化工学报 ›› 2025, Vol. 76 ›› Issue (S1): 140-151.DOI: 10.11949/0438-1157.20241175
• 流体力学与传递现象 • 上一篇
苏伟1(
), 赵大海1, 金旭1, 刘忠彦1, 李静1, 张小松2
收稿日期:2024-10-23
修回日期:2024-10-24
出版日期:2025-06-25
发布日期:2025-06-26
通讯作者:
苏伟
作者简介:苏伟(1986—),男,博士,副教授,weisu@neepu.edu.cn
基金资助:
Wei SU1(
), Dahai ZHAO1, Xu JIN1, Zhongyan LIU1, Jing LI1, Xiaosong ZHANG2
Received:2024-10-23
Revised:2024-10-24
Online:2025-06-25
Published:2025-06-26
Contact:
Wei SU
摘要:
抑制冷凝结霜对于各种防霜冻应用来说至关重要。然而,在表面边缘或缺陷处的过冷液滴结冰,最终会导致整个表面结冰。为此,设计制作了六种亲疏水表面结合吸湿溶液进行实验。结霜实验表明,改变吸湿液滴的空间分布对延缓霜层传播速度有显著影响。其中,十六等分等间距断环状表面在设定工况下,霜层整体覆盖时间为228~251 min,与其他吸湿溶液抑霜研究相比,抑霜性能提升了64%~74%。扩大了吸湿溶液和亲疏水表面的应用范围,并为设计具有定制防冻特性的表面提供了有价值的见解。
中图分类号:
苏伟, 赵大海, 金旭, 刘忠彦, 李静, 张小松. 吸湿液滴与混合润湿性表面协同抑霜特性研究[J]. 化工学报, 2025, 76(S1): 140-151.
Wei SU, Dahai ZHAO, Xu JIN, Zhongyan LIU, Jing LI, Xiaosong ZHANG. Delaying condensation frosting using biphilic surfaces coupled with spatial control of liquid desiccant[J]. CIESC Journal, 2025, 76(S1): 140-151.
图2 霜层传播可视化系统示意图1—三轴平台;2—循环水箱;3—环境控制室;4—半导体冷台;5—工业相机镜头;6—工业相机;7—显示装置;8—空气混合腔;9—温湿度传感器;10—温湿度控制器;11—干燥剂;12—加湿器;13—LED灯
Fig.2 Schematic diagram of the frost layer propagation visualization system
图6 表面温度为-10℃(a)、-15℃(b)时环状亲疏水表面(距离0.4 cm)、环状亲疏水表面(距离0.3 cm)和环状条纹亲疏水表面的霜层覆盖率及霜层传播速度(c)
Fig.6 Frost coverage of RB(D=0.4), RB(D=0.3) and RSB at Tw=-10℃(a), Tw =-15℃(b); Frost propagation velocity (c)
图7 表面温度为-10℃(a)、-15℃(b)时,四等分等间距断环状表面、八等分等间距断环状表面和十六等分等间距断环状表面的霜层覆盖率及霜层传播速度(c)
Fig.7 Frost coverage of DRSB-4, DRSB-8 and DRSB-16 at Tw=-10℃(a), Tw =-15℃(b); Frost propagation velocity (c)
图8 表面温度为-10℃时,环状亲疏水表面(距离0.4 cm)、环状亲疏水表面(距离0.3 cm)和环状条纹亲疏水表面的液滴半径和数量
Fig.8 Radius and number of droplets on the RB(D=0.4), RB(D=0.3) and RSB at Tw = -10℃
图10 (a)吸湿溶液抑制结霜机理图;(b)环状亲疏水表面(距离0.3 cm)液滴冷凝;(c)四等分等间距断环状表面液滴冷凝;(d)八等分等间距断环状表面液滴冷凝;(e)十六等分等间距断环状表面液滴冷凝
Fig.10 (a) Mechanism of frost inhibition by hygroscopic solution; (b) Condensation of droplets on RB(D=0.3); (c) Condensation of droplets on DRSB-4; (d) Condensation of droplets on DRSB-8; (e) Condensation of droplets on DRSB-16
| 1 | 黄韬, 唐兰, 陈海, 等. 空气源热泵分段除霜性能研究[J]. 制冷学报, 2023, 44(4): 112-119. |
| Huang T, Tang L, Chen H, et al. Study on the segmental defrosting performance of air-source heat pumps[J]. Journal of Refrigeration, 2023, 44(4): 112-119. | |
| 2 | 汪峰, 汤锐, 王志豪, 等. 冷表面温度对超疏水翅片结霜特性与抑霜性能的影响[J]. 制冷学报, 2022, 43(6): 107-113. |
| Wang F, Tang R, Wang Z H, et al. Effects of cold surface temperature on frosting characteristics and anti-frosting performance of superhydrophobic fins[J]. Journal of Refrigeration, 2022, 43(6): 107-113. | |
| 3 | Li Y L, Li M X, Dang C B. Effect of surface wettability on dust removal characteristics during frosting cleaning process[J]. Applied Thermal Engineering, 2023, 229: 120592. |
| 4 | Liao C Z, Zeng L, Long J B, et al. Research on anti-frosting potential of air source heat pump evaporator in hot-summer and cold-winter zone[J]. Applied Thermal Engineering, 2023, 220: 119684. |
| 5 | He H, Zhou X Y, Lyu N, et al. Enhancing heat-exchanger performance in frost conditions via superhydrophobic surface modification[J]. Applied Thermal Engineering, 2024, 246: 122914. |
| 6 | Wang X Q, Li S H, Huang J Y, et al. A multifunctional and environmentally-friendly method to fabricate superhydrophilic and self-healing coatings for sustainable antifogging[J]. Chemical Engineering Journal, 2021, 409: 128228. |
| 7 | Sarma J, Monga D, Guo Z Q, et al. Coarsening droplets for frosting delay on hydrophilic slippery liquid-infused porous surfaces[J]. Droplet, 2024, 3(2): e106. |
| 8 | Xia P, Fan L, Xu C H, et al. Visualization of cold surface frosting[J]. Journal of Physics: Conference Series, 2023, 2422(1): 012013. |
| 9 | Su W, Zhao D H, Jin X, et al. Experimental investigation of surface wettability on frosting propagation characteristics[J]. Applied Thermal Engineering, 2024, 243: 122747. |
| 10 | Lee H, Yang J B, Kim D R. Anti-frosting characteristics of superhydrophobic-hydrophilic wettability switchable surfaces[J]. International Journal of Heat and Mass Transfer, 2024, 221: 125035. |
| 11 | Gao S W, Wu S C, Gulfam R, et al. Dropwise condensation heat transfer on vertical superhydrophobic surfaces with fractal microgrooves in steam[J]. International Journal of Heat and Mass Transfer, 2023, 217: 124641. |
| 12 | 范鹏艳, 刘中良, 李艳霞. 透明超疏水表面的制备与抑霜性能研究[J]. 制冷学报, 2021, 42(3): 42-50. |
| Fan P Y, Liu Z L, Li Y X. Fabrication of transparent superhydrophobic surface and its anti-frosting performance [J]. Journal of Refrigeration, 2021, 42(3): 42-50. | |
| 13 | 刘耀, 盛伟, 方永强, 等. 铝基波纹表面结霜特性实验研究[J]. 制冷学报, 2022, 43(3): 78-86. |
| Liu Y, Sheng W, Fang Y Q, et al. Experimental study on frosting characteristics of wavy aluminum surfaces[J]. Journal of Refrigeration, 2022, 43(3): 78-86. | |
| 14 | 谷贵雨, 盛伟, 郑海坤, 等. 不同工况下超疏水表面的凝露特性研究[J]. 制冷学报, 2023, 44(1): 142-149. |
| Gu G Y, Sheng W, Zheng H K, et al. Condensation characteristics of superhydrophobic surface at different working conditions[J]. Journal of Refrigeration, 2023, 44(1): 142-149. | |
| 15 | Su W, Ma D X, Jin X, et al. Experimental study on frosting and defrosting characteristics for inclined cold plates with surface wettability considered[J]. Applied Thermal Engineering, 2024, 239: 122089. |
| 16 | Gao R M, Song M J, Shen J, et al. An experimental study on the plate edge effect of frosting characteristics for horizontal flat cold plates with surface wettability considered[J]. Applied Thermal Engineering, 2023, 231: 120908. |
| 17 | Wang F, Dai F, Liang C H, et al. Freezing propagation of condensate droplets at early stage of frosting on vertical hydrophobic surface[J]. Case Studies in Thermal Engineering, 2023, 41: 102617. |
| 18 | Gurumukhi Y, Chavan S, Sett S, et al. Dynamic defrosting on superhydrophobic and biphilic surfaces[J]. Matter, 2020, 3(4): 1178-1195. |
| 19 | Nath S, Boreyko J B. On localized vapor pressure gradients governing condensation and frost phenomena[J]. Langmuir, 2016, 32(33): 8350-8365. |
| 20 | Sun X D, Rykaczewski K. Suppression of frost nucleation achieved using the nanoengineered integral humidity sink effect[J]. ACS Nano, 2017, 11(1): 906-917. |
| 21 | Sun X D, Damle V G, Uppal A, et al. Inhibition of condensation frosting by arrays of hygroscopic antifreeze drops[J]. Langmuir, 2015, 31(51): 13743-13752. |
| 22 | Wu S W, He Z Y, Zang J E, et al. Heterogeneous ice nucleation correlates with bulk-like interfacial water[J]. Science Advances, 2019, 5(4): eaat9825. |
| 23 | Shen C, Zhu Y Q, Shi W N, et al. Mechanically stable superhydrophobic surface on cement-based materials[J]. Chemical Physics, 2020, 538: 110912. |
| 24 | Nath S, Bisbano C E, Yue P T, et al. Duelling dry zones around hygroscopic droplets[J]. Journal of Fluid Mechanics, 2018, 853: 601-620. |
| 25 | Lu C G, Liu C, Yuan Z C, et al. Gradient droplet distribution promotes spontaneous formation of frost-free zone[J]. Communications Materials, 2022, 3: 80. |
| 26 | Li L N, Lin Y K, Rabbi K F, et al. Fabrication optimization of ultra-scalable nanostructured aluminum-alloy surfaces[J]. ACS Applied Materials & Interfaces, 2021, 13(36): 43489-43504. |
| 27 | Chen T C, Chen F Z. Chemical instability-induced wettability patterns on superhydrophobic surfaces[J]. Micromachines, 2024,15(3): 329. |
| 28 | Vercillo V, Tonnicchia S, Romano J M, et al. Design rules for laser-treated icephobic metallic surfaces for aeronautic applications[J]. Advanced Functional Materials, 2020, 30(16): 1910268. |
| 29 | Ancona A, Gaudiuso C, Volpe A, et al. Laser surface texturing for superhydrophobic, icephobic and friction reduction functionalization[J]. IOP Conference Series: Materials Science and Engineering, 2023, 1296(1): 012042. |
| 30 | Huang L Z, Tian Y Y, Song M J, et al. Experimental study of relative humidity effect on the edge effect of frosting characteristics on a vertical cold plate surface[J]. Applied Thermal Engineering, 2024, 236: 121537. |
| 31 | Wei Y T, Gao S H, Sun W, et al. Anti-frosting and defrosting on photothermal superhydrophobic coatings based on silane hydrolysis and carbon nanotube doping[J]. Applied Thermal Engineering, 2024, 236: 121876. |
| [1] | 王光磊, 刘晓玲, 徐震, 李琳. 面向压缩空气储能的气-水直接接触换热特性[J]. 化工学报, 2025, 76(4): 1595-1603. |
| [2] | 刘淑丽, 周文豪, 张少良, 沈永亮. 太阳能直接吸收相变集-蓄热器的放热特性研究[J]. 化工学报, 2025, 76(4): 1722-1730. |
| [3] | 晋伊浩, 罗俊欣, 胡章茂, 王唯, 殷谦. 亲水改性硫酸镁/膨胀蛭石复合材料的吸附储热性能[J]. 化工学报, 2025, 76(4): 1852-1862. |
| [4] | 张先开, 王博宇, 郭亚丽, 沈胜强. 水平圆管降膜蒸发式冷凝器热力性能计算分析[J]. 化工学报, 2025, 76(3): 995-1005. |
| [5] | 戴文智, 沈雄健, 宋晓博, 杨新乐. 生物质双级蒸发双回热有机朗肯循环系统环境分析[J]. 化工学报, 2025, 76(3): 1230-1242. |
| [6] | 田浩辰, 马志先, 王之浩. R1234ze(E)水平三维肋管外膜状凝结特性实验研究[J]. 化工学报, 2025, 76(3): 975-984. |
| [7] | 谢楠楠, 陈和, 叶光华, 束忠明, 傅送保, 周兴贵. 气液搅拌釜多层桨叶相互作用及组合优化[J]. 化工学报, 2025, 76(2): 564-575. |
| [8] | 李彦, 郭红利, 苏国庆, 张建文. 加氢装置空冷器气液两相流动与冲刷腐蚀问题[J]. 化工学报, 2025, 76(1): 141-150. |
| [9] | 高羡明, 杨汶轩, 卢少辉, 任晓松, 卢方财. 双槽道结构对超疏水表面液滴合并弹跳的影响[J]. 化工学报, 2025, 76(1): 208-220. |
| [10] | 李焱, 郑利军, 张恩勇, 王云飞. 深水海底管道软管内部流体渗透特性模型与试验研究[J]. 化工学报, 2024, 75(S1): 118-125. |
| [11] | 杨勇, 祖子轩, 李煜坤, 王东亮, 范宗良, 周怀荣. T型圆柱形微通道内CO2碱液吸收数值模拟[J]. 化工学报, 2024, 75(S1): 135-142. |
| [12] | 卢昕悦, 陈锐莹, 姜夏雪, 梁海瑞, 高歌, 叶正芳. 耦合LNG冷能的液态空气储能系统和液态CO2储能系统对比分析[J]. 化工学报, 2024, 75(9): 3297-3309. |
| [13] | 杨子驰, 谢冰琪, 石瑞莘, 雷虹, 陈晨, 周才金, 张吉松. 套管膜式微反应器内高效安全的气液传质-反应过程研究进展[J]. 化工学报, 2024, 75(9): 3011-3027. |
| [14] | 陈巨辉, 苏潼, 李丹, 陈立伟, 吕文生, 孟凡奇. 翅形扰流片作用下的微通道换热特性[J]. 化工学报, 2024, 75(9): 3122-3132. |
| [15] | 罗欣怡, 徐强, 佘永璐, 聂腾飞, 郭烈锦. 光电分解水制氢气泡动力学特性及其传质机理研究[J]. 化工学报, 2024, 75(9): 3083-3093. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号