化工学报 ›› 2025, Vol. 76 ›› Issue (2): 787-796.DOI: 10.11949/0438-1157.20240656
• 表面与界面工程 • 上一篇
李文宝1(), 胡锦鹏2, 杜淼2,3(
), 潘鹏举1, 单国荣1(
)
收稿日期:
2024-06-13
修回日期:
2024-07-06
出版日期:
2025-03-25
发布日期:
2025-03-10
通讯作者:
杜淼,单国荣
作者简介:
李文宝(2000—),男,硕士研究生,liwenbao@zju.edu.cn
基金资助:
Wenbao LI1(), Jinpeng HU2, Miao DU2,3(
), Pengju PAN1, Guorong SHAN1(
)
Received:
2024-06-13
Revised:
2024-07-06
Online:
2025-03-25
Published:
2025-03-10
Contact:
Miao DU, Guorong SHAN
摘要:
将两性离子甲基丙烯酸磺酸甜菜碱(SBMA)与丙烯酸(AAc)单体共聚,并引入气相SiO2纳米粒子,将化学交联与物理交联相结合,制备了P(SBMA-co-AAc)/SiO2复合水凝胶。添加SiO2粒子有效降低了水凝胶在水及海水中的相对溶胀度,显著提升了水凝胶的强度和模量,在海水中的拉伸强度和杨氏模量可达662 kPa和429 kPa,压缩模量达225 kPa,同时具有高断裂伸长率。水凝胶涂层减阻效果优异,高滑动速率下,表现出低摩擦因数,在1 N的载重下与玻璃表面的摩擦因数可低至0.004。复合水凝胶还表现出优异的抗蛋白吸附和抗菌性能,在马口铁片表面也具有优异的黏结性能。P(SBMA-co-AAc)/SiO2复合水凝胶涂层制备工艺简单、成本较低,可为防污减阻水凝胶涂层的应用提供参考。
中图分类号:
李文宝, 胡锦鹏, 杜淼, 潘鹏举, 单国荣. 强韧P(SBMA-co-AAc)/SiO2复合水凝胶海洋防污减阻涂层[J]. 化工学报, 2025, 76(2): 787-796.
Wenbao LI, Jinpeng HU, Miao DU, Pengju PAN, Guorong SHAN. High strength and toughness P(SBMA-co-AAc)/SiO2 composite hydrogel marine antifouling and drag-reducing coating[J]. CIESC Journal, 2025, 76(2): 787-796.
水凝胶 | SBMA/g | AAc/g | MBAA/g | 2959/g | H2O/g | SiO2/g |
---|---|---|---|---|---|---|
SA-0 | 3.35 | 3.46 | 0.046 | 0.13 | 13.01 | 0 |
SA-5 | 3.35 | 3.46 | 0.046 | 0.13 | 13.01 | 1 |
SA-10 | 3.35 | 3.46 | 0.046 | 0.13 | 13.01 | 2 |
SA-15 | 3.35 | 3.46 | 0.046 | 0.13 | 13.01 | 3 |
表1 P(SBMA-co-AAc)/SiO2复合水凝胶样品配方
Table 1 P(SBMA-co-AAc)/SiO2 composite hydrogels sample formula
水凝胶 | SBMA/g | AAc/g | MBAA/g | 2959/g | H2O/g | SiO2/g |
---|---|---|---|---|---|---|
SA-0 | 3.35 | 3.46 | 0.046 | 0.13 | 13.01 | 0 |
SA-5 | 3.35 | 3.46 | 0.046 | 0.13 | 13.01 | 1 |
SA-10 | 3.35 | 3.46 | 0.046 | 0.13 | 13.01 | 2 |
SA-15 | 3.35 | 3.46 | 0.046 | 0.13 | 13.01 | 3 |
图3 P(SBMA-co-AAc)/SiO2复合水凝胶的形貌(a)、含水量(b)、qw和qs(c)及qw-s(d)
Fig.3 The morphology (a), water content (b), qw and qs (c) and qw-s (d) of P(SBMA-co-AAc)/SiO2 compositehydrogels
图6 P(SBMA-co-AAc)/SiO2复合水凝胶的Es(a)以及在水(b)和海水(c)中的摩擦因数曲线
Fig.6 Es of P(SBMA-co-AAc)/SiO2 composite hydrogels (a) and its friction coefficient curves in water (b) and seawater (c)
图8 P(SBMA-co-AAc)/SiO2复合水凝胶的抗大肠杆菌黏附结果(a)和表面Zeta电位(b)
Fig.8 Anti-Escherichia coli adhesion results (a) and surface Zeta potential (b) of P(SBMA-co-AAc)/SiO2 composite hydrogels
图9 (a) SA-15复合水凝胶与马口铁表面的黏附能;(b) KH-570的乙醇-乙酸溶液和水溶液处理马口铁表面后的红外光谱图
Fig.9 (a) Adhesion energy between SA-15 composite hydrogel and tinplate surface; (b) Infrared spectrum of tinplate surface treated with KH-570 ethanol-acetic acid solution and aqueous solution respectively
图10 SA-0 (a)和SA-15 (b)复合水凝胶的沙石水磨损前后形貌
Fig.10 The morphology of SA-0 (a) and SA-15 (b) composite hydrogels before and after abrasing with sand and stone water
1 | Schultz M P, Bendick J A, Holm E R, et al. Economic impact of biofouling on a naval surface ship[J]. Biofouling, 2011, 27(1): 87-98. |
2 | Yebra D M, Kiil S, Dam-Johansen K. Antifouling technology—Past, present and future steps towards efficient and environmentally friendly antifouling coatings[J]. Progress in Organic Coatings, 2004, 50(2): 75-104. |
3 | Amara I, Miled W, Ben Slama R, et al. Antifouling processes and toxicity effects of antifouling paints on marine environment. A review[J]. Environmental Toxicology and Pharmacology, 2018, 57: 115-130. |
4 | Mawignon F J, Liu J B, Qin L G, et al. The optimization of biomimetic sharkskin riblet for the adaptation of drag reduction[J]. Ocean Engineering, 2023, 275: 114135. |
5 | Salta M, Wharton J A, Stoodley P, et al. Designing biomimetic antifouling surfaces[J]. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 2010, 368(1929): 4729-4754. |
6 | Gong J P. Friction and lubrication of hydrogels—its richness and complexity[J]. Soft Matter, 2006, 2(7): 544-552. |
7 | Wang X, Su H, Lv W Y, et al. Complex rheological behaviors of loach (Misgurnus anguillicaudatus) skin mucus[J]. Journal of Rheology, 2015, 59(1): 51-62. |
8 | 王平. 新型防污减阻软涂层的研究[D]. 杭州: 浙江大学, 2012. |
Wang P. Studies on a novel anti-fouling and drag-reducing soft coating[D]. Hangzhou: Zhejiang University, 2012. | |
9 | Chen S F, Li L Y, Zhao C, et al. Surface hydration: principles and applications toward low-fouling/nonfouling biomaterials[J]. Polymer, 2010, 51(23): 5283-5293. |
10 | Li Q S, Wen C Y, Yang J, et al. Zwitterionic biomaterials[J]. Chemical Reviews, 2022, 122(23): 17073-17154. |
11 | 申佳佳. 两性离子防污减阻水凝胶涂层的研究[D]. 杭州: 浙江大学, 2019. |
Shen J J. Strategy to construct polyzwitterionic coating with non-fouling and drag-reducing performance[D]. Hangzhou: Zhejiang University, 2019. | |
12 | Shen J J, Du M, Wu Z L, et al. Strategy to construct polyzwitterionic hydrogel coating with antifouling, drag-reducing and weak swelling performance[J]. RSC Advances, 2019, 9(4): 2081-2091. |
13 | Gong J P, Katsuyama Y, Kurokawa T, et al. Double-network hydrogels with extremely high mechanical strength[J]. Advanced Materials, 2003, 15(14): 1155-1158. |
14 | Haque M A, Kurokawa T, Gong J P. Super tough double network hydrogels and their application as biomaterials[J]. Polymer, 2012, 53(9): 1805-1822. |
15 | 陈再宏, 虞海超, 吴子良, 等. 高强度两性离子聚合物防污减阻水凝胶涂层的制备[J]. 高分子学报, 2024, 55(1): 99-107. |
Chen Z H, Yu H C, Wu Z L, et al. Preparation of high strength zwitterionic polymer hydrogel antifouling and drag reducing coating[J]. Acta Polymerica Sinica, 2024, 55(1): 99-107. | |
16 | Zhang Z, Chao T, Jiang S Y. Physical, chemical, and chemical-physical double network of zwitterionic hydrogels[J]. The Journal of Physical Chemistry. B, 2008, 112(17): 5327-5332. |
17 | Wang Z W, Chen J, Wang L F, et al. Flexible and wearable strain sensors based on tough and self-adhesive ion conducting hydrogels[J]. Journal of Materials Chemistry B, 2019, 7(1): 24-29. |
18 | Jin X Q, Jiang H H, Qiao F H, et al. Fabrication of alginate- P(SBMA-co-AAm) hydrogels with ultrastretchability, strain sensitivity, self-adhesiveness, biocompatibility, and self-cleaning function for strain sensors[J]. Journal of Applied Polymer Science, 2021, 138(3): e49697. |
19 | Zhang J, Qian S X, Chen L D, et al. Highly antifouling double network hydrogel based on poly(sulfobetaine methacrylate) and sodium alginate with great toughness[J]. Journal of Materials Science & Technology, 2021, 85: 235-244. |
20 | Zhou J H, Hao B Z, Wang L B, et al. Preparation and characterization of nano-TiO2/chitosan/poly(N-isopropylacrylamide) composite hydrogel and its application for removal of ionic dyes[J]. Separation and Purification Technology, 2017, 176: 193-199. |
21 | Yi F L, Meng F C, Li Y Q, et al. Highly stretchable CNT fiber/PAAm hydrogel composite simultaneously serving as strain sensor and supercapacitor[J]. Composites Part B: Engineering, 2020, 198: 108246. |
22 | Lin P, Ma S H, Wang X L, et al. Molecularly engineered dual-crosslinked hydrogel with ultrahigh mechanical strength, toughness, and good self-recovery[J]. Advanced Materials, 2015, 27(12): 2054-2059. |
23 | Dong M, Han Y, Hao X P, et al. Digital light processing 3D printing of tough supramolecular hydrogels with sophisticated architectures as impact-absorption elements[J]. Advanced Materials, 2022, 34(34): e2204333. |
24 | Lamm M E, Song L Z, Wang Z K, et al. A facile approach to thermomechanically enhanced fatty acid-containing bioplastics using metal-ligand coordination[J]. Polymer Chemistry, 2019, 10(48): 6570-6579. |
25 | Hu J P, Zhang D Z, Li W B, et al. Construction of a soft antifouling PAA/PSBMA hydrogel coating with high toughness and low swelling through the dynamic coordination bonding provided by Al(OH)3 nanoparticles[J]. ACS Applied Materials & Interfaces, 2024, 16(5): 6433-6446. |
26 | Liu W K, Wang A, Yang R B, et al. Water-triggered stiffening of shape-memory polyurethanes composed of hard backbone dangling PEG soft segments[J]. Advanced Materials, 2022, 34(46): 2201914. |
27 | Zhang F J, Wang R, He Y Y, et al. A biomimetic hierarchical structure with a hydrophilic surface and a hydrophobic subsurface constructed from waterborne polyurethanes containing a self-assembling peptide extender[J]. Journal of Materials Chemistry B, 2018, 6(26): 4326-4337. |
28 | 徐朋朋, 杜淼, 郑强. 制备参数对聚乙烯醇水凝胶-玻璃基板摩擦行为的影响[J]. 高分子学报, 2014(5): 708-714. |
Xu P P, Du M, Zheng Q. Influence of preparation parameters on the frictional behavior of PVA hydrogel against glass substrate[J]. Acta Polymerica Sinica, 2014(5): 708-714. | |
29 | Tominaga T, Takedomi N, Biederman H, et al. Effect of substrate adhesion and hydrophobicity on hydrogel friction[J]. Soft Matter, 2008, 4(5): 1033-1040. |
30 | Gong J P, Osada Y. Gel friction: a model based on surface repulsion and adsorption[J]. The Journal of Chemical Physics, 1998, 109(18): 8062-8068. |
31 | Murosaki T, Noguchi T, Kakugo A, et al. Antifouling activity of synthetic polymer gels against cyprids of the barnacle (Balanus amphitrite) in vitro [J]. Biofouling, 2009, 25(4): 313-320. |
32 | Yuk H, Zhang T, Lin S T, et al. Tough bonding of hydrogels to diverse non-porous surfaces[J]. Nature Materials, 2016, 15(2): 190-196. |
[1] | 李雨诗, 陈源, 李运堂, 彭旭东, 王冰清, 李孝禄. 新型柔性坝箔片端面气膜密封变形协调分析及性能智能优化[J]. 化工学报, 2025, 76(1): 324-334. |
[2] | 张思文, 顾海明, 赵善辉. 纳米氧化铁对纤维素化学链气化的分子反应机理[J]. 化工学报, 2025, 76(1): 363-373. |
[3] | 孙娜娜, 董红妹, 郭文豪, 柳健, 胡建波, 靳爽. 改性磁性纳米粒子稳定的稠油O/W型乳状液的流变性影响因素及管输压降预测模型[J]. 化工学报, 2024, 75(S1): 143-157. |
[4] | 吴德威, 汪郑鹏, 周玥, 李晓宁, 陈招, 李卓, 刘成伟, 李学刚, 肖文德. 固定床法制备锂离子电池硅碳负极材料及其储锂性能研究[J]. 化工学报, 2024, 75(S1): 300-308. |
[5] | 唐溯, 郑子鏖, 魏翰泽, 许晓玲, 翟晓强. PMMA/PEG600/CNT复合定型相变材料制备与导热强化[J]. 化工学报, 2024, 75(S1): 309-320. |
[6] | 吴学红, 韦新, 侯加文, 吕财, 刘勇, 刘鹤, 常志娟. 热解法制备碳纳米管及其在散热涂层中的应用研究[J]. 化工学报, 2024, 75(9): 3360-3368. |
[7] | 杨艳, 郭亚丽, 于硕文, 潘泊年, 沈胜强. 液氨喷射泵热力性能的计算分析[J]. 化工学报, 2024, 75(6): 2134-2142. |
[8] | 张文焱, 刘浩, 宋伟龙, 赵频, 王新华. 不同粒径UiO-66混掺改性TFN-FO膜的构建及性能评价[J]. 化工学报, 2024, 75(5): 1920-1928. |
[9] | 张林, 张子怡, 李勇, 童少平. Fe-MOF-74前体制备铁-碳/氮复合材料及其活化过硫酸盐性能[J]. 化工学报, 2024, 75(5): 1882-1889. |
[10] | 申州洋, 薛康, 刘青, 史成香, 邹吉军, 张香文, 潘伦. 吸热型纳米流体燃料研究进展[J]. 化工学报, 2024, 75(4): 1167-1182. |
[11] | 丁相斐, 丘晓琳, 朱喜成, 张佳伟, 陈锦华. pH响应性气体渗透CNC/PBAT复合膜的制备与性能[J]. 化工学报, 2024, 75(3): 1040-1051. |
[12] | 庄晟逸, 李成伟, 向文超, 徐俊波, 杨超. 负泊松比结构的改进设计及其在航空航天中的应用[J]. 化工学报, 2024, 75(11): 3951-3972. |
[13] | 陈巨辉, 安然, 李丹, 高浩铭, 张坤. 范德华力对磁场流化纳米颗粒运动的影响[J]. 化工学报, 2024, 75(10): 3518-3527. |
[14] | 徐娜, 李子璇, 刘子璐, 吕耀东, 张释文. 溶液环境对液相纳米颗粒体系分散稳定性的影响[J]. 化工学报, 2024, 75(10): 3815-3824. |
[15] | 皮若冰, 周云龙. 直接Z型异质结体系光催化还原二氧化碳研究进展[J]. 化工学报, 2024, 75(10): 3379-3400. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 57
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 153
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||