化工学报 ›› 2025, Vol. 76 ›› Issue (3): 1170-1179.DOI: 10.11949/0438-1157.20240698
李远华1(), 凌思棋1, 封科军1, 冯颖1, 郭于菁2, 谢世桓1(
)
收稿日期:
2024-06-23
修回日期:
2024-11-05
出版日期:
2025-03-25
发布日期:
2025-03-28
通讯作者:
谢世桓
作者简介:
李远华(1988—),女,博士,讲师,liyuanhua@hzu.edu.cn
基金资助:
Yuanhua LI1(), Siqi LING1, Kejun FENG1, Ying FENG1, Yuching KUO2, Shihhuan HSIEH1(
)
Received:
2024-06-23
Revised:
2024-11-05
Online:
2025-03-25
Published:
2025-03-28
Contact:
Shihhuan HSIEH
摘要:
通过高温碳化制备不同系列碳化金属有机骨架(carbonized metal-organic frameworks,cMOFs),应用于制备洋葱伯克霍尔德菌脂解酶(BCL)微反应器,研究了孔结构和孔道微环境对BCL固定化性能的影响,探索了这些微反应器催化拆分扁桃酸对映体反应的性能。结果表明:cMOFs中的cMIL-53(Al)材料对BCL固定性能最佳,且在循环使用九次后,仍保持(R)-扁桃酸转化率(C)为50%,产物的对映体过剩量(eep)超过99%,酶选择因子(E)大于200。通过一系列表征发现,经高温碳化处理的cMIL-53(Al)孔间结构增大,有利于BCL进入cMOF微孔结构,增加BCL空间活性位点;同时煅烧使其表面羧酸官能团含量增加,有利于BCL通过氢键与其表面进行吸附固定,最终明显提高拆分催化性能。相较于传统的有机碱催化方法,本研究提出的酶固定化微反应器具有可重复使用、催化时间短、产物易于纯化分离以及环境污染较低等优点,为新型酶固定功能材料构建提供了新的策略。
中图分类号:
李远华, 凌思棋, 封科军, 冯颖, 郭于菁, 谢世桓. 基于cMOFs的固定化脂肪酶微反应器的构筑及其扁桃酸催化应用[J]. 化工学报, 2025, 76(3): 1170-1179.
Yuanhua LI, Siqi LING, Kejun FENG, Ying FENG, Yuching KUO, Shihhuan HSIEH. Construction and catalytic application of immobilized lipase microreactors based on cMOFs for the synthesis of mandelic acid[J]. CIESC Journal, 2025, 76(3): 1170-1179.
反应温度/℃ | C/% | eep/% | ees/% | E |
---|---|---|---|---|
25 | 38.7 | >99 | 74.2 | >200 |
50 | 50.0 | >99 | >99 | >200 |
表1 反应温度对BCL催化扁桃酸的影响
Table 1 The effect of temperature on catalyzing mandelic acid by BCL
反应温度/℃ | C/% | eep/% | ees/% | E |
---|---|---|---|---|
25 | 38.7 | >99 | 74.2 | >200 |
50 | 50.0 | >99 | >99 | >200 |
BCL/mg | C/% | eep/% | ees/% | E |
---|---|---|---|---|
2 | 15.7 | >99 | 21.4 | >200 |
5 | 32.0 | >99 | 54.2 | >200 |
10 | 50.0 | >99 | >99 | >200 |
15 | 40.3 | >99 | 67.3 | >200 |
表2 BCL@MIL-53(Al)中BCL浓度对催化拆分扁桃酸对映体反应的影响
Table 2 The effect of the amount of BCL on catalyzing mandelic acid by BCL@MIL-53(Al)
BCL/mg | C/% | eep/% | ees/% | E |
---|---|---|---|---|
2 | 15.7 | >99 | 21.4 | >200 |
5 | 32.0 | >99 | 54.2 | >200 |
10 | 50.0 | >99 | >99 | >200 |
15 | 40.3 | >99 | 67.3 | >200 |
反应时间/h | C/% | eep/% | ees/% | E |
---|---|---|---|---|
0.5 | 50.0 | >99 | >99 | >200 |
2 | 50.0 | >99 | >99 | >200 |
5 | 50.0 | >99 | >99 | >200 |
表3 不同反应时间对BCL@MIL-53(Al)催化效率影响
Table 3 The effect of reaction time on catalyzing mandelic acid by BCL@MIL-53(Al)
反应时间/h | C/% | eep/% | ees/% | E |
---|---|---|---|---|
0.5 | 50.0 | >99 | >99 | >200 |
2 | 50.0 | >99 | >99 | >200 |
5 | 50.0 | >99 | >99 | >200 |
循环 次数 | C/% | ||
---|---|---|---|
0.5 h | 2 h | 5 h | |
1 | 50.0 | 50.0 | 50.0 |
2 | 50.0 | 46.1 | 42.5 |
3 | 50.0 | 41.6 | 38.1 |
4 | 50.0 | 32.0 | 28.4 |
5 | 50.0 | 28.1 | 21.3 |
表4 不同反应时间下BCL@MIL-53(Al)重复使用的转化率
Table 4 The effect of reaction time on catalyzing cycles of mandelic acid by BCL@MIL-53(Al)
循环 次数 | C/% | ||
---|---|---|---|
0.5 h | 2 h | 5 h | |
1 | 50.0 | 50.0 | 50.0 |
2 | 50.0 | 46.1 | 42.5 |
3 | 50.0 | 41.6 | 38.1 |
4 | 50.0 | 32.0 | 28.4 |
5 | 50.0 | 28.1 | 21.3 |
材料 | 比表面积/ (m2/g) | 孔径/nm | BCL 负载量/% | COOH含量/(mmol/g) |
---|---|---|---|---|
MIL-53(Al) | 1333.8 | 0.9 | 14.5 | 0.57 |
cMIL-53(Al) | 195.7 | 4~37 | 24.5 | 2.60 |
Al-1,4-NDC | 472.1 | 0.58 | 10.6 | 0.38 |
cAl-1,4-NDC | 292.9 | 3.9~37 | 22.3 | 2.30 |
MIL-100(Al) | 1481.9 | 1.0~2.2 | 17.4 | 0.050 |
cMIL-100(Al) | 17.9 | 8~37 | 13.3 | 2.20 |
MIL-100(Cr) | 2249.6 | 2.0~5.1 | 17.6 | 0.033 |
cMIL-100(Cr) | 759.8 | 3.4~39 | 17.8 | 1.90 |
表5 MOFs和cMOFs孔径性质、BCL负载量和羧酸含量
Table 5 The properties of pore structure, loading efficiency of BCL and the amount of COOH group in MOFs and cMOFs
材料 | 比表面积/ (m2/g) | 孔径/nm | BCL 负载量/% | COOH含量/(mmol/g) |
---|---|---|---|---|
MIL-53(Al) | 1333.8 | 0.9 | 14.5 | 0.57 |
cMIL-53(Al) | 195.7 | 4~37 | 24.5 | 2.60 |
Al-1,4-NDC | 472.1 | 0.58 | 10.6 | 0.38 |
cAl-1,4-NDC | 292.9 | 3.9~37 | 22.3 | 2.30 |
MIL-100(Al) | 1481.9 | 1.0~2.2 | 17.4 | 0.050 |
cMIL-100(Al) | 17.9 | 8~37 | 13.3 | 2.20 |
MIL-100(Cr) | 2249.6 | 2.0~5.1 | 17.6 | 0.033 |
cMIL-100(Cr) | 759.8 | 3.4~39 | 17.8 | 1.90 |
脂肪酶种类 | 反应条件 | C/% | eep/% | E | 循环次数 | 文献 |
---|---|---|---|---|---|---|
游离脂肪酶 | 游离的BCL与乙酸乙烯酯溶液在25°C下反应5 h | 38.7 | 99 | >200 | — | [ |
番木瓜脂肪酶 | 扁桃酸和NH3以1∶8摩尔比在25℃下DIPE中反应12 h | 49 | 99 | >200 | — | [ |
Stutzeri假单胞菌LC2-8脂肪酶 | 扁桃酸和乙酸乙烯酯以1∶8摩尔比在30℃下DIPE中反应15 h | 49.15 | 99 | [ | ||
Novozym 435 | 扁桃酸和乙醇以1∶2摩尔比在40℃下1,2-二氯乙烷中反应24 h | 30 | 92 | 35.2 | [ | |
双歧伯克霍尔德菌YCJ01 | 扁桃酸和乙酸乙烯酯以1∶7摩尔比在50℃下DIPE中反应45 min | 50 | 99 | [ | ||
洋葱伯克霍尔德菌脂肪酶@cMIL-53(Al) | 扁桃酸和乙酸乙烯酯以1∶5质量比在50℃下DIPE中反应30 min | 50 | 99 | >200 | 9 | 本文 |
表6 不同酶对扁桃酸催化性能比较
Table 6 The comparison of catalytical efficiency of mandelic acid in different lipase sources
脂肪酶种类 | 反应条件 | C/% | eep/% | E | 循环次数 | 文献 |
---|---|---|---|---|---|---|
游离脂肪酶 | 游离的BCL与乙酸乙烯酯溶液在25°C下反应5 h | 38.7 | 99 | >200 | — | [ |
番木瓜脂肪酶 | 扁桃酸和NH3以1∶8摩尔比在25℃下DIPE中反应12 h | 49 | 99 | >200 | — | [ |
Stutzeri假单胞菌LC2-8脂肪酶 | 扁桃酸和乙酸乙烯酯以1∶8摩尔比在30℃下DIPE中反应15 h | 49.15 | 99 | [ | ||
Novozym 435 | 扁桃酸和乙醇以1∶2摩尔比在40℃下1,2-二氯乙烷中反应24 h | 30 | 92 | 35.2 | [ | |
双歧伯克霍尔德菌YCJ01 | 扁桃酸和乙酸乙烯酯以1∶7摩尔比在50℃下DIPE中反应45 min | 50 | 99 | [ | ||
洋葱伯克霍尔德菌脂肪酶@cMIL-53(Al) | 扁桃酸和乙酸乙烯酯以1∶5质量比在50℃下DIPE中反应30 min | 50 | 99 | >200 | 9 | 本文 |
1 | Liu S, Bilal M, Rizwan K, et al. Smart chemistry of enzyme immobilization using various support matrices—a review[J]. International Journal of Biological Macromolecules, 2021, 190: 396-408. |
2 | 朱浩天, 金美秀, 唐文思, 等. 过渡金属-联咪唑-Dawson型钨磷酸盐杂化化合物的酶固定化性能[J]. 高等学校化学学报, 2022, 43(11): 52-62. |
Zhu H T, Jin M X, Tang W S, et al. Properties of transition metal-biimidazole-Dawson-type tungstophosphate hybrid compounds as supports for enzyme immobilization[J]. Chemical Journal of Chinese Universities, 2022, 43(11): 52-62. | |
3 | Zhang J, Li Y B, Zhang T, et al. Improving pesticide residue detection: immobilized enzyme microreactor embedded in microfluidic paper-based analytical devices[J]. Food Chemistry, 2024, 439: 138179. |
4 | Csuka P, Boros Z, Őrfi L, et al. Chemoenzymatic route to Tyrphostins involving lipase-catalyzed kinetic resolution of 1-phenylethanamine with alkyl cyanoacetates as novel acylating agents[J]. Tetrahedron: Asymmetry, 2015, 26(12/13): 644-649. |
5 | Bilal M, Rashid E U, Munawar J, et al. Magnetic metal-organic frameworks immobilized enzyme-based nano-biocatalytic systems for sustainable biotechnology[J]. International Journal of Biological Macromolecules, 2023, 237: 123968. |
6 | Alvarado-Ramírez L, Machorro-García G, López-Legarrea A, et al. Metal-organic frameworks for enzyme immobilization and nanozymes: a laccase-focused review[J]. Biotechnology Advances, 2024, 70: 108299. |
7 | 范铮, 唐咸昌, 张旭, 等. 金属有机骨架材料载体用于酶固定化的研究进展[J]. 化工进展, 2019, 38(10): 4606-4613. |
Fan Z, Tang X C, Zhang X, et al. Progress of on enzyme immobilization with metal-organic frameworks[J]. Chemical Industry and Engineering Progress, 2019, 38(10): 4606-4613. | |
8 | Cheong L Z, Wei Y Y, Wang H B, et al. Facile fabrication of a stable and recyclable lipase@amine-functionalized ZIF-8 nanoparticles for esters hydrolysis and transesterification[J]. Journal of Nanoparticle Research, 2017, 19(8): 280. |
9 | Chen X L, Xue S, Lin Y L, et al. Immobilization of porcine pancreatic lipase onto a metal-organic framework, PPL@MOF: a new platform for efficient ligand discovery from natural herbs[J]. Analytica Chimica Acta, 2020, 1099: 94-102. |
10 | 张彦, 汪伟, 谢锐, 等. 负载酶@ZIF-8复合物的聚合物微颗粒可控制备[J]. 化工进展, 2022, 41(4): 2022-2028. |
Zhang Y, Wang W, Xie R, et al. Controllable fabrication of polymeric microparticles loaded with enzyme@ZIF-8[J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2022-2028. | |
11 | Naghdi E, Ahmadloo R, Shadi M, et al. Chiral purification by enantioselective extraction: principles and recent development[J]. Trends in Environmental Analytical Chemistry, 2023, 40: e00219. |
12 | Yang H, Yu H X, Stolarzewicz I A, et al. Enantioselective transformations in the synthesis of therapeutic agents[J]. Chemical Reviews, 2023, 123(15): 9397-9446. |
13 | Han Z S, Wang K Y, Min H, et al. Bifunctionalized metal-organic frameworks for pore-size-dependent enantioselective sensing[J]. Angewandte Chemie International Edition, 2022, 61(25): e202204066. |
14 | Liu L H, Shih Y H, Liu W L, et al. Enzyme immobilized on nanoporous carbon derived from metal-organic framework: a new support for biodiesel synthesis[J]. ChemSusChem, 2017, 10(7): 1364-1369. |
15 | Whitesell J K, Reynolds D. Resolution of chiral alcohols with mandelic acid[J]. The Journal of Organic Chemistry, 1983, 48(20): 3548-3551. |
16 | Dehghani Z, Akhond M, Hormozi Jangi S R, et al. Highly sensitive enantioselective spectrofluorimetric determination of R-/S-mandelic acid using l-tryptophan-modified amino-functional silica-coated N-doped carbon dots as novel high-throughput chiral nanoprobes[J]. Talanta, 2024, 266: 124977. |
17 | Cao Y, Wu S S, Li J H, et al. Highly efficient resolution of mandelic acid using lipase from Pseudomonas stutzeri LC2-8 and a molecular modeling approach to rationalize its enantioselectivity[J]. Journal of Molecular Catalysis B: Enzymatic, 2014, 99: 108-113. |
18 | Pan Y, Tang K W, He C Q, et al. Effect of alcohol chain length on the enzymatic resolution of racemic mandelic acid and kinetic study[J]. Biotechnology and Applied Biochemistry, 2014, 61(3): 274-279. |
19 | Yao C J, Cao Y, Wu S S, et al. An organic solvent and thermally stable lipase from burkholderia ambifaria YCJ01: purification, characteristics and application for chiral resolution of mandelic acid[J]. Journal of Molecular Catalysis B: Enzymatic, 2013, 85: 105-110. |
20 | Loiseau T, Serre C, Huguenard C, et al. A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration[J]. Chemistry-A European Journal, 2004, 10(6): 1373-1382. |
21 | Comotti A, Bracco S, Sozzani P, et al. Nanochannels of two distinct cross-sections in a porous Al-based coordination polymer[J]. Journal of the American Chemical Society, 2008, 130(41): 13664-13672. |
22 | García Márquez A, Demessence A, Platero-Prats A E, et al. Green microwave synthesis of MIL-100(Al, Cr, Fe) nanoparticles for thin-film elaboration[J]. European Journal of Inorganic Chemistry, 2012, (32): 5165-5174. |
23 | Hu H, Bhowmik P, Zhao B, et al. Determination of the acidic sites of purified single-walled carbon nanotubes by acid-base titration[J]. Chemical Physics Letters, 2001, 345(1/2): 25-28. |
24 | Chen S, Liu F Y, Zhang K, et al. An efficient enzymatic aminolysis for kinetic resolution of aromatic α-hydroxyl acid in non-aqueous media[J]. Tetrahedron Letters, 2016, 57(48): 5312-5314. |
25 | Ma X Y, Tan J Y, Li Z H, et al. Fabrication of stable MIL-53(Al) for excellent removal of rhodamine B[J]. Langmuir, 2022, 38(3): 1158-1169. |
26 | Kuo Y C, Pal S, Li F Y, et al. Polystyrene-supported core-shell beads with aluminium MOF coating for extraction of organic pollutants[J]. Chemistry-An Asian Journal, 2019, 14(20): 3675-3681. |
27 | Matus C, Baeza P, Serrano-Lotina A, et al. Removal of pharmaceuticals from an aqueous matrix by adsorption on metal-organic framework MIL-100(Cr)[J]. Water, Air, & Soil Pollution, 2023, 234(11): 718. |
28 | Dąbkowska K, Szewczyk K W. Influence of temperature on the activity and enantioselectivity of Burkholderia cepacia lipase in the kinetic resolution of mandelic acid enantiomers[J]. Biochemical Engineering Journal, 2009, 46(2): 147-153. |
29 | Kim K K, Song H K, Shin D H, et al. The crystal structure of a triacylglycerol lipase from Pseudomonas cepacia reveals a highly open conformation in the absence of a bound inhibitor[J]. Structure, 1997, 5(2): 173-185. |
30 | Cao S L, Huang Y M, Li X H, et al. Preparation and characterization of immobilized lipase from Pseudomonas cepacia onto magnetic cellulose nanocrystals[J]. Scientific Reports, 2016, 6: 20420. |
[1] | 杨猛, 丁晓倩, 余涛, 刘畅, 汤成龙, 黄佐华. 甲烷/氧化亚氮绿色推进剂自着火特性实验及动力学[J]. 化工学报, 2025, 76(3): 1221-1229. |
[2] | 严珅, 席悦, 张盛宇, 陈晓东, 吴铎. 基于IGC-ZLC法测定有机蒸气在ZSM-5中的晶内扩散系数[J]. 化工学报, 2025, 76(3): 1076-1083. |
[3] | 肖俊兵, 钟湘宇, 任建地, 钟芳芳, 刘昌会, 贾传坤. 基于生物碳材料强化的硬脂酸相变材料储热性能研究[J]. 化工学报, 2025, 76(3): 1312-1322. |
[4] | 刘彦贝, 王若名, 刘娟, Raza Taimoor, 陆玉正, Raza Rizwan, 朱斌, 李松波, 安胜利, 云斯宁. CeO2@La0.6Sr0.4Co0.2Fe0.8O3-δ 电解质的制备及半导体离子燃料电池性能研究[J]. 化工学报, 2025, 76(3): 1353-1362. |
[5] | 徐芳, 张锐, 崔达, 王擎. ReaxFF-MD揭示木质素热解反应机制的分子动力学研究[J]. 化工学报, 2025, 76(3): 1253-1263. |
[6] | 肖俊兵, 邹博, 任建地, 刘昌会, 贾传坤. 基于相图分析的氯化物复合熔盐储热性能研究[J]. 化工学报, 2025, 76(3): 963-974. |
[7] | 何传超, 周静红, 曹约强, 施尧, 周兴贵. Ag/SiO2催化草酸酯加氢制乙醇酸甲酯的床层-颗粒双尺度耦合模拟研究[J]. 化工学报, 2025, 76(2): 654-666. |
[8] | 张奇, 张睿, 郑涛, 曹欣, 刘植昌, 刘海燕, 徐春明, 张荣, 孟祥海. 基于分子模拟的新型双阳离子质子型离子液体捕集CO2研究[J]. 化工学报, 2025, 76(2): 797-811. |
[9] | 党法璐, 孙志国, 高照, 王刚, 陈政宇, 张霖宙, 连竞存, 刘美佳, 张忠东, 刘超伟. 原油一步法催化裂解制低碳烯烃:实验和反应路径研究[J]. 化工学报, 2025, 76(2): 667-685. |
[10] | 李文宝, 胡锦鹏, 杜淼, 潘鹏举, 单国荣. 强韧P(SBMA-co-AAc)/SiO2复合水凝胶海洋防污减阻涂层[J]. 化工学报, 2025, 76(2): 787-796. |
[11] | 吴雨轩, 常诚, 顾雪萍, 冯连芳, 张才亮. 面向立体异构的丁二烯乳液聚合过程模型化[J]. 化工学报, 2025, 76(2): 879-887. |
[12] | 彭子林, 周蕾, 邓庆航, 叶光华, 周兴贵. 包含偏硅酸影响的3D NAND磷酸湿法刻蚀动力学[J]. 化工学报, 2025, 76(2): 645-653. |
[13] | 贾艳萍, 马艳菊, 管文昕, 杨彬, 张健, 张兰河. 响应面法优化Fe0/H2O2体系降解染料废水的工艺条件及机理[J]. 化工学报, 2025, 76(1): 348-362. |
[14] | 郭珊, 田雨, 徐永滨, 王朋, 刘治明. 废旧电池再资源化制备高性能中熵合金催化剂及其性能研究[J]. 化工学报, 2025, 76(1): 231-240. |
[15] | 吴德威, 汪郑鹏, 周玥, 李晓宁, 陈招, 李卓, 刘成伟, 李学刚, 肖文德. 固定床法制备锂离子电池硅碳负极材料及其储锂性能研究[J]. 化工学报, 2024, 75(S1): 300-308. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 50
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 122
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||