• •
江锦波1(), 陈竹鑫1, 肖洋溢1, 彭新1, 陈源2, 于辰1, 孟祥铠1, 彭旭东1
收稿日期:
2024-11-01
修回日期:
2024-12-15
出版日期:
2025-01-02
通讯作者:
江锦波
作者简介:
江锦波(1989—),男,博士,副教授,jinbo_110@163.com
基金资助:
Jinbo JIANG1(), Zhuxin CHEN1, Yangyi XIAO1, Xin PENG1, Yuan CHEN2, Chen YU1, Xiangkai MENG1, Xudong PENG1
Received:
2024-11-01
Revised:
2024-12-15
Online:
2025-01-02
Contact:
Jinbo JIANG
摘要:
超临界CO2压缩机干气密封因密封介质在临界点工况附近的物性特殊性和高参数化,密封间隙内介质流动呈现出多相流动、高度湍流化和物性畸变特征。以微段组合型槽干气密封为研究对象,构建了轴向力平衡条件下考虑实际流体效应的超临界CO2干气密封热动力润滑相变仿真模型,提出了密封端面热力过程表征方法,研究了转速、进气压力和进气温度等运行工况参数对超临界CO2干气密封端面热力过程、流场参数和稳态性能的影响。结果表明:进气温度的提高对于抑制密封端面液相凝析效果显著,而转速和进气压力的增大只能抑制槽区液相凝析,增大端面非液相区面积,但对密封坝气液两相区影响不大,当进气温度达到320K和340K时,端面纯液相区和气液两相区先后消失;提高非液相区面积,对于增大密封气膜刚度是有利的。
中图分类号:
江锦波, 陈竹鑫, 肖洋溢, 彭新, 陈源, 于辰, 孟祥铠, 彭旭东. 运行工况对超临界CO2干气密封端面热力过程及稳态性能影响研究[J]. 化工学报, DOI: 10.11949/0438-1157.20241240.
Jinbo JIANG, Zhuxin CHEN, Yangyi XIAO, Xin PENG, Yuan CHEN, Chen YU, Xiangkai MENG, Xudong PENG. Study on the influence of operating conditions on the thermal process and steady state performance of supercritical CO2 dry gas seal[J]. CIESC Journal, DOI: 10.11949/0438-1157.20241240.
图4 动环和静环计算域及其传热边界条件示意图
Fig.4 Schematic diagram of the calculation domains of the rotating ring and the stationary ring and their heat transfer boundary conditions.
名称与单位 | 数值 | 名称与单位 | 数值 |
---|---|---|---|
密封端面内径ri/mm | 58.42 | 密封端面外径ro/mm | 77.78 |
槽数Ng | 12 | 周向槽宽比δ | 0.5 |
径向槽长比α | 0.6 | 槽深hg/μm | 5 |
进口螺旋角β1/° | 50 | 中间螺旋角β2/° | 30 |
出口螺旋角β3/° | 30 | 转速n/ rpm | 10000 |
进气温度Tin/K | 305.0 | 进气压力pin/MPa | 10 |
弹簧比压psp/MPa | 0.05 | 平衡比B | 0.80 |
表1 sCO2干气密封运行工况及结构参数缺省值
Table 1 Default values of working conditions and structural parameters of sCO2 dry gas seal
名称与单位 | 数值 | 名称与单位 | 数值 |
---|---|---|---|
密封端面内径ri/mm | 58.42 | 密封端面外径ro/mm | 77.78 |
槽数Ng | 12 | 周向槽宽比δ | 0.5 |
径向槽长比α | 0.6 | 槽深hg/μm | 5 |
进口螺旋角β1/° | 50 | 中间螺旋角β2/° | 30 |
出口螺旋角β3/° | 30 | 转速n/ rpm | 10000 |
进气温度Tin/K | 305.0 | 进气压力pin/MPa | 10 |
弹簧比压psp/MPa | 0.05 | 平衡比B | 0.80 |
图7 干气密封温度、压力、质量分数的程序计算结果与文献值对比
Fig.7 The comparison of film pressure, temperature and mass fraction distribution of dry gas seal between calculated values and literature values
1 | White M T, Bianchi G, Chai L, et al. Review of supercritical CO2 technologies and systems for power generation[J]. Applied Thermal Engineering, 2021, 185: 116447. |
2 | Yu A F, Su W, Lin X X, et al. Recent trends of supercritical CO2 brayton cycle: bibliometric analysis and research review[J]. Nuclear Engineering and Technology, 2021, 53(3): 699-714. |
3 | Bidkar R A, Sevincer E, Wang J F, et al. Low-leakage shaft-end seals for utility-scale supercritical CO2 turboexpanders[J]. ASME Journal of Engineering for Gas Turbines and Power, 2017, 139(2): 022503. |
4 | Zhang C, Jiang J B, Peng X D, et al. The influence and a direct judgement method of the flow state in supercritical CO2 dry gas seal[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021, 43(11): 486. |
5 | 严如奇, 丁雪兴, 徐洁, 等. 离心惯性力效应对超临界二氧化碳干气密封流场与密封特性影响分析[J]. 摩擦学学报, 2020, 40(6): 781-791. |
Yan R Q, Ding X X, Xu J, et al. The influence analysis of centrifugal inertia force effect on the flow field and sealing characteristics of supercritical carbon dioxide dry gas seal[J]. Tribology, 2020, 40(6): 781-791. | |
6 | Fairuz Z M, Jahn I. The influence of real gas effects on the performance of supercritical CO2 dry gas seals[J]. Tribology International, 2016, 102: 333-347. |
7 | Zakariya M F, Jahn I H J. Performance of supercritical CO2 dry gas seals near the critical point[C]//ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition, June 13–17, 2016, Seoul, South Korea. 2016 |
8 | 江锦波, 滕黎明, 孟祥铠, 等. 基于多变量摄动的超临界CO2干气密封动态特性[J]. 化工学报, 2021, 72(4): 2190-2202. |
Jiang J B, Teng L M, Meng X K, et al. Dynamic characteristics of supercritical CO2 dry gas seal based on multi variables perturbation[J]. CIESC Journal, 2021, 72(4): 2190-2202. | |
9 | Thatte A, Zheng X Q. Hydrodynamics and sonic flow transition in dry gas seals[C]//ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, June 16–20, 2014, Düsseldorf, Germany. 2014 |
10 | 马润梅, 朱鑫磊, 张楠楠, 等. 超临界二氧化碳气体端面密封阻塞效应研究[J]. 润滑与密封, 2020, 45(1): 16-22. |
Ma R M, Zhu X L, Zhang N N, et al. Study on blocking effect supercritical carbon dioxide of dry gas seal[J]. Lubrication Engineering, 2020, 45(1): 16-22. | |
11 | 沈伟, 彭旭东, 江锦波, 等. 高速超临界二氧化碳干气密封实际效应影响分析[J]. 化工学报, 2019, 70(7): 2645-2659. |
Shen W, Peng X D, Jiang J B, et al. Analysis on real effect of supercritical carbon dioxide dry gas seal at high speed[J]. CIESC Journal, 2019, 70(7): 2645-2659. | |
12 | 沈伟, 彭旭东, 江锦波, 等. 惯性效应对超高速倾斜端面气膜密封稳动态特性影响[J]. 摩擦学学报, 2019, 39(4): 452-462. |
Shen W, Peng X D, Jiang J B, et al. The influence of inertia effect on steady performance and dynamic characteristic of super high-speed tilted gas face seal[J]. Tribology, 2019, 39(4): 452-462. | |
13 | 章聪, 彭旭东, 江锦波, 等. 实际气体、阻塞和湍流效应对超临界CO2干气密封性能的影响[J]. 中国电机工程学报, 2022, 42(20): 7563-7574. |
Zhang C, Peng X D, Jiang J B, et al. Influence of real gas, choked flow, and turbulence effect on performance of supercritical CO2 dry gas seals[J]. Proceedings of the CSEE, 2022, 42(20): 7563-7574. | |
14 | Poerner M, Beck G, Musgrove G, et al. Understanding wet gas in a supercritical carbon dioxide cycle[C]. 5th International Symposium on Supercritical CO2 Power Cycles, San Antonio, Texas. 2016. |
15 | Thatte A, Loghin A, Martin E, et al. Multi-scale coupled physics models and experiments for performance and life prediction of supercritical CO2 turbomachinery components[C]. 5th International Symposium on Supercritical CO2 Power Cycles, San Antonio, Texas, 2016. |
16 | Thatte A, Dheeradhada V. Coupled physics performance predictions and risk assessment for dry gas seal operating in MW-scale supercritical CO2 turbine[C]. ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition, Seoul, South Korea, 2016. |
17 | Ma A L, Song P Y. The liquid condensation conditions in the dry gas seal system[J]. Applied Mechanics and Materials, 2015, 752/753: 199-204. |
18 | Bai S X. Thermoelastohydrodynamic gas lubrication of spiral-groove face seals: modeling and analysis of vapor condensation[J]. Tribology Transactions, 2017, 60(4): 719-728. |
19 | Kim M S, Bae S J, Son S, et al. Study of critical flow for supercritical CO2 seal[J]. International Journal of Heat and Mass Transfer, 2019, 138: 85-95. |
20 | Laxander A, Fesl A, Hellmig B. Development and testing of dry gas seals for turbomachinery in multiphase CO2 applications[C]. 3rd European supercritical CO2 Conference, Paris, France, 2019. |
21 | Zhang C, Jiang J B, Peng X D. Numerical analysis of supercritical CO2 dry gas seals with phase transitions[J]. Industrial Lubrication and Tribology, 2022, 74(7): 780-787. |
22 | Zhang C, Jiang J B, Peng X D, et al. An investigation on phase transitions in a supercritical CO2 dry gas seal[J]. Tribology Transactions, 2022, 65(4): 728-748. |
23 | 于辰, 江锦波, 赵文静, 等. 基于微段组合的干气密封端面型槽结构模型及其参数影响[J]. 化工学报, 2021, 72(10): 5294-5309. |
Yu C, Jiang J B, Zhao W J, et al. Geometrical model of surface groove based on micro-segment combination for dry gas seal and its parameter influence[J]. CIESC Journal, 2021, 72(10): 5294-5309. | |
24 | Meng X K, Zhao W J, Shen M X, et al. Thermohydrodynamic analysis on herringbone-grooved mechanical face seals with a quasi-3D model[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2018, 232(11): 1402-1414. |
25 | Hirs G G. A bulk-flow theory for turbulence in lubricant films[J]. ASME Journal of Lubrication Technology, 1973, 95(2): 137-145. |
26 | Djamaï A, Brunetière N, Tournerie B. Numerical modeling of thermohydrodynamic mechanical face seals[J]. Tribology Transactions, 2010, 53(3): 414-425. |
27 | Xu H J, Song P Y, Mao W Y, et al. The performance of spiral groove dry gas seal under choked flow condition considering the real gas effect[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2020, 234(4): 554-566. |
28 | Du Q W, Gao K K, Zhang D, et al. Effects of grooved ring rotation and working fluid on the performance of dry gas seal[J]. International Journal of Heat and Mass Transfer, 2018, 126: 1323-1332. |
29 | Beatty P A, Hughes W F. Turbulent two-phase flow in face shaft seals[J]. ASME Journal of Tribology, 1987, 109(1): 91-99. |
[1] | 朱芝, 许恒杰, 陈维, 毛文元, 邓强国, 孙雪剑. 超临界二氧化碳螺旋槽干气密封热流耦合润滑临界阻塞特性研究[J]. 化工学报, 2024, 75(2): 604-615. |
[2] | 丁俊华, 俞树荣, 王世鹏, 洪先志, 包鑫, 丁雪兴. 多重效应下超高速干气密封流场模拟及密封性能试验[J]. 化工学报, 2023, 74(5): 2088-2099. |
[3] | 王磊, 曹雄金, 罗凯, 王艳, 费华. 不同流动方向上微型加热管内超临界CO2的换热特性[J]. 化工学报, 2023, 74(11): 4535-4547. |
[4] | 江鹏, 江锦波, 彭旭东, 孟祥铠, 马艺. 传热模型对近临界工况CO2干气密封温压分布和稳态性能影响[J]. 化工学报, 2021, 72(8): 4239-4254. |
[5] | 孙雪剑, 宋鹏云, 毛文元, 邓强国, 许恒杰, 陈维. 考虑密封环材料属性和表面形貌干气密封启停阶段的动态接触特性分析[J]. 化工学报, 2021, 72(8): 4279-4291. |
[6] | 严如奇, 丁雪兴, 徐洁, 洪先志, 包鑫. 基于湍流模型的S-CO2干气密封流场与稳态性能分析[J]. 化工学报, 2021, 72(8): 4292-4303. |
[7] | 江锦波, 滕黎明, 孟祥铠, 李纪云, 彭旭东. 基于多变量摄动的超临界CO2干气密封动态特性[J]. 化工学报, 2021, 72(4): 2190-2202. |
[8] | 商浩, 陈源, 李孝禄, 王冰清, 李运堂, 彭旭东. 膜厚扰动下的非线性效应对干气密封性能影响研究[J]. 化工学报, 2021, 72(4): 2213-2222. |
[9] | 乔国岳, 刘居陶, 孙剑飞, 徐琴琴, 银建中. 超临界CO2脱附作用调控负载纳米颗粒结晶动力学研究[J]. 化工学报, 2021, 72(11): 5849-5857. |
[10] | 于辰,江锦波,赵文静,李纪云,彭旭东,王玉明. 基于微段组合的干气密封端面型槽结构模型及其参数影响[J]. 化工学报, 2021, 72(10): 5294-5309. |
[11] | 吕义高, 李庆, 文哲希. 正弦波纹流道印刷电路板换热器热工水力性能[J]. 化工学报, 2020, 71(S2): 142-151. |
[12] | 严如奇, 洪先志, 包鑫, 徐洁, 丁雪兴. 超临界二氧化碳干气密封相态分布规律与密封性能研究[J]. 化工学报, 2020, 71(8): 3681-3690. |
[13] | 范瑜, 宋鹏云, 许恒杰. 水蒸气润滑干气密封启动过程研究[J]. 化工学报, 2020, 71(8): 3671-3680. |
[14] | 陈维, 宋鹏云, 许恒杰, 孙雪剑. 含杂质二氧化碳实际气体干气密封性能研究[J]. 化工学报, 2020, 71(5): 2215-2229. |
[15] | 车健, 江锦波, 李纪云, 彭旭东, 马艺, 王玉明. 节流孔出气模式对静压干气密封稳态性能影响[J]. 化工学报, 2020, 71(4): 1734-1743. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 296
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 76
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||