 | 2.00 |
30 | 1.18 | 8749.8 | 1.16 | 1.72 |
1 | Haszeldine R S. Carbon capture and storage: how green can black be?[J]. Science, 2009, 325(5948): 1647-1652. |
2 | IPCC. Climate change 2023 synthesis report[R/OL]. [2023-09-22]. . |
3 | 习近平. 在第七十五届联合国大会一般性辩论上的讲话[J]. 中华人民共和国国务院公报, 2020(28): 5-7. |
Xi J P. Statement at the general debate of the 75th session of the United Nations general assembly[J]. Gazette of the State Council of the People’s Republic of China, 2020(28): 5-7. | |
4 | Abe J O, Popoola A P I, Ajenifuja E, et al. Hydrogen energy, economy and storage: review and recommendation[J]. International Journal of Hydrogen Energy, 2019, 44(29): 15072-15086. |
5 | Sazali N. Emerging technologies by hydrogen: a review[J]. International Journal of Hydrogen Energy, 2020, 45(38): 18753-18771. |
6 | Jiang L L, Fu X Z. An ammonia-hydrogen energy roadmap for carbon neutrality: opportunity and challenges in China[J]. Engineering, 2021, 7(12): 1688-1691. |
7 | 雍瑞生, 杨川箬, 薛明, 等. 氨能应用现状与前景展望[J]. 中国工程科学, 2023, 25(2): 111-121. |
Yong R S, Yang C R, Xue M, et al. Application status and prospect of ammonia energy[J]. Strategic Study of CAE, 2023, 25(2): 111-121. | |
8 | MacFarlane D R, Cherepanov P V, Choi J, et al. A roadmap to the ammonia economy[J]. Joule, 2020, 4(6): 1186-1205. |
9 | Kurata O, Iki N, Fan Y, et al. Start-up process of 50 kW-class gas turbine firing ammonia gas[C]//Turbo Expo: Power for Land, Sea, and Air. American Society of Mechanical Engineers, 2021, 84997: V006T19A012. |
10 | Lim D K, Plymill A B, Paik H, et al. Solid acid electrochemical cell for the production of hydrogen from ammonia[J]. Joule, 2020, 4(11): 2338-2347. |
11 | 滕霖, 尹鹏博, 聂超飞, 等. “氨-氢”绿色能源路线及液氨储运技术研究进展[J]. 油气储运, 2022, 41(10): 1115-1129. |
Teng L, Yin P B, Nie C F, et al. Research progress on “ammonia-hydrogen” green energy roadmap and storage & transportation technology of liquid ammonia[J]. Oil & Gas Storage and Transportation, 2022, 41(10): 1115-1129. | |
12 | Rouwenhorst K H R, Castellanos G. Innovation Outlook: Renewable Ammonia[M]. Abu Dhabi: International Renewable Energy Agency, 2022: 14-29. |
13 | 邢治河, 罗艳托. 中国成品油消费现状及“十四五”需求预测[J]. 国际石油经济, 2020, 28(8): 58-65. |
Xing Z H, Luo Y T. Refined oil consumptions in China and its demand forecast during the 14th Five-Year Plan period[J]. International Petroleum Economics, 2020, 28(8): 58-65. | |
14 | 王亮, 樊小朝. 新疆风电、光伏发电发展现状及面临的问题[J]. 应用能源技术, 2018(5): 53-56. |
Wang L, Fan X C. Current situation and problems of wind power and photovoltaic power generation in Xinjiang[J]. Applied Energy Technology, 2018(5): 53-56. | |
15 | 黄宣旭, 练继建, 沈威, 等. 中国规模化氢能供应链的经济性分析[J]. 南方能源建设, 2020, 7(2): 1-13. |
Huang X X, Lian J J, Shen W, et al. Economic analysis of China’s large-scale hydrogen energy supply chain[J]. Southern Energy Construction, 2020, 7(2): 1-13. | |
16 | 林伯强. 建设大容量长距离能源输送通道优化我国能源资源配置[J]. 国家电网, 2013(1): 23. |
Lin B Q. Constructing large-capacity and long-distance energy transmission channel to optimize the allocation of energy resources in China[J]. State Grid, 2013(1): 23. | |
17 | 梁永图, 廖绮, 邱睿, 等. 市场化改革背景下成品油管网运营关键技术及展望[J]. 油气储运, 2023, 42(9): 978-987, 1008. |
Liang Y T, Liao Q, Qiu R, et al. Key operation technologies and prospects to product oil pipeline network under market-oriented reform[J]. Oil & Gas Storage and Transportation, 2023, 42(9): 978-987, 1008. | |
18 | 孙青峰, 常维纯, 刘亮, 等. “全国一张网”油气储运设施应急预案体系建设[J]. 油气储运, 2024, 43(2): 134-143. |
Sun Q F, Chang W C, Liu L, et al. Development of an emergency response plan system for the “One Pipeline Network” of oil and gas storage and transportation facilities[J]. Oil & Gas Storage and Transportation, 2024, 43(2): 134-143. | |
19 | 涂仁福, 梁永图, 邵奇, 等. 绿氨-成品油综合运输系统适应性分析与规划[J]. 油气储运, 2024, 43(4): 361-372. |
Tu R F, Liang Y T, Shao Q, et al. Adaptability analysis and planning of green ammonia and product oil integrated transmission system[J]. Oil & Gas Storage and Transportation, 2024, 43(4): 361-372. | |
20 | 郑可昕, 高啸天, 范永春, 等. 支撑绿氢大规模发展的氨、甲醇技术对比及应用发展研究[J]. 南方能源建设, 2023, 10(3): 63-73. |
Zheng K X, Gao X T, Fan Y C, et al. Comparison and application prospects of ammonia and methanol technologies supporting large-scale development of green hydrogen energy[J]. Southern Energy Construction, 2023, 10(3): 63-73. | |
21 | Anon. Ammonia Refrigeration Piping Handbook[M]. Arlington: International Institute of Ammonia Refrigeration, 2004: 1-8. |
22 | Gezerman A O. Industrial scale ammonia pipeline transfer system and exergy analysis[J]. Kemija u industriji: Časopis kemičara i kemijskih inženjera Hrvatske, 2021, 70(11/12): 711-716. |
23 | 应洁, 门吉, 孙亚超, 等. 液氨长距离管道输送的设计实践[J]. 煤气与热力, 2011, 31(4): 48-49, 52. |
Ying J, Men J, Sun Y C, et al. Design practice of long-distance pipeline transportation of liquid ammonia[J]. Gas & Heat, 2011, 31(4): 48-49, 52. | |
24 | 滕霖, 林嘉豪, 尹鹏博, 等. 液氨管道水力热力特性影响因素数值模拟[J]. 油气储运, 2023, 42(3): 283-290. |
Teng L, Lin J H, Yin P B, et al. Numerical simulation of influencing factors on hydraulic and thermal characteristics of liquid ammonia pipelines[J]. Oil & Gas Storage and Transportation, 2023, 42(3): 283-290. | |
25 | 黄鑫, 滕霖, 聂超飞, 等. 液氨/甲醇/成品油顺序输送技术研究进展[J]. 油气储运, 2023, 42(12): 1337-1351. |
Huang X, Teng L, Nie C F, et al. Research progress on batch transportation technology of liquid ammonia/methanol/product oil[J]. Oil & Gas Storage and Transportation, 2023, 42(12): 1337-1351. | |
26 | 古丽, 黄秋雨, 宋晓琴, 等. 成品油管道油顶水投产混液规律预测[J]. 油气储运, 2021, 40(4): 438-445. |
Gu L, Huang Q Y, Song X Q, et al. Prediction of oil-water mixing laws in oil-water replacement of product oil pipeline[J]. Oil & Gas Storage and Transportation, 2021, 40(4): 438-445. | |
27 | 陈妍君. A-M成品油管道“油顶水”投产混液规律研究[D]. 成都: 西南石油大学, 2018. |
Chen Y J. Study on the mixing law of “oil top water” in A-M product pipeline[D]. Chengdu: Southwest Petroleum University, 2018. | |
28 | Cragoe C S, Meyers C H, Taylor C S. The vapor pressure of ammonia[J]. Journal of the American Chemical Society, 1920, 42(2): 206-229. |
29 | Tang Y, Yang C, Zhang J. Progress of phase stability, evaporation and controlling of gasoline-methanol[J]. Journal of Advances in Physical Chemistry, 2015, 4(1): 9-17. |
30 | 何怿程, 苑增之. 氨制冷剂含水率对制冷性能的影响研究[J]. 冷藏技术, 2023, 46(1): 20-24. |
He Y C, Yuan Z Z. Study on the influence of ammonia refrigerant moisture content on refrigeration performance[J]. Journal of Refrigeration Technology, 2023, 46(1): 20-24. | |
31 | The Engineering ToolBox. Liquids—Thermal Conductivities[EB/OL].[2024-12-13].. |
32 | Schroën K, de Ruiter J, Berton-Carabin C. The importance of interfacial tension in emulsification: connecting scaling relations used in large scale preparation with microfluidic measurement methods[J]. ChemEngineering, 2020, 4(4): 63. |
[1] | 唐溯, 郑子鏖, 魏翰泽, 许晓玲, 翟晓强. PMMA/PEG600/CNT复合定型相变材料制备与导热强化[J]. 化工学报, 2024, 75(S1): 309-320. |
[2] | 汪张洲, 唐天琪, 夏嘉俊, 何玉荣. 基于复合相变材料的电池热管理性能模拟[J]. 化工学报, 2024, 75(S1): 329-338. |
[3] | 秦思宇, 刘艺佳, 杨佳成, 佟薇, 金立文, 孟祥兆. 受限蒸汽腔内气液两相传热特性研究[J]. 化工学报, 2024, 75(S1): 47-55. |
[4] | 杜得辉, 冯威, 张江辉, 项燕龙, 乔高攀, 李蔚. 微型翅片疏水复合强化管管内流动沸腾换热预测模型[J]. 化工学报, 2024, 75(S1): 95-107. |
[5] | 朱子良, 王爽, 姜宇昂, 林梅, 王秋旺. 欧拉-拉格朗日迭代固-液相变算法[J]. 化工学报, 2024, 75(8): 2763-2776. |
[6] | 曲玖哲, 杨鹏, 杨绪飞, 张伟, 宇波, 孙东亮, 王晓东. 硅基微柱簇阵列微通道流动沸腾实验研究[J]. 化工学报, 2024, 75(8): 2840-2851. |
[7] | 杨明军, 巩广军, 郑嘉男, 宋永臣. 泥质低渗水合物降压开采特性与模型研究[J]. 化工学报, 2024, 75(8): 2909-2916. |
[8] | 杨明军, 宋维, 张磊, 凌铮, 陈兵兵, 宋永臣. CO2-海水水合物生成强化方法研究[J]. 化工学报, 2024, 75(8): 2939-2948. |
[9] | 方立昌, 李梓龙, 陈博, 苏政, 贾莉斯, 王智彬, 陈颖. 基于相变微胶囊悬浮液的芯片阵列冷却特性研究[J]. 化工学报, 2024, 75(7): 2455-2464. |
[10] | 赵志星, 姚智豪, 于雪峰, 杨游胜, 曾英, 于旭东. 锂钠镁共存硫酸盐体系多温相图及其应用[J]. 化工学报, 2024, 75(6): 2123-2133. |
[11] | 李新泽, 张双星, 杨洪海, 杜文静. 基于电池冷却用新型脉动热管性能的实验研究[J]. 化工学报, 2024, 75(6): 2222-2232. |
[12] | 裴欣哲, 孙朱行, 林钰翔, 张朝阳, 钱勇, 吕兴才. 电催化分解液氨阳极材料的研究[J]. 化工学报, 2024, 75(5): 1843-1854. |
[13] | 李怡菲, 董新宇, 王为术, 刘璐, 赵一璠. 微肋板表面干冰升华喷雾冷却传热数值模拟[J]. 化工学报, 2024, 75(5): 1830-1842. |
[14] | 陈好奇, 史博会, 彭琪, 康琦, 宋尚飞, 姚海元, 陈海宏, 吴海浩, 宫敬. 基于稳定性分析的含酸/醇烃水体系相平衡计算[J]. 化工学报, 2024, 75(3): 789-800. |
[15] | 王林, 江荣鼎, 张春晓, 李修真, 谈莹莹. 含R1234yf混合工质汽液相平衡的混合规则评估与预测研究[J]. 化工学报, 2024, 75(2): 475-483. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 148
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 260
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||