化工学报 ›› 2025, Vol. 76 ›› Issue (3): 1253-1263.DOI: 10.11949/0438-1157.20240794
• 能源和环境工程 • 上一篇
收稿日期:2024-07-15
修回日期:2024-09-11
出版日期:2025-03-25
发布日期:2025-03-28
通讯作者:
王擎
作者简介:徐芳(1986—),女,博士,讲师,xufang0122@126.com
基金资助:
Fang XU1(
), Rui ZHANG2, Da CUI2, Qing WANG2(
)
Received:2024-07-15
Revised:2024-09-11
Online:2025-03-25
Published:2025-03-28
Contact:
Qing WANG
摘要:
通过ReaxFF-MD反应分子动力学模拟,深入探讨了木质素热解产物的演化规律及氧元素的迁移机制,重点分析了木质素的热解反应机理。结果表明,2000 K是木质素热解不同反应机制的转折点,低温度条件下一次分解反应起主要作用,主要涉及大分子网络结构的分解及弱桥键的断裂。并且温度的升高有助于氧元素向生物油和热解气迁移。高温度条件下木质素热解过程既存在一次分解反应也包含热解产物的二次反应。反应温度越高,一次反应的时间越短。二次反应过程中绝大部分生物油通过重组或缩聚转化为焦炭,仅有小部分生物油分解生成热解气。高温条件下,氧元素主要存在于热解气中,H2O、CO2、CH2O等含氧气体的产生与木质素结构中含有丰富的羟基、羧基、羰基官能团有关。
中图分类号:
徐芳, 张锐, 崔达, 王擎. ReaxFF-MD揭示木质素热解反应机制的分子动力学研究[J]. 化工学报, 2025, 76(3): 1253-1263.
Fang XU, Rui ZHANG, Da CUI, Qing WANG. Study of pyrolysis reaction mechanism of lignin revealed by ReaxFF-MD simulation[J]. CIESC Journal, 2025, 76(3): 1253-1263.
| 温度/K | 一次反应率/% | 生物油产率/% | 热解气产率/% |
|---|---|---|---|
| 1200 | 1.77 | 1.23 | 0.54 |
| 1400 | 30.22 | 25.74 | 4.48 |
| 1600 | 68.31 | 60.45 | 7.86 |
| 1800 | 92.18 | 79.52 | 12.66 |
表1 低温条件下木质素一次分解反应情况
Table 1 Degree of primary decomposition reaction of lignin at low temperatures
| 温度/K | 一次反应率/% | 生物油产率/% | 热解气产率/% |
|---|---|---|---|
| 1200 | 1.77 | 1.23 | 0.54 |
| 1400 | 30.22 | 25.74 | 4.48 |
| 1600 | 68.31 | 60.45 | 7.86 |
| 1800 | 92.18 | 79.52 | 12.66 |
| 温度/K | 12.5 ps一次 反应率/% | 25 ps一次 反应率/% | 一次反应 大约时间/ps |
|---|---|---|---|
| 2200 | 67.76 | 82.48 | 200 |
| 2400 | 88.34 | 92.34 | 50 |
| 2600 | 91.06 | 97.40 | 25 |
| 2800 | 95.88 | 98.77 | 25 |
表2 高温条件下木质素一次分解反应情况
Table 2 Degree of primary decomposition reaction of lignin at high temperatures
| 温度/K | 12.5 ps一次 反应率/% | 25 ps一次 反应率/% | 一次反应 大约时间/ps |
|---|---|---|---|
| 2200 | 67.76 | 82.48 | 200 |
| 2400 | 88.34 | 92.34 | 50 |
| 2600 | 91.06 | 97.40 | 25 |
| 2800 | 95.88 | 98.77 | 25 |
| 温度/K | 二次反应率/% | 焦炭转化率/% | 热解气产率/% |
|---|---|---|---|
| 2200 | 12.34 | 78.77 | 21.23 |
| 2400 | 21.99 | 68.34 | 31.66 |
| 2600 | 37.50 | 62.36 | 37.64 |
| 2800 | 69.54 | 69.87 | 30.13 |
表3 高温条件下生物油二次反应情况
Table 3 Degree of secondary reaction of bio-oil at high temperatures
| 温度/K | 二次反应率/% | 焦炭转化率/% | 热解气产率/% |
|---|---|---|---|
| 2200 | 12.34 | 78.77 | 21.23 |
| 2400 | 21.99 | 68.34 | 31.66 |
| 2600 | 37.50 | 62.36 | 37.64 |
| 2800 | 69.54 | 69.87 | 30.13 |
| 1 | Wang S Q, Wan Z, Han Y, et al. A review on lignin waste valorization by catalytic pyrolysis: catalyst, reaction system, and industrial symbiosis mode[J]. Journal of Environmental Chemical Engineering, 2023, 11(1): 109113. |
| 2 | Wang S R, Dai G X, Yang H P, et al. Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review[J]. Progress in Energy and Combustion Science, 2017, 62: 33-86. |
| 3 | Jiang W K, Chu J Y, Wu S B, et al. Modeling pyrolytic behavior of pre-oxidized lignin using four representative β-ether-type lignin-like model polymers[J]. Fuel Processing Technology, 2018, 176: 221-229. |
| 4 | 徐芳. 霍林河褐煤分子模型构建及其热解反应分子动力学模拟[D]. 哈尔滨: 哈尔滨工业大学, 2020. |
| Xu F. Construction of molecular model of Huolinhe lignite and study on the pyrolysis reaction by molecular dynamics simulations[D]. Harbin: Harbin Institute of Technology, 2020. | |
| 5 | 范洪刚, 赵丹丹, 顾菁, 等. 生物质三组分二元混合热解特性研究[J]. 化工学报, 2021, 72(7): 3788-3800. |
| Fan H G, Zhao D D, Gu J, et al. Study on the pyrolysis characteristics of binary mixture of biomass three-component[J]. CIESC Journal, 2021, 72(7): 3788-3800. | |
| 6 | Shen D K, Liu G F, Zhao J, et al. Thermo-chemical conversion of lignin to aromatic compounds: effect of lignin source and reaction temperature[J]. Journal of Analytical and Applied Pyrolysis, 2015, 112: 56-65. |
| 7 | 段毓. 木质素模型化合物活性基团的调变对其热解历程的影响研究[D]. 广州: 华南理工大学, 2020. |
| Duan Y. Study on the effect of modification of functional group of lignin model compound on its pyrolysis process[D]. Guangzhou: South China University of Technology, 2020. | |
| 8 | Li C Z, Zhao X C, Wang A Q, et al. Catalytic transformation of lignin for the production of chemicals and fuels[J]. Chemical Reviews, 2015, 115(21): 11559-11624. |
| 9 | Zhao D, Feng H Y, Wang Y, et al. Influence mechanism of K on cellulose pyrolysis by stepwise isothermal method in situ DRIFTS method[J]. Fuel, 2024, 360: 130601. |
| 10 | Kawamoto H. Lignin pyrolysis reactions[J]. Journal of Wood Science, 2017, 63(2): 117-132. |
| 11 | 马浩. 木质素热解过程中含氧官能团的演化规律及其对木质素热解特性的影响[D]. 广州: 华南理工大学, 2020. |
| Ma H. Evolution of oxygen-containing functional groups during lignin pyrolysis and its effect on lignin pyrolysis[D]. Guangzhou: South China University of Technology, 2020. | |
| 12 | Yogalakshmi K N, Poornima D T, Sivashanmugam P, et al. Lignocellulosic biomass-based pyrolysis: a comprehensive review[J]. Chemosphere, 2022, 286: 131824. |
| 13 | Li P H, Ren J P, Jiang Z W, et al. Review on the preparation of fuels and chemicals based on lignin[J]. RSC Advances, 2022, 12(17): 10289-10305. |
| 14 | Wang C Y, Xia S P, Cui C X, et al. Investigation into the correlation between the chemical structure of lignin and its temperature-dependent pyrolytic product evolution[J]. Fuel, 2022, 329: 125215. |
| 15 | Fan L L, Zhang Y N, Liu S Y, et al. Bio-oil from fast pyrolysis of lignin: effects of process and upgrading parameters[J]. Bioresource Technology, 2017, 241: 1118-1126. |
| 16 | Jiang G Z, Nowakowski D J, Bridgwater A V. A systematic study of the kinetics of lignin pyrolysis[J]. Thermochimica Acta, 2010, 498(1/2): 61-66. |
| 17 | He T, Zhang Y M, Zhu Y N, et al. Pyrolysis mechanism study of lignin model compounds by synchrotron vacuum ultraviolet photoionization mass spectrometry[J]. Energy & Fuels, 2016, 30(3): 2204-2208. |
| 18 | Jiang X Y, Lu Q, Hu B, et al. Intermolecular interaction mechanism of lignin pyrolysis: a joint theoretical and experimental study[J]. Fuel, 2018, 215: 386-394. |
| 19 | 苑世领, 张恒, 张冬菊. 分子模拟: 理论与实验[M]. 北京: 化学工业出版社, 2016: 5. |
| Yuan S L, Zhang H, Zhang D J. Molecular Simulation: Theory and Experiment[M]. Beijing: Chemical Industry Press, 2016: 5. | |
| 20 | Zheng M, Li X X, Nie F G, et al. Investigation of model scale effects on coal pyrolysis using ReaxFF MD simulation[J]. Molecular Simulation, 2017, 43(13/14/15/16): 1081-1088. |
| 21 | 郑默, 李晓霞. ReaxFF MD模拟揭示的煤热解挥发分自由基反应的竞争与协调[J]. 化工学报, 2022, 73(6): 2732-2741. |
| Zheng M, Li X X. Revealing reaction compromise in competition for volatile radicals during coal pryolysis via ReaxFF MD simulation[J]. CIESC Journal, 2022, 73(6): 2732-2741. | |
| 22 | Salmon E, van Duin A C T, Lorant F, et al. Early maturation processes in coal(part 2): Reactive dynamics simulations using the ReaxFF reactive force field on morwell brown coal structures[J]. Organic Geochemistry, 2009, 40(12): 1195-1209. |
| 23 | Zheng M, Li X X, Liu J, et al. Pyrolysis of Liulin coal simulated by GPU-based ReaxFF MD with cheminformatics analysis[J]. Energy & Fuels, 2014, 28(1): 522-534. |
| 24 | Chen C, Zhao L L, Wang J F, et al. Reactive molecular dynamics simulations of biomass pyrolysis and combustion under various oxidative and humidity environments[J]. Industrial & Engineering Chemistry Research, 2017, 56(43): 12276-12288. |
| 25 | Zhang Z J, Zhang H Y, Chai J, et al. Reactive molecular dynamics simulation of oil shale combustion using the ReaxFF reactive force field[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2019, 43(3): 349-360. |
| 26 | Zhang T T, Li X X, Qiao X J, et al. Initial mechanisms for an overall behavior of lignin pyrolysis through large-scale ReaxFF molecular dynamics simulations[J]. Energy & Fuels, 2016, 30(4): 3140-3150. |
| 27 | Zhang T T, Li X X, Guo L, et al. Reaction mechanisms in pyrolysis of hardwood, softwood, and kraft lignin revealed by ReaxFF MD simulations[J]. Energy & Fuels, 2019, 33(11): 11210-11225. |
| 28 | van Duin A C T, Dasgupta S, Lorant F, et al. ReaxFF: a reactive force field for hydrocarbons[J]. Journal of Physical Chemistry A, 2001, 105(41): 9396-9409. |
| 29 | 洪迪昆, 翟晓明, 郭欣. H2O对O2/H2O条件下HCN氧化影响的反应分子动力学模拟[J]. 动力工程学报, 2023, 43(3): 300-306. |
| Hong D K, Zhai X M, Guo X. Reaction molecular dynamics study on the effect of H2O on HCN oxidation in O2/H2O atmosphere[J]. Journal of Chinese Society of Power Engineering, 2023, 43(3): 300-306. | |
| 30 | Chenoweth K, van Duin A C T, Goddard W A. ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation[J]. The Journal of Physical Chemistry A, 2008, 112(5): 1040-1053. |
| 31 | Mattsson T R, Lane J M D, Cochrane K R, et al. First-principles and classical molecular dynamics simulation of shocked polymers[J]. Physical Review B, 2010, 81(5): 054103. |
| 32 | Zhang T T, Li X X, Guo L. Initial reactivity of linkages and monomer rings in lignin pyrolysis revealed by ReaxFF molecular dynamics[J]. Langmuir, 2017, 33(42): 11646-11657. |
| 33 | Chen J W, Wang C X, Shang W X, et al. Study on the mechanisms of hydrogen production from alkali lignin gasification in supercritical water by ReaxFF molecular dynamics simulation[J]. Energy, 2023, 278: 127900. |
| 34 | Wang Q D, Wang J B, Li J Q, et al. Reactive molecular dynamics simulation and chemical kinetic modeling of pyrolysis and combustion of n-dodecane[J]. Combustion and Flame, 2011, 158(2): 217-226. |
| 35 | Zheng M, Li X X, Bai J, et al. Chemical structure effects on coal pyrolyzates and reactions by using large-scale reactive molecular dynamics[J]. Fuel, 2022, 327: 125089. |
| 36 | Zheng M, Pan Y, Wang Z, et al. Capturing the dynamic profiles of products in Hailaer brown coal pyrolysis with reactive molecular simulations and experiments[J]. Fuel, 2020, 268: 117290. |
| 37 | Xu F, Liu H, Wang Q, et al. ReaxFF-based molecular dynamics simulation of the initial pyrolysis mechanism of lignite[J]. Fuel Processing Technology, 2019, 195: 106147. |
| 38 | 陈思佳. 木质素化学结构修饰对热解性能的影响[D]. 广州: 华南理工大学, 2020. |
| Chen S J. Effect of lignin chemical structure modification on pyrolysis performance[D]. Guangzhou: South China University of Technology, 2020. | |
| 39 | Gooty A T, Li D B, Berruti F, et al. Kraft-lignin pyrolysis and fractional condensation of its bio-oil vapors[J]. Journal of Analytical and Applied Pyrolysis, 2014, 106: 33-40. |
| 40 | Hong D K, Guo X. Molecular dynamics simulations of Zhundong coal pyrolysis using reactive force field[J]. Fuel, 2017, 210: 58-66. |
| 41 | Song Y, Zhao Y J, Hu X, et al. Destruction of tar during volatile-char interactions at low temperature[J]. Fuel Processing Technology, 2018, 171: 215-222. |
| 42 | Mathews J P, Krishnamoorthy V, Louw E, et al. A review of the correlations of coal properties with elemental composition[J]. Fuel Processing Technology, 2014, 121: 104-113. |
| 43 | Lei Z, Liang Q J, Ling Q, et al. Investigating the reaction mechanism of light tar for Shenfu bituminous coal pyrolysis[J]. Energy, 2023, 263: 125731. |
| 44 | Gao M J, Li X X, Guo X, et al. Dynamic migration mechanism of organic oxygen in Fugu coal pyrolysis by large-scale ReaxFF molecular dynamics[J]. Journal of Analytical and Applied Pyrolysis, 2021, 156: 105109. |
| [1] | 姚国家, 王志, 苏昂, 冯东阁, 唐宏, 孙灵芳. 空气系数对煤粉预热解燃烧特性的影响分析[J]. 化工学报, 2025, 76(3): 1243-1252. |
| [2] | 李中青, 王志远, 栾小建, 梁四凯, 王凯. 电沉积-低氧分压法制备MnO涂层及其抑制石脑油热裂解结焦性能研究[J]. 化工学报, 2025, 76(3): 1050-1063. |
| [3] | 黄正梁, 冯铭瑞, 宋琦, 任聪静, 杨遥, 孙婧元, 王靖岱, 阳永荣. 预混进料对废树脂流化裂解反应中颗粒团聚的抑制作用[J]. 化工学报, 2024, 75(9): 3094-3102. |
| [4] | 王舒英, 左涛, 石志伟, 范小明, 张卫新. 阳离子交换树脂基介孔石墨化碳合成与储钠性能[J]. 化工学报, 2024, 75(9): 3338-3347. |
| [5] | 丁湧, 李文建, 陈昭宇, 曹立辉, 刘轩铭, 任强强, 胡松, 向军. 废旧晶体硅光伏组件EVA有氧热解动力学与产物特性[J]. 化工学报, 2024, 75(9): 3310-3319. |
| [6] | 吴学红, 韦新, 侯加文, 吕财, 刘勇, 刘鹤, 常志娟. 热解法制备碳纳米管及其在散热涂层中的应用研究[J]. 化工学报, 2024, 75(9): 3360-3368. |
| [7] | 姚宏哲, 黄飞宇, 杨松, 钟梅, 代正华. 重质油高温快速热解自动反应网络的动力学建模[J]. 化工学报, 2024, 75(7): 2644-2655. |
| [8] | 晁惠雨, 白振敏, 侯汉青, 田立志, 李洪, 房晓权, 石晓华. 液相法合成三聚氰酸体系热力学分析[J]. 化工学报, 2024, 75(6): 2157-2165. |
| [9] | 张祎琪, 谭雪松, 李吾环, 张权, 苗长林, 庄新姝. 温和条件下乙二醇苯醚高效分离回收甘蔗渣组分[J]. 化工学报, 2024, 75(6): 2274-2282. |
| [10] | 吴希, 孙博, 刘银东, 齐传磊, 陈凯毅, 王路海, 许崇, 李永峰. 钠离子电池沥青基碳负极材料制备技术研究进展[J]. 化工学报, 2024, 75(4): 1270-1283. |
| [11] | 李浩文, 兰昊, 郑幼丹, 孙勇辉, 杨子昕, 宋谦石, 汪小憨. 热通道内典型碳氢燃料的热解结焦行为[J]. 化工学报, 2024, 75(2): 626-636. |
| [12] | 王茂先, 孙启典, 付哲, 华放, 纪晔, 程易. 分子水平动力学模型和机器学习方法相结合研究废弃塑料热解[J]. 化工学报, 2024, 75(11): 4320-4332. |
| [13] | 杨绍旗, 赵淑蘅, 陈伦刚, 王晨光, 胡建军, 周清, 马隆龙. Raney镍-质子型离子液体体系催化木质素平台分子加氢脱氧制备烷烃[J]. 化工学报, 2023, 74(9): 3697-3707. |
| [14] | 吴雷, 刘姣, 李长聪, 周军, 叶干, 刘田田, 朱瑞玉, 张秋利, 宋永辉. 低阶粉煤催化微波热解制备含碳纳米管的高附加值改性兰炭末[J]. 化工学报, 2023, 74(9): 3956-3967. |
| [15] | 李靖, 沈聪浩, 郭大亮, 李静, 沙力争, 童欣. 木质素基碳纤维复合材料在储能元件中的应用研究进展[J]. 化工学报, 2023, 74(6): 2322-2334. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号