| 1 |
Paydar S, Zhu B, Shi J, et al. Surfacial proton conducting CeO2 nanosheets[J]. Ceramics International, 2023, 49(6): 9138-9146.
|
| 2 |
Zhu B, Fan L D, Deng H, et al. LiNiFe-based layered structure oxide and composite for advanced single layer fuel cells[J]. Journal of Power Sources, 2016, 316: 37-43.
|
| 3 |
Zhang W W, Wang H C, Guan K, et al. La0.6Sr0.4Co0.2Fe0.8O3- δ /CeO2 heterostructured composite nanofibers as a highly active and robust cathode catalyst for solid oxide fuel cells[J]. ACS Applied Materials & Interfaces, 2019, 11(30): 26830-26841.
|
| 4 |
Mansilla Y, Arce M, Gonzalez Oliver C, et al. Synthesis and characterization of ZrO2 and YSZ thin films[J]. Materials Today: Proceedings, 2019, 14: 92-95.
|
| 5 |
Han M F, Tang X L, Yin H Y, et al. Fabrication, microstructure and properties of a YSZ electrolyte for SOFCs[J]. Journal of Power Sources, 2007, 165(2): 757-763.
|
| 6 |
Chen Y, Wei W C J. Processing and characterization of ultra-thin yttria-stabilized zirconia (YSZ) electrolytic films for SOFC[J]. Solid State Ionics, 2006, 177(3): 351-357.
|
| 7 |
Butz B, Kruse P, Störmer H, et al. Correlation between microstructure and degradation in conductivity for cubic Y2O3-doped ZrO2 [J]. Solid State Ionics, 2006, 177(37): 3275-3284.
|
| 8 |
Liu K, Ganesh K S, Nie J J, et al. Characterizing the blocking electron ability of the schottky junction in SnO2-SDC semiconductor-ionic membrane fuel cells[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(28): 10357-10368.
|
| 9 |
Xia C, Mi Y Q, Wang B Y, et al. Shaping triple-conducting semiconductor BaCo0.4Fe0.4Zr0.1Y0.1O3- δ into an electrolyte for low-temperature solid oxide fuel cells[J]. Nature Communications, 2019, 10: 1707.
|
| 10 |
Liu Z, Liu M F, Yang L, et al. LSM-infiltrated LSCF cathodes for solid oxide fuel cells[J]. Journal of Energy Chemistry, 2013, 22(4): 555-559.
|
| 11 |
Wang L, Wang P P, Geng C L, et al. A novel core-shell LSCF perovskite structured electrocatalyst with local hetero-interface for solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2020, 45(20): 11824-11833.
|
| 12 |
Cai H D, Zheng D, Xia C, et al. Improving the electrochemical energy conversion of solid oxide fuel cells through the interface effect in La0.6Sr0.4Co0.2Fe0.8O3- δ -BaTiO3- δ electrolyte[J]. Journal of Colloid and Interface Science, 2023, 641: 70-81.
|
| 13 |
王天闻, 闫肃, 赵梦园,等. Co掺杂SrTi0.3Fe0.7O3- δ 阳极SOFC在化工副产气燃料下的性能及稳定性[J]. 化工学报, 2022, 73(9): 4079-4086.
|
|
Wang T W, Yan S, Zhao M Y, et al. Performance and durability of cobalt doped SrTi0.3Fe0.7O3- δ anode SOFC fueled with by-product gas from chemical industry[J]. CIESC Journal, 2022, 73(9): 4079-4086.
|
| 14 |
肖扬, 徐春明, 杨晓霞, 等. NiMn2O4尖晶石氧化物阴极的制备及电化学性能研究[J]. 化工学报, 2020, 71(9): 4292-4302.
|
|
Xiao Y, Xu C M, Yang X X, et al. Preparation and electrochemical properties of NiMn2O4 spinel oxide cathode[J]. CIESC Journal, 2020, 71(9): 4292-4302.
|
| 15 |
Tariq S, Marium A, Raza R, et al. Comparative study of Ce0.80Sm0.20 Ba0.80Y0.20O3- δ (YB-SDC) electrolyte by various chemical synthesis routes[J]. Results in Physics, 2018, 8: 780-784.
|
| 16 |
Lu Y Z, Mushtaq N, Shah M A K Y, et al. Proton transport controlled at surface layer of CeO2 by gradient-doping with a built-in-field effect[J]. Journal of Rare Earths, 2023, 41(12): 2025-2032.
|
| 17 |
Namai Y, Fukui K I, Iwasawa Y. Atom-resolved noncontact atomic force microscopic and scanning tunneling microscopic observations of the structure and dynamic behavior of CeO2(111) surfaces[J]. Catalysis Today, 2003, 85(2/3/4): 79-91.
|
| 18 |
Fu Y P, Wen S B, Lu C H. Preparation and characterization of samaria-doped ceria electrolyte materials for solid oxide fuel cells[J]. Journal of the American Ceramic Society, 2008, 91(1): 127-131.
|
| 19 |
Pikalova E Y, Maragou V I, Demina A N, et al. The effect of co-dopant addition on the properties of Ln0.2Ce0.8O2- δ (Ln=Gd, Sm, La) solid-state electrolyte[J]. Journal of Power Sources, 2008, 181(2): 199-206.
|
| 20 |
Feng B, Sugiyama I, Hojo H, et al. Atomic structures and oxygen dynamics of CeO2 grain boundaries[J]. Scientific Reports, 2016, 6: 20288.
|
| 21 |
Montini T, Melchionna M, Monai M, et al. Fundamentals and catalytic applications of CeO2-based materials[J]. Chemical Reviews, 2016, 116(10): 5987-6041.
|
| 22 |
Cai H D, Zhang L L, Xu J S, et al. Cobalt-free La0.5Sr0.5Fe0.9Mo0.1O3- δ electrode for symmetrical SOFC running on H2 and CO fuels[J]. Electrochimica Acta, 2019, 320: 134642.
|
| 23 |
Xing Y M, Wu Y, Li L Y, et al. Proton shuttles in CeO2/CeO2- δ core-shell structure[J]. ACS Energy Letters, 2019, 4(11): 2601-2607.
|
| 24 |
Zhu B, Lund P, Raza R, et al. A new energy conversion technology based on nano-redox and nano-device processes[J]. Nano Energy, 2013, 2(6): 1179-1185.
|
| 25 |
Campbell C T, Peden C H F. Oxygen vacancies and catalysis on ceria surfaces[J]. Science, 2005, 309(5735): 713-714.
|
| 26 |
Zhu B, Lund P D, Raza R, et al. Schottky junction effect on high performance fuel cells based on nanocomposite materials[J]. Advanced Energy Materials, 2015, 5(8): 1401895.
|
| 27 |
Jaiswal S K, Hong J, Yoon K J, et al. Optical absorption and XPS studies of (Ba1- x Sr x )(Ce0.75Zr0.10Y0.15)O3- δ electrolytes for protonic ceramic fuel cells[J]. Ceramics International, 2016, 42(8): 10366-10372.
|
| 28 |
He J J, Xu Y H, Shao P H, et al. Modulation of coordinative unsaturation degree and valence state for cerium-based adsorbent to boost phosphate adsorption[J]. Chemical Engineering Journal, 2020, 394: 124912.
|
| 29 |
Ali Abdelkareem M, Sayed E T, Mohamed H O, et al. Nonprecious anodic catalysts for low-molecular-hydrocarbon fuel cells: theoretical consideration and current progress[J]. Progress in Energy and Combustion Science, 2020, 77: 100805.
|
| 30 |
Sebastián D, Serov A, Matanovic I, et al. Insights on the extraordinary tolerance to alcohols of Fe-N-C cathode catalysts in highly performing direct alcohol fuel cells[J]. Nano Energy, 2017, 34: 195-204.
|
| 31 |
Shimada H, Yamaguchi T, Sumi H, et al. Improved transport property of proton-conducting solid oxide fuel cell with multi-layered electrolyte structure[J]. Journal of Power Sources, 2017, 364: 458-464.
|
| 32 |
Xian C N, Wang S F, Sun C W, et al. Effect of Ni doping on the catalytic properties of nanostructured peony-like CeO2 [J]. Chinese Journal of Catalysis, 2013, 34(2): 305-312.
|
| 33 |
Yang D, Chen G, Liu H L, et al. Electrochemical performance of a Ni0.8Co0.15Al0.05LiO2 cathode for a low temperature solid oxide fuel cell[J]. International Journal of Hydrogen Energy, 2021, 46(17): 10438-10447.
|
| 34 |
Chen G, Luo Y D, Sun W K, et al. Electrochemical performance of a new structured low temperature SOFC with BZY electrolyte[J]. International Journal of Hydrogen Energy, 2018, 43(28): 12765-12772.
|
| 35 |
Vafaeenezhad S, Hanifi A R, Laguna-Bercero M A, et al. Microstructure and long-term stability of Ni-YSZ anode supported fuel cells: a review[J]. Materials Futures, 2022, 1(4): 042101.
|
| 36 |
Ni M, Shao Z P. Fuel cells that operate at 300℃ to 500℃[J]. Science, 2020, 369(6500): 138-139.
|
| 37 |
Dong W J, Tong Y Z, Zhu B, et al. Semiconductor TiO2 thin film as an electrolyte for fuel cells[J]. Journal of Materials Chemistry A, 2019, 7(28): 16728-16734.
|
| 38 |
Shah M A K Y, Lu Y Z, Mushtaq N, et al. Showcasing the potential of iron-doped electrolytes to enhance the ionic conduction for a low-temperature ceramics fuel cell[J]. ACS Applied Energy Materials, 2023, 6(21): 10829-10841.
|
| 39 |
Cain T, Lai B K, Sankaranarayanan S, et al. Photo-excitation enhanced high temperature conductivity and crystallization kinetics in ultra-thin La0.6Sr0.4Co0.8Fe0.2O3- δ films[J]. Journal of Power Sources, 2010, 195(10): 3145-3148.
|
| 40 |
Li F F, Tang J, Ke Q P, et al. Investigation into enhanced catalytic performance for epoxidation of styrene over LaSrCo x Fe2- x O6 double perovskites: the role of singlet oxygen species promoted by the photothermal effect[J]. ACS Catalysis, 2021, 11(19): 11855-11866.
|
| 41 |
Tayyab Z, Rauf S, Bilal Hanif M, et al. Theoretical and experimental explored tailored hybrid H+/O2– ions conduction: bridged for high performance fuel cell and water electrolysis[J]. Chemical Engineering Journal, 2024, 482: 148750.
|
| 42 |
Hu M S, Chen M R, Wang Y C, et al. A p-n heterostructure composite of NaCrO2 and CeO2 for intermediate temperature solid oxide fuel cells[J]. Journal of Alloys and Compounds, 2023, 962: 171169.
|
| 43 |
Huang Q A, Liu M F, Liu M L. Impedance spectroscopy study of an SDC-based SOFC with high open circuit voltage[J]. Electrochimica Acta, 2015, 177: 227-236.
|