化工学报 ›› 2024, Vol. 75 ›› Issue (5): 1843-1854.DOI: 10.11949/0438-1157.20240144
裴欣哲1(), 孙朱行2, 林钰翔1, 张朝阳1, 钱勇1(), 吕兴才1
收稿日期:
2024-01-31
修回日期:
2024-02-26
出版日期:
2024-05-25
发布日期:
2024-06-25
通讯作者:
钱勇
作者简介:
裴欣哲(1998—),男,硕士研究生,xinzhepei1998@sjtu.edu.cn
基金资助:
Xinzhe PEI1(), Zhuxing SUN2, Yuxiang LIN1, Chaoyang ZHANG1, Yong QIAN1(), Xingcai LYU1
Received:
2024-01-31
Revised:
2024-02-26
Online:
2024-05-25
Published:
2024-06-25
Contact:
Yong QIAN
摘要:
氨是一种具有高储氢密度的化学储氢材料,通过氨氢转换可以实现能源的高效利用。氨分解产氢是氨氢转换过程的重要一环,在氨分解的途径中电催化直接分解液氨理论上具有最低能耗,若能有效降低液氨直接电解阳极的过电位,电催化分解液氨在氢经济中将具有广阔的前景。依次使用铜、钴、铁、钼、钒、钛、碳纸和304不锈钢作为液氨电解过程阳极材料进行线性扫描伏安测试、循环伏安测试、电化学阻抗谱测试和计时电位测试,以研究这些材料在2.0 mol/L NH4Cl的液氨溶液中的电催化活性和在高电流密度下的耐腐蚀性能。结果表明:钛作为液氨电解过程的阳极电催化活性很差;铜、钴和铁虽具有优异的电催化活性,但在正向电位下会发生严重腐蚀;304不锈钢虽具有优异的电催化活性,但在高电流密度下稳定性一般;碳纸电催化活性较差,但高电流密度下具有良好的稳定性,且活性表面积较大,适合作为液氨电解阳极催化剂基底材料;钼和钒电催化活性优于碳纸,在高电流密度下腐蚀率较低,可以作为液氨电解阳极材料。
中图分类号:
裴欣哲, 孙朱行, 林钰翔, 张朝阳, 钱勇, 吕兴才. 电催化分解液氨阳极材料的研究[J]. 化工学报, 2024, 75(5): 1843-1854.
Xinzhe PEI, Zhuxing SUN, Yuxiang LIN, Chaoyang ZHANG, Yong QIAN, Xingcai LYU. Study of anode materials for electrocatalytic decomposition of liquid ammonia[J]. CIESC Journal, 2024, 75(5): 1843-1854.
图3 不同材料的起始电位(电流密度0.05 mA/cm2时)与10 mA/cm2电流密度时的过电位
Fig.3 Initiation potential (at current density 0.05 mA/cm2) and overpotential at 10 mA/cm2 current density for different materials
等效电路拟合元件 | Fe | 304不锈钢 | Mo | V | 碳纸 | Ti |
---|---|---|---|---|---|---|
Rs/Ω | 1.407 | 1.094 | 1.42 | 1.54 | 2.33 | 1.24 |
Rp1/Ω | 33710 | 2750 | 13285 | 37633 | 48838 | 11.57 |
CPE1-T | 3.87×10-4 | 1.11×10-3 | 1.21×10-3 | 6.9×10-4 | 5.43×10-4 | 1.9×10-4 |
CPE1-P | 0.917 | 1.027 | 1.033 | 0.847 | 0.959 | 0.915 |
Rp2/Ω | 126680 | 45000 | 72772 | 147550 | ||
CPE2-T | 3.06×10-4 | 3.02×10-4 | 4.2×10-4 | 1.5×10-4 | ||
CPE2-P | 0.816 | 0.761 | 0.812 | 0.893 |
表1 EIS测试等效电路拟合结果
Table 1 EIS test equivalent circuit fitting results
等效电路拟合元件 | Fe | 304不锈钢 | Mo | V | 碳纸 | Ti |
---|---|---|---|---|---|---|
Rs/Ω | 1.407 | 1.094 | 1.42 | 1.54 | 2.33 | 1.24 |
Rp1/Ω | 33710 | 2750 | 13285 | 37633 | 48838 | 11.57 |
CPE1-T | 3.87×10-4 | 1.11×10-3 | 1.21×10-3 | 6.9×10-4 | 5.43×10-4 | 1.9×10-4 |
CPE1-P | 0.917 | 1.027 | 1.033 | 0.847 | 0.959 | 0.915 |
Rp2/Ω | 126680 | 45000 | 72772 | 147550 | ||
CPE2-T | 3.06×10-4 | 3.02×10-4 | 4.2×10-4 | 1.5×10-4 | ||
CPE2-P | 0.816 | 0.761 | 0.812 | 0.893 |
图7 304不锈钢、钼、钒、钛和碳纸在50 mA/cm2下的计时电位曲线
Fig.7 Chronopotential curves of 304 stainless steel, molybdenum, vanadium, titanium and carbon paper at 50 mA/cm2
图10 能谱测试得到的计时电位测试后几种金属材料表面元素分布情况
Fig.10 Distribution of elements on the surface of several metallic materials after the chronopotential test obtained from the EDS
1 | Zhao Y, Setzler B P, Wang J H, et al. An efficient direct ammonia fuel cell for affordable carbon-neutral transportation[J]. Joule, 2019, 3(10): 2472-2484. |
2 | Cai Z H, Huang M M, Wei G F, et al. Numerical study of the effect of pressure on the combustion characteristics of ammonia/coal-derived syngas mixture under gas turbine operating conditions[J]. Fuel, 2023, 347: 128463. |
3 | Mi S J, Wu H Q, Pei X Z, et al. Potential of ammonia energy fraction and diesel pilot-injection strategy on improving combustion and emission performance in an ammonia-diesel dual fuel engine[J]. Fuel, 2023, 343: 127889. |
4 | Lhuillier C, Brequigny P, Contino F, et al. Experimental study on ammonia/hydrogen/air combustion in spark ignition engine conditions[J]. Fuel, 2020, 269: 117448. |
5 | Oh S, Park C, Kim S, et al. Natural gas-ammonia dual-fuel combustion in spark-ignited engine with various air-fuel ratios and split ratios of ammonia under part load condition[J]. Fuel, 2021, 290: 120095. |
6 | Mercier A, Mounaïm-Rousselle C, Brequigny P, et al. Improvement of SI engine combustion with ammonia as fuel: effect of ammonia dissociation prior to combustion[J]. Fuel Communications, 2022, 11: 100058. |
7 | Giddey S, Badwal S P S, Munnings C, et al. Ammonia as a renewable energy transportation media[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(11): 10231-10239. |
8 | Mukherjee S, Devaguptapu S V, Sviripa A, et al. Low-temperature ammonia decomposition catalysts for hydrogen generation[J]. Applied Catalysis B: Environmental, 2018, 226: 162-181. |
9 | Galloway J N, Townsend A R, Erisman J W, et al. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions[J]. Science, 2008, 320(5878): 889-892. |
10 | Valera-Medina A, Xiao H, Owen-Jones M, et al. Ammonia for power[J]. Progress in Energy and Combustion Science, 2018, 69: 63-102. |
11 | Ouyang L, Liang J, Luo Y S, et al. Recent advances in electrocatalytic ammonia synthesis[J]. Chinese Journal of Catalysis, 2023, 50: 6-44. |
12 | Najafian A, Cundari T R. Computational mechanistic study of electro-oxidation of ammonia to N2 by homogenous ruthenium and iron complexes[J]. The Journal of Physical Chemistry A, 2019, 123(37): 7973-7982. |
13 | Lucentini I, Garcia X, Vendrell X, et al. Review of the decomposition of ammonia to generate hydrogen[J]. Industrial & Engineering Chemistry Research, 2021, 60(51): 18560-18611. |
14 | Liu H Y, Lant H M C, Cody C C, et al. Electrochemical ammonia oxidation with molecular catalysts[J]. ACS Catalysis, 2023, 13(7): 4675-4682. |
15 | Katsounaros I, Figueiredo M C, Calle-Vallejo F, et al. On the mechanism of the electrochemical conversion of ammonia to dinitrogen on Pt(1 0 0) in alkaline environment[J]. Journal of Catalysis, 2018, 359: 82-91. |
16 | Xu W, Du D W, Lan R, et al. Electrodeposited NiCu bimetal on carbon paper as stable non-noble anode for efficient electrooxidation of ammonia[J]. Applied Catalysis B: Environmental, 2018, 237: 1101-1109. |
17 | Sacré N, Duca M, Garbarino S, et al. Tuning Pt-Ir interactions for NH3 electrocatalysis[J]. ACS Catalysis, 2018, 8(3): 2508-2518. |
18 | Keener M, Peterson M, Hernández Sánchez D R, et al. Towards catalytic ammonia oxidation to dinitrogen: a synthetic cycle by using a simple manganese complex[J]. Chemistry-A European Journal, 2017, 23(48): 11479-11484. |
19 | Habibzadeh F, Miller S L, Hamann T W, et al. Homogeneous electrocatalytic oxidation of ammonia to N2 under mild conditions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(8): 2849-2853. |
20 | Nakajima K, Toda H, Sakata K, et al. Ruthenium-catalysed oxidative conversion of ammonia into dinitrogen[J]. Nature Chemistry, 2019, 11: 702-709. |
21 | Bhattacharya P, Heiden Z M, Chambers G M, et al. Catalytic ammonia oxidation to dinitrogen by hydrogen atom abstraction[J]. Angewandte Chemie (International Ed. in English), 2019, 58(34): 11618-11624. |
22 | Ahmed M E, Raghibi Boroujeni M, Ghosh P, et al. Electrocatalytic ammonia oxidation by a low-coordinate copper complex[J]. Journal of the American Chemical Society, 2022, 144(46): 21136-21145. |
23 | de Vooys A C A, Koper M T M, van Santen R A, et al. The role of adsorbates in the electrochemical oxidation of ammonia on noble and transition metal electrodes[J]. Journal of Electroanalytical Chemistry, 2001, 506(2): 127-137. |
24 | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
Zhang Q, Zhao H, Rong J F. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC[J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. | |
25 | Gutmann V. Reactions in some non-aqueous ionising solvents[J]. Quarterly Reviews, Chemical Society, 1956, 10(4): 451-462. |
26 | Dong B X, Tian H, Wu Y C, et al. Improved electrolysis of liquid ammonia for hydrogen generation via ammonium salt electrolyte and Pt/Rh/Ir electrocatalysts[J]. International Journal of Hydrogen Energy, 2016, 41(33): 14507-14518. |
27 | Goshome K, Yamada T, Miyaoka H, et al. High compressed hydrogen production via direct electrolysis of liquid ammonia[J]. International Journal of Hydrogen Energy, 2016, 41(33): 14529-14534. |
28 | Little D J, Edwards D O, Smith M R, et al. As precious as platinum: iron nitride for electrocatalytic oxidation of liquid ammonia[J]. ACS Applied Materials & Interfaces, 2017, 9(19): 16228-16235. |
29 | Little D J, Smith I, Hamann T W. Electrolysis of liquid ammonia for hydrogen generation[J]. Energy & Environmental Science, 2015, 8(9): 2775-2781. |
30 | Akagi N, Hori K, Sugime H, et al. Systematic investigation of anode catalysts for liquid ammonia electrolysis[J]. Journal of Catalysis, 2022, 406: 222-230. |
31 | Wan T H, Saccoccio M, Chen C, et al. Influence of the discretization methods on the distribution of relaxation times deconvolution: implementing radial basis functions with DRTtools[J]. Electrochimica Acta, 2015, 184: 483-499. |
32 | Ciucci F, Chen C. Analysis of electrochemical impedance spectroscopy data using the distribution of relaxation times: a Bayesian and hierarchical Bayesian approach[J]. Electrochimica Acta, 2015, 167: 439-454. |
33 | Effat M B, Ciucci F. Bayesian and hierarchical Bayesian based regularization for deconvolving the distribution of relaxation times from electrochemical impedance spectroscopy data[J]. Electrochimica Acta, 2017, 247: 1117-1129. |
34 | Liu J P, Wan T H, Ciucci F. A Bayesian view on the Hilbert transform and the Kramers-Kronig transform of electrochemical impedance data: probabilistic estimates and quality scores[J]. Electrochimica Acta, 2020, 357: 136864. |
35 | Vijh A K. The anodic behavior of some materials in liquid ammonia in presence and absence of methane or ethylene[J]. Journal of the Electrochemical Society, 1972, 119(7): 861. |
36 | Brown O R, Thornton S A. Kinetics of electrode reactions in liquid ammonia(part 2): FeⅢ/FeⅡ and CoⅢ/CoⅡ redox couples[J]. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1974, 70: 14. |
37 | Heusler K E, Kutzmutz S. The nickel electrode in liquid ammonia[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1990, 285(1/2): 93-101. |
38 | 王成. 不锈钢表面电化学处理及耐腐蚀机理研究[D]. 厦门: 厦门大学, 2018. |
Wang C. Study on the electrochemical surface modification of stainless steel and its mechanism of corrosion resistance[D].Xiamen: Xiamen University, 2018. | |
39 | 焦照临, 徐流杰, 徐照宁, 等. Al2O3掺杂钼合金的显微组织及电化学腐蚀行为研究[J]. 稀有金属与硬质合金, 2022, 50(5): 59-65, 69. |
Jiao Z L, Xu L J, Xu Z N, et al. Study on microstructure and electrochemical corrosion behavior of Al2O3 doped molybdenum alloys[J]. Rare Metals and Cemented Carbides, 2022, 50(5): 59-65, 69. | |
40 | 袁天孝. TA9合金与0Cr18Ni9钢氨环境下腐蚀过程研究[D]. 银川: 宁夏大学, 2022. |
Yuan T X. Study on corrosion process of TA9 alloy and 0Cr18Ni9 steel in ammonia environment[D].Yinchuan: Ningxia University, 2022. |
[1] | 赵璐璐, 唐二军, 邢旭腾, 刘少杰, 褚晓萌, 呼娜, 张泽. POSS改性氧化石墨烯对涂层防腐和疏水性能的影响[J]. 化工学报, 2024, 75(5): 1977-1986. |
[2] | 李云璇, 刘新悦, 陈熙, 刘文, 周明月, 蓝兴英. 基于固液氧化还原靶向反应的能量存储技术:材料、器件及动力学[J]. 化工学报, 2024, 75(4): 1222-1240. |
[3] | 冯彬彬, 卢明佳, 黄志宏, 常译文, 崔志明. 碳载体在质子交换膜燃料电池中的应用及优化[J]. 化工学报, 2024, 75(4): 1469-1484. |
[4] | 贾旭东, 杨博龙, 程前, 李雪丽, 向中华. 分步负载金属法制备铁钴双金属位点高效氧还原电催化剂[J]. 化工学报, 2024, 75(4): 1578-1593. |
[5] | 严孝清, 赵瑛, 张宇哲, 欧鸿辉, 黄起中, 胡华贵, 杨贵东. 五重孪晶铜纳米线@聚吡咯制备及其电催化硝酸盐还原制氨[J]. 化工学报, 2024, 75(4): 1519-1532. |
[6] | 李昂, 赵振宇, 李洪, 高鑫. 微波诱导高分散Pd/FeP催化剂构筑及其电催化性能研究[J]. 化工学报, 2024, 75(4): 1594-1606. |
[7] | 孙铭泽, 黄鹤来, 牛志强. 铂基氧还原催化剂:从单晶电极到拓展表面纳米材料[J]. 化工学报, 2024, 75(4): 1256-1269. |
[8] | 吴希, 孙博, 刘银东, 齐传磊, 陈凯毅, 王路海, 许崇, 李永峰. 钠离子电池沥青基碳负极材料制备技术研究进展[J]. 化工学报, 2024, 75(4): 1270-1283. |
[9] | 吴吉昊, 陈涛, 刘思宇, 刘梦柯, 杨卷. 双功能活化制备沥青基硬炭用于钠离子电池负极[J]. 化工学报, 2024, 75(3): 1019-1027. |
[10] | 潘娜, 田昌, 怀兰坤, 刘玉玉, 张芬芬, 高晓梅, 刘伟, 闫良国, 赵艳侠. 聚合铝钛基絮凝剂的合成与应用[J]. 化工学报, 2024, 75(3): 1009-1018. |
[11] | 郭邦军, 贾理男, 张希. 全固态硫化物锂电池中NCM正极及其界面研究[J]. 化工学报, 2024, 75(3): 743-759. |
[12] | 尹玉华, 方灿, 易清风, 李广. 不同碳导电剂对铁-空气电池性能的影响[J]. 化工学报, 2024, 75(2): 685-694. |
[13] | 刘志鹏, 赵长颖, 吴睿, 张智昊. 基于水电解制氢的梯度多孔传输层中气液流动可视化实验研究[J]. 化工学报, 2024, 75(2): 520-530. |
[14] | 闻文, 王慧艳, 周静红, 曹约强, 周兴贵. 石墨负极颗粒对锂离子电池容量衰减及SEI膜生长影响的模拟研究[J]. 化工学报, 2024, 75(1): 366-376. |
[15] | 齐元帅, 彭文朝, 李阳, 张凤宝, 范晓彬. 电化学脱盐机理及相关研究进展[J]. 化工学报, 2024, 75(1): 171-189. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||